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Recursive Implementation of the Distributed
Karhunen-Loève Transform
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Abstract—In the distributed linear source coding problem, a set
of distributed sensors observe subsets of a data vector with noise,
and provide the fusion center linearly encoded data. The goal is
to determine the encoding matrix of each sensor such that the fu-
sion center can reconstruct the entire data vector with minimum
mean square error. The recently proposed local Karhunen-Loève
transform approach performs this task by optimally determining
the encoding matrix of each sensor assuming the other matrices
are fixed. This approach is implemented iteratively until conver-
gence is reached. Herein, we propose a greedy algorithm. In each
step, one of the encoding matrices is updated by appending an ad-
ditional row. The algorithm selects in a greedy fashion a single
sensor that provides the largest improvement in minimizing the
mean square error. This algorithm terminates after a finite number
of steps, that is, when all the encoding matrices reach their prede-
fined encoded data size. We show that the algorithm can be im-
plemented recursively, and compared to the iterative approach,
the algorithm reduces the computational load from cubic depen-
dency to quadratic dependency on the data size. This makes it a
prime candidate for on-line and real-time implementations of the
distributed Karhunen-Loève transform. Simulation results suggest
that the mean square error performance of the suggested algorithm
is equivalent to the iterative approach.

Index Terms—Distributed compression, distributed Karhunen-
Loève transform, distributed transforms, principal component
analysis, source coding, transform coding.

I. INTRODUCTION

W IRELESS sensor networks consisting of battery oper-
ated sensors with computation and communication ca-

pabilities attract much attention due to their wide range of ap-
plications including: military and civilian surveillance, environ-
mental monitoring, health care, traffic control, and source local-
ization [1]–[5].

Each sensor in the network has a limited battery lifetime and
communications bandwidth due to the constraints on size and
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cost. It is therefore important that each sensor locally com-
presses its own observed data before relaying the compressed
information to a fusion center. The fusion center can then re-
construct the entire data vector from the collected information.
A key problem is the design of the compression at each sensor
such that the fusion center will produce a reconstruction that
will be optimal under a certain criterion, such as the mean
square error (MSE). Several different approaches towards
distributed compression have been pursued. For example, in the
information-theoretic literature, distributed compression has
received considerable attention following the landmark works
of Slepian and Wolf [6], and Wyner and Ziv [7]. In this paper,
however, we consider a different abstraction of compression.
Specifically, we view compression as dimensionality reduction
by linear projections. In the centralized (nondistributed) setting,
the MSE optimal solution is the well-known Karhunen-Loève
transform (KLT). There are intimate relations between this
perspective and the information-theoretic one, an account of
which can be found, e.g., in [8].

Recently, the classical KLT was extended beyond the central-
ized case in [9]: Suppose there are several spatially distributed
sensors, each observing only a part of the entire data vector.
The sensors cannot communicate with each other. Each sensor
provides linearly encoded data to the fusion center, which is
the result of linearly transforming its input data by an encoding
matrix (the row dimension of this matrix specifies the size of
the encoded data of the sensor). For this problem, upper and
lower bounds on the possible MSE performance can be given in
a straightforward fashion. An upper bound is the marginal KLT,
where each sensor computes a KLT based only on its local statis-
tics, without taking into account the correlations of its data with
the data observed by the other sensors. A lower bound is the joint
KLT, which cannot be applied to the entire data since the entire
data vector is not observed by each sensor (detailed explanation
of the joint KLT is discussed in [9, Section II-A]). The correla-
tions between the subvectors determine the separation between
the two bounds. The MSE performance of the distributed KLT
(dKLT) is between these two bounds. In [9] the reconstruction
of the entire data vector in the fusion center (termed as the local
KLT approach) is based on a sensor-by-sensor perspective. The
idea can be described as follows: Consider one of the sensors,
and assume that the encoding matrices of all the other sensors
are fixed and known to that sensor. This sensor then determines
its optimal encoding matrix in such a way as to minimize the
MSE in reconstructing the entire data vector at the fusion center
based on the encoded data from all sensors. This approach is
performed with an iterative algorithm, where in each iteration
step, only one of the sensors updates its encoding matrix. The
algorithm terminates when the difference between the MSEs in
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two subsequent iteration steps is smaller than a predefined tol-
erance. In [9] it was shown that this algorithm converges at least
to a local minimum of the MSE.

