CAWDOR: Compiler Assisted Worm Defense

Jun Yuan
Department of Computer Science
Stony Brook University
Stony Brook, NY 11790, USA

Abstract—This paper explores how much the source code
analysis can assist worm defense system. Previously-proposed
worm defense systems have used disparate mechanisms to detect
worms, analyze exploits, verify alerts, and apply mitigations.
Furthermore, previous systems have not offered predictability,
i.e. it is not possible to verify, in advance, that the defense system
will never generate a mitigation that breaks the program.

This paper describes a program transformation technique
that makes collaborative worm defense systems easy to build,
predictable and fast-responsive. Our transformation provides a
single building block that can be used to perform worm detection,
exploit analysis, alert verification, and mitigation application.
In fact, our transformation makes most of these tasks trivial.
Furthermore, software vendors and users can test, in advance,
that the defense system will very unlikely apply a mitigation
that breaks their software. Mitigations are vulnerability-specific
not exploit-specific. Finally, our system can respond extremely
quickly to a new worm. The exploit analysis