The dKLT is also studied in [10] where only the existence
of second moments is required, and not the assumption of joint
gaussianity of the observations. For a two-terminal scenario, an
asymptotic analysis of the MSE performance of the dKLT has
appeared in [11]. The dKLT is not an orthogonal transform and
thus, its subspaces are not nested. In [12], a novel algorithm was
presented that provides a distributed transform with nested sub-
spaces, at the expense of increased MSE. The distributed trans-
forms discussed here apply to a single layer of encoders that
directly feed to a decoder. In [13], distributed linear transforms
are designed for multilayer networks. In recent work [14], an
alternative perspective on distributed transforms is developed:
The goal is to determine the joint (centralized) KLT in multiple
distributed rounds with minimal communication.

It should be emphasized that the dKLT discussed here is used
for the reconstruction scenario, that is, the goal of the fusion
center is to reconstruct the entire data vector from the com-
pressed sensor observations with minimal MSE. A different
problem, although related in a sense, is the estimation scenario,
where the goal of the fusion center is to accurately estimate a
parameter vector of interest from the compressed sensor obser-
vations [15]. The latter setup is discussed in [16] and [17] using
linear estimators and ideal communication channels between
the sensors and the fusion center, and is further extended in
[18] to the important case of nonideal communication channels
(for example, fading).

Herein, we propose a greedy algorithm which terminates
after a finite number of steps. In each step, one of the encoding
matrices is updated by appending an additional row; in a
greedy fashion, the algorithm selects one sensor that provides
the largest decrease in the MSE. This algorithm terminates
when all the encoding matrices reach their predefined row
dimensions, and thus, requires a fixed number of iteration
steps, known ahead of time. As the second-order statistics of
the observation are known to the fusion center, the calculations
of the encoding matrices and the selection process are done at
the processing unit of this fusion center, and then it distributes
the results to the other sensor nodes. Simulation results suggest
that the MSE performance of the proposed new algorithm is
equivalent to the iterative local KLT. It is worth mentioning
that in extension of [9], in our problem setup we assume that a
disjoint part of the vector of interest is observed by each sensor
in the presence of noise. (In [19] we presented the noiseless
version of the greedy algorithm.) The reconstruction of the
vector of interest in the fusion center is then performed using
the noisy compressed data. A related problem which deals
with reconstructing the data vector in the presence of noise is
discussed for the joint (centralized) KLT setup in [20]–[23].

A key advantage of the proposed algorithm lies in its reduced
complexity. For the iterative local KLT algorithm, the calcula-
tion of the encoding matrix in each iteration step involves mul-
tiplying and inverting matrices whose sizes are linearly related
to the dimensions of the entire data vector, the data observed by
the sensor, and those of all the encoding matrices (see [9, Eq.
(14)–(15)]). Moreover, this algorithm involves the eigenvalue

decomposition of a matrix with dimensions equal to the data
size. Due to these matrix multiplications and inversions, and
this eigenvalue decomposition, the complexity of the iterative
algorithm increases cubically with respect to the data size. By
contrast, we show that since the greedy algorithm involves only
products of a matrix by a vector but not matrix inversions, and
only computes the largest eigenvector, the algorithm requires
fewer computations compared to the iterative approach, that is,
the complexity increases quadratically with respect to the data
size and not cubically. We also show that the proposed algorithm
can be implemented recursively. In standard applications, joint
second-order statistics may be known ahead of time and thus
the KLT and dKLT can be calculated ahead of time, meaning
that the computation complexity of finding the best transform
is a minor issue, though if we consider correlations over time,
the dimension of interest can easily be in the thousands, making
fast algorithms interesting. Even more important are emerging
applications, where it may be significant to compute (and re-
compute) optimal dimensionality reduction “on the fly,” based
on sequentially updated estimates of second-order statistics. In
these cases, the computational complexity of determining op-
timal transforms can become an important issue, and thus, the
proposed new algorithm may become an important tool.

The rest of this paper is organized as follows. In Section II we
present the problem formulation. In Section III we summarize
the main results of the iterative local KLT method. In Section IV
we present the greedy algorithm. In Section V we develop re-
cursive expressions for both the reconstructed data vector and its
MSE obtained by the greedy method. In Section VI we compare
the complexity load of the iterative method with the proposed
greedy method. In Section VII we present numerical examples,
and finally, in Section VIII we conclude the paper.

The following notation is used in the paper: uppercase bold
fonts denote matrices, and lowercase bold fonts denote vectors.
The superscripts , stand for transpose, and inverse, re-
spectively. is the identity matrix, is a vector
with all elements equal to zero. Also, is a
block diagonal matrix where the matrices are on
the main diagonal, is a diagonal matrix with

on the main diagonal. denote the trace of the
matrix , and represents the submatrix of consisting
of the first rows of . Finally, represents the expecta-

tion of the random vector , is
the linear minimum MSE estimator of given (and also the
optimal estimator when both are jointly Gaussian), and its MSE
is .

II. PROBLEM FORMULATION

For simplicity we consider the case of two sensors. The exten-
sion to a larger number of sensors is straightforward. Consider a

real-valued random vector , where
. The real-valued random vector of interest is denoted

by , which has a zero mean and a covariance
matrix . The vector ,
representing the noise, has a zero mean and a covariance matrix



5322 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 10, OCTOBER 2010

Fig. 1. The distributed KLT setup for the case of two sensors.

. We assume that the vector of interest is un-
correlated with the noise vector . Therefore, has a zero mean
with a covariance matrix .

Each sensor samples a disjoint part of . The first
sensor observes the first components of , denoted
by where , with

, and .
The second sensor observes the next compo-
nents of , denoted by where

, with ,
and (Although we discuss
real-valued random vectors, the extension to complex-valued
random vectors is straightforward).

Each sensor individually sends to the fusion center a
encoded data vector, denoted by , , 2, where

is a fixed (predefined) integer, ,
, and is a encoding matrix (see Fig. 1).

The goal of the fusion center is to obtain a reconstruction of the
vector of interest , denoted by , such that the MSE, denoted
by , is minimized. The problem discussed
in the context of the dKLT is: How to determine the encoding
matrices such that the MSE will be minimized?

III. THE ITERATIVE LOCAL KLT ALGORITHM

The iterative local KLT algorithm was proposed in [9, Algo-
rithm 1, p. 5186] as a suboptimal solution to the problem. In [9]
it is assumed that the observations are noiseless, i.e., ,

, 2. In this section, we briefly describe this algorithm. Con-
sider a system with two sensors. Let denote the estimate

of at the th iteration step, and the
MSE. Consider that at the th iteration step sensor 2 has a
fixed matrix . Given , the goal is to determine the
optimal encoding matrix of sensor 1 at the th iteration
step, denoted by , such that is minimized.

Define the matrix , and the
matrix

(1)

(2)

where , , and
, are the

eigenvalues of , and is the orthonormal eigenvectors matrix
of .

As shown in [9], the optimal encoding matrix ,
given , is

(3)

Let . The estimate of
and its associated MSE at the th iteration step are then
given as

(4)

(5)

where . In the next iteration step the
optimal matrix is determined given , and
so on. The iterative algorithm terminates when

, where is a predefined tolerance. In [9], [10] it was
shown that the iterative local KLT method converges at least to
a local minimum of the MSE.

Remark: The matrix is the optimal solution in
two different senses: i) when the observation is a Gaussian
random vector; ii) if we assume that the reconstruction is linear
given that the observation is a general random vector with
finite second-order moments.
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IV. THE GREEDY ALGORITHM

The principal notion of the proposed algorithm is that at each
step, we determine the single sensor that by adding another di-
mension to its compressed version, attains the largest reduction
in the MSE for the reconstruction of the entire data vector. Only
that sensor’s compression matrix is updated in this step. In this
sense it is a greedy algorithm. The number of steps required for
such a procedure is , which is the total predefined size
of the encoded data of all sensors.

We start by defining the following:
• , is the

decision vector of the fusion center at the th step, where

if sensor is selected at the th step.
(6)

• and are the total numbers of 1’s and 2’s, respectively,
in , where .

• and are the , and en-
coding matrices at the th step of sensor 1 and sensor 2,
respectively.1

• , , and , are the th row
and th row of and , respectively.

• is the estimate of at the th step, and
is its MSE.

• and are the outputs of
sensor one and sensor two at the end of the th step.

• is a matrix such that its th column vector,
denoted by , is defined as

if

if
(7)

• is the vector that consists the previous
outputs of the sensors.

Consider the th step. The fusion center needs to decide
between two alternatives:

1) Letting sensor 1 add a new row vector, denoted by ,

such that .

2) Letting sensor 2 add a new row vector, denoted by ,

such that .

The decision criterion is as follows: Assume that sensor 1 (or
sensor 2) is selected. Determine the optimal vector (or

), given , such that the MSE in reconstructing
is minimized. Let (or ) denote the MSE in re-

constructing at the th step assuming that sensor 1 (or
sensor 2) is selected. Given and , the decision of
the fusion center at the th step is based on selecting the
sensor which provides a smaller MSE, that is

(8)

The MSE in reconstructing at the th step is then

(9)

1Note that it is also possible that one of the matrices will be empty at this step.

This binary decision process, performed by the fusion center,
continues until or . Assume that this occurs
when while . The fusion center then performs
a sequence of steps where only sensor 1 further adds a
new encoding vector at each step, based on the previous outputs
of the two sensors.

The determination of the vector is described in the fol-
lowing result (the determination of is similar, and is ob-
tained with minor changes). The result is a modification of the
proof in [9, Theorem 2], and its derivation is explained in the
Appendix. In short, in the proof presented in [9, Appendix], the
determination of the complete matrix (or ) is based on
the previous output (or ) (Recall that in
[9] the observations are noiseless, i.e., , , 2.) Here,
the determination of is based on all the previous outputs
up to the th step which is .

Result 4.1: Define the matrix ,

(10)

where the matrix and the
matrix are

(11)

(12)

where , ,

, , and . Also define
the matrix

(13)

where we define the matrix as

(14)

and where the matrix is defined as

(15)

(16)

(17)

We note that is a matrix, and is a matrix.
Finally, we express the eigenvalue decomposition of as

(18)

where are

the (nonincreasingly ordered) eigenvectors of , and
collects the (orthonormal) eigenvectors of .

The vector which leads to the minimization of the MSE
in reconstructing is

(19)
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Observe that is the largest (principal) eigenvector of . The
MSE in reconstructing at the th step is then given as

(20)

where , and is the matrix that
consists the encoding matrices and is defined as

(21)

This completes the description of Result 4.1.
Remark: The vector is the optimal solution in two dif-

ferent senses: i) when the observation is a Gaussian random
vector; ii) if the reconstruction in the fusion center is constrained
to be linear given that the observation is a general random
vector with finite second-order moments.

Note that in order to determine we only need to com-
pute the largest (principal) eigenvector of , that is, the first
column of . This is in contrast to [9] where in each step all
the eigenvectors of the matrix are computed (refer to
(3)). Since we are interested only in this principal eigenvector
we can adopt a known method for computing it, such as the
power method or the inverse iteration (refer to [24]–[27] for
further discussion on such methods). While the complexity of
the eigenvalue decomposition is known to be , the com-
plexity of the power method, for example, is . Therefore,
compared to the iterative local KLT method we reduce the com-
plexity from cubic to quadratic dependency on the data size .
In Section VI we show that the complexity of computing the
matrix also increases quadratically with respect to the data
size.

V. RECURSIVE IMPLEMENTATION

Another advantage of the proposed approach is that the es-
timated data vector and its associated MSE can be calculated
recursively. We first show that using the results of the previous
section, the matrices involved in calculating the largest eigen-
vector in each step can be expressed recursively.

A. Recursive Calculation of

We develop a recursive expression for the matrix in (13).
In order to perform this task, we first develop a recursive expres-
sion for matrix in (14), and then for the matrix in (15).

1) Recursive Expression of : We first consider the matrix
in (12) and define by2 . Assuming that sensor 2

2Although the computation of this inverse increases cubically with respect to
� it is done only once. Moreover, if this matrix has a special structure (e.g.,
Toeplitz) then the computation of this matrix only increases quadratically with
respect to � . Another possibility is that the covariance matrix of the observed
data is slowly changing, such that the inverse can be calculated using a one-rank
update, for example.

was selected at the previous step we can write

(note that if sensor 2 was not selected, then , , and
do not change.) We can now rewrite the inverse matrix as

(22)

where in the second passing we use the matrix inversion lemma
[28]. Also, we define the vector , and the
scalar as

(23)

(24)

Therefore, the calculations of are implemented recursively
with the need to perform an initial matrix inversion of the

matrix . By substituting (22) in (10), and noting that the
matrix in (11) can be also expressed recursively as

, we obtain after a few simple mathematical
steps a recursive expression for given as

(25)

where is a vector defined as

(26)

Note that using the result in (25) we obtain that,

(27)

Therefore, by substituting (27) in (14) we can express as

(28)

where we define the matrix as

(29)

and , are and vectors defined as

(30)

(31)

Observe that the rank of is one. This property will be helpful
when considering the complexity load involved in the calcula-
tions of the algorithm. As mentioned, the above recursion ex-
pression for is needed if sensor 2 was selected at the th
step, otherwise , and therefore .

2) Recursive Expression of : Consider now the matrix
in (15). This matrix depends on the matrix given in (16)
which in turn depends on expressed in (17). Note that
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. We can rewrite the inverse matrix for
as

(32)

where in the second passing we use the matrix inversion lemma
[28]. Also, we define the vector and the scalar
as

(33)

(34)

Again, the calculations of are implemented recursively with
the need to calculate the initial scalar .

Substituting (32) in (16) results in the following recursive ex-
pression for the matrix

(35)

where is a vector defined as

(36)

By substituting (35) in (15) we can express the matrix as

(37)

where we define the vector and the scalar as

(38)

(39)

Using the recursive expression for and we now obtain
a recursive expression for given in (13). By substituting (28)
and (37) in (13) we write as

(40)

where we define the matrix

(41)

and we define the vectors and , and the scalar as

(42)

(43)

(44)

Observe that the rank of each of the terms in (41) is one, and
thus each matrix product involves the multiplication of a vector
by a vector which significantly reduces the complexity load as
discussed in the next section.

B. Recursive Calculation of the Reconstructed Vector

We now present a recursive implementation of the recon-
structed vector and its associated MSE. Assume that the fusion
center is at the end of the th step. The output of the two
sensors is given by which can be written as

, where and . By
writing we obtain that the reconstructed
data vector at the th step is given as

(45)

where in the last equality we used the matrix inversion lemma
[28], and we defined

(46)

Also we define the reconstructed vector at the th step, and its
MSE matrix as

(47)

(48)

where and are defined in (16) and (17), respectively.
Using the result in (35) it can be shown that can be expressed
recursively as

(49)

where and are defined in (36) and (34), respectively.
Note that by exploiting the orthogonality principle we get
that , that is, the
second term in (45) is the innovation at the th step of the
estimate .

Similarly, using the matrix inversion lemma [28] we get that
the MSE associated with is

(50)

where we used the results that
and . Therefore, the reconstruction of
the data vector , and the calculation of its associated MSE, can
be implemented recursively.
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VI. COMPUTATIONAL COMPLEXITY

We discuss the computational complexity of the iterative local
KLT method and the greedy algorithm. We focus on the number
of real multiplications which are required per iteration step of
each method.

A. The Iterative Local KLT

The calculations in each iteration step of the iterative local
KLT method involve three parts: matrix inversions, matrix mul-
tiplications and an eigenvalue decomposition.

The method involves the inversion of an
matrix and a matrix, , 2 in com-

puting the optimal encoding matrix in each iteration step [see
(1) and (2)]. Recall that inverting an matrix requires

operations. Therefore, the total complexity of this step
at a single iteration step is (given the
encoding matrix of sensor 2 is fixed) or
operations (given the encoding matrix of sensor 1 is fixed). This
amount of operations increases cubicly with respect to , and
the size of the encoded data, . Also, the calculations of

and in (1) and (2), respectively, involve the product of ma-
trices whose dimensions are proportional to the data size (e.g.,

requires to multiply an matrix by an matrix
and this involves operations). Finally, we also need
to perform an eigenvalue decomposition of which its com-
plexity also increases cubicly with respect to . In summary,
the calculation of the iterative local KLT method per iteration
step increases cubically with respect to the data size.

B. The Greedy Algorithm

The complexity of the greedy algorithm in each step involves
three parts: the calculation of [expressed in (40)], the cal-
culation of its largest eigenvector, and obtaining the encoding
vector as given in (19).

As mentioned earlier, given the matrix , we can use a
known method for computing the largest eigenvector, , (e.g.,
power method [27] which has a quadratic complexity with
respect to the data size). Also notice that according to (19), in
order to obtain the encoding vector, we need to multiply the

vector with an matrix . The complexity of
this step is operations which also increases quadrati-
cally with respect to the data size.

We now focus on the first part of the complexity of the greedy
algorithm which is the calculation of . We show that this cal-
culation also increases quadratically with respect to the data
size. According to the recursive expression of given in (40),
we need to consider the computation of the updating matrix
which depends on the vectors , , and , and the scalars
and . Each of the four terms in (41) is an outer product of two

vectors, and thus given these two vectors, the complexity
of calculating each outer product is operations.

Next we consider the complexity of calculating , and .
We see that given the vectors , , and , the complexity of
calculating in (42) involves the computation of the product

, which requires operations, and then the multi-
plication of the matrix by the vector

, which also requires operations. The calculation of
in (43) involves the multiplication of the matrix

(known from the previous step) by the vector
, which requires operations. Finally, the calculation

of the scalar in (44) involves the multiplication of the
matrix by the vector , which requires op-
erations, and then the multiplication of the vector
by the vector , which also requires operations.
We therefore conclude that given the vectors , and and
the scalar , the calculation of , which is used to update the
matrix , increases quadratically with respect to the data size.

Finally, we show that the complexity of calculating the vec-
tors , , , and the scalar also increases quadratically with
respect to the data size. In order to calculate the vector in (30),
we need to calculate the vector given in (26). Calculating the
vector involves: 1) the computation of which according
to (23) requires operations; 2) the computation
of which according to (24) requires opera-
tions. The calculation of in (31) involves the multiplication
the matrix and the vector

which requires operations. To calculate the
vector in (38) we need to first compute the vector given
in (36). The vector involves the calculation of , which ac-
cording to (33) requires the multiplication of the
matrix (known from the previous step) by the
vector which requires operations. Given ,
the calculation of the vector requires the multiplication of
the matrix (known from the previous
step) by the vector which requires
operations. Given , the calculation of in (38) involves the
multiplication of the matrix by the vector

which requires operations. Finally, the computation
of the scalar in (39) involves the computation of the norm of

which requires operations, and the calculation of the
scalar , which according to (34) requires
operations.

Therefore, we showed that the complexity of computing the
matrix increases quadratically with respect to the data size.

VII. NUMERICAL EXAMPLES

In this section, we compare the MSE performance of the pro-
posed algorithm with the MSE performance of the joint KLT,
marginal KLT, and the iterative local KLT. The discussion on the
reconstruction of the data vector and the MSEs using the joint
KLT and the marginal KLT is described in [9]. Since the joint
KLT, marginal KLT, and the iterative local KLT are discussed
in [9] for the noiseless case, we assume in the simulations that
the vector of interest is observed without noise. Also, in our
simulations we apply the power method [27, Algorithm 4.4.1]
to compute the largest eigenvector in each step of the greedy al-
gorithm.

A. Example 1

In the first three simulations we consider the example given in
[9, p. 5186]. Suppose is a symmetric Toeplitz matrix with
first row , where is the decay parameter of the
Toeplitz covariance matrix, contains the odd-indexed com-
ponents of , and the even-indexed components. Assume that

, and . For the iterative local KLT we used a
tolerance of .
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Fig. 2. MSE comparison of the joint KLT, marginal KLT, iterative local KLT,
and the greedy approach versus the size of the encoded data of the first sensor
for Example 1.

Fig. 3. MSE of the greedy approach versus the step index of the algorithm,
compared with the MSE of the joint KLT, marginal KLT, and iterative local
KLT for Example 1.

In the first comparison we calculated the MSE of each method
as a function of the required number of encoded coefficients ,
with fixed, and . We varied from 2 to 10 with
a step of 1. The case of was considered in [9, Example
6, p. 5186]. The results are plotted in Fig. 2. The number in
the parenthesis below the line associated with the results of the
iterative local KLT is the number of iteration steps that were
required for this method to reach the predefined tolerance. As
can be seen the MSE of the proposed algorithm coincides with
the MSE of the iterative local KLT for almost all values of .

In the second comparison and with
. In Fig. 3 we plotted the MSE of the greedy approach as a

function of its step index, . Also, plotted are the MSEs of the
joint KLT, marginal KLT, and iterative local KLT. The number
of iteration steps that were required for the iterative local KLT
to reach the predefined tolerance is 5. As can be seen the MSE
of the greedy approach decreases until it achieves the MSE of
the iterative local KLT approach.

Fig. 4. MSE comparison of the joint KLT, marginal KLT, iterative local KLT,
and the greedy approach versus �, the decay parameter of the Toeplitz covari-
ance matrix for Example 1.

Finally, in the third comparison we evaluated the MSEs of the
methods versus , for . We varied from 0.1 to
0.9 with a step of 0.1. The results are shown in Fig. 4. As can
be seen the MSE performance of the proposed algorithm is the
same as the MSE performance of the iterative algorithm.

B. Example 2

Consider now another example which will further demon-
strate the gap between the MSE of the marginal KLT and the
MSEs of the joint KLT, the iterative KLT, and the greedy algo-
rithm. Assume that the first sensor observes the vector which
is a zero mean vector with covariance , while the second
sensor observes a noisy version of with an additive noise,
that is, where is a zero mean white noise with
variance , independent with . This situation therefore cor-
responds to the case where the covariance matrix of the entire
data vector is given as

This example is applicable if we have communication limita-
tions imposed such as capacity limits or battery constraints (that
is, each sensor can provide to the fusion center only a limited
number of coefficients). From a purely centralized perspective,
the second sensor does not contribute to the reduction of the
MSE, but due to communication limitations there is value in
receiving some of its samples that are not covered by the first
sensor.

Notice that affects the similarity between the two observed
vectors. That is, as becomes smaller, the two sensors actu-
ally observe (almost) the same vector. For simplicity assume
that where ,
that is, the elements of are independent with zero mean and
variance equal to , . We also assume that
these eigenvalues are given as follows:

, where and
. This function considers a smooth
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TABLE I
THE MSES OF THE METHODS FOLLOWING THE RESULTS IN THE UPPER PLOT OF FIG. 5

Fig. 5. MSE comparison of the joint KLT, marginal KLT, iterative local KLT,
and the greedy approach versus the size of the encoded data of the first sensor
for Example 2.

change of the eigenvalues. Of course, it is also possible to con-
sider other functions.

We calculated the MSE of each method as a function of the
required number of encoded coefficients , with fixed,

and . We varied from 5 to 15 with a step of
1. We considered the case when , and when .
The results are plotted in Fig. 5. As can be seen, the MSE of
the proposed algorithm is similar to the MSE of the iterative
local KLT for almost all values of . Also, as the variance of

decreases, the MSE of the iterative algorithm and the MSE
of the proposed method become closer to the MSE of the joint
KLT. The plots demonstrate that the gap between the MSE of
the marginal KLT and the other methods can be very large.

In Table I we present specific values of the MSEs of the
methods for the case obtained in the last simulation.
As can be seen, for example, the MSE of the marginal KLT for

is similar to the MSEs of the joint KLT,
iterative KLT, and greedy algorithm for . This
can be explained as follows. Consider the case when .
Since is very small, the two sensors observe (almost) the same
data vector. However, since the marginal KLT ignores the cor-
relation between the sensors, then the first sensor provides the
optimal encoding vectors which are similar to the first
10 encoding vectors provided by the first sensor. Only the 11th
encoding vector of the first sensor provides an innovation to the
vectors of the second sensor. Hence, although in total the two
sensors provide 21 encoding vectors, only 11 vectors of them
are distinct. Thus, this reduces to the case where there is a joint
processing and the total number of encoding vectors is 11. Since

, this means that the first sensor only needs to provide

Fig. 6. Processing time comparison of the iterative local KLT and the greedy
approach versus the data size.

one encoding vector, i.e. . Therefore, the MSE of the mar-
ginal KLT for is similar to the MSEs of joint KLT, iter-
ative KLT, and greedy algorithm for (as explained previ-
ously, for small the MSEs of the iterative KLT and the greedy
algorithm are similar to the MSE of the joint KLT). Similarly,
we explain the results for . The differences be-
tween the MSE of the marginal KLT (for )
and the MSEs of the other methods decrease as decreases.

C. Processing Time Comparison

We now discuss the tradeoff between the computational com-
plexity and the reconstruction MSE error achieved by the greedy
approach and the iterative local KLT. We compared the pro-
cessing time (using MATLAB time commands), required for the
iterative local KLT method and the greedy method to reach the
MSE, as a function of the data size, . We consider the setup of
example 1: a Toeplitz covariance matrix with a decay parameter
of , , , , and . We used
the following data sizes: , 128, 256, 512, 1012, 2048.
For each value of we calculate the MSE, number of itera-
tions required for the iterative local KLT method, and the pro-
cessing time (using MATLAB time commands) of the iterative
local KLT method and the greedy method versus . In Fig. 6
(upper subplot) we plotted the ratio between the processing time
of the iterative local KLT and the processing time of the greedy
algorithm, using the absolute processing times, and also by nor-
malizing the total processing time of each method by its number
of iterations, and in Fig. 6 (lower subplot) we plotted the ab-
solute processing time of the iterative local KLT and the pro-
cessing time of the greedy algorithm. In Table II we show the
MSE and the corresponding number of iterations required by
the iterative local KLT. It can be seen in Fig. 6 that the com-
plexity of the greedy method is much smaller than the iterative
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TABLE II
THE MSE AND THE NUMBER OF ITERATIONS OF THE ITERATIVE LOCAL KLT

METHOD FOR � � �, � � �, � � ���, AND � � �� VERSUS THE DATA

SIZE ASSOCIATED WITH THE RESULTS OF FIG. 6

local KLT method (for the normalized processing
time ratio is about 100).

VIII. CONCLUSION

In the distributed KLT problem, only parts of the entire data
are observed by different sensors, which provide linearly en-
coded data to the fusion center. It is impossible to apply a cen-
tralized KLT to the entire data vector. The local KLT method
proposed in [9] to reconstruct the data vector is an iterative
procedure that depends on the predefined tolerance. Instead,
we propose a greedy approach which is based on a predefined
number of successive steps. In each step the fusion center se-
lects the sensor for which the MSE in reconstructing the entire
data vector will be the smallest, if letting this sensor increase
the dimension of its current encoding matrix with a new and
optimally determined encoding vector. The proposed approach
requires fewer computations than the iterative approach and can
also be implemented recursively. Therefore, we expect the pro-
posed algorithm to be important in “on-line” implementations of
the distributed KLT. Simulations demonstrate that the MSE of
the proposed algorithm achieves the MSE of the iterative local
KLT method.

APPENDIX

We present a proof of Result 4.1. As mentioned in Section IV,
this result is based on some minor modifications of the proof
given in [9, Theorem 2] as we explain herein. We start by noting
that the goal is to minimize the MSE which can be expressed as

(51)
We express as a linear combination of the observation and
the encoded data (refer to [9, Eq. (58), (66)] for a similar
approach)

(52)

where is expressed in (10), and is independent with
and . Substituting (52) into (51) yields

(53)

Given the encoded data the estimate which minimizes
(53) is

(54)

Since and is independent with we get

that . Substituting (54) into (53)
results in

(55)

where is defined in (14). We can now rewrite (55) as an
expectation conditioned on the available encoded data at the
end of the th step (similar to [9, Eq. (69)])

(56)

Similarly to [9, Eq. (59)] we express as a linear combina-
tion of and an independent random vector as

(57)

Note that is a zero mean real-valued random vector with a
covariance matrix given in (13). Define the matrix

where is presented in (18). Multiplying
the inner term in (56) from the left by leads to

(58)

Similarly to [9, Eq. (60)] it can be shown that is a zero
mean uncorrelated real-valued random vector with a covariance
matrix given by . The result in (58) is
minimized by selecting the desired number of rows in (see
[9, Eq. (72)–(76)]). In our case we are only interested in the first
row denoted by . This completes the proof.
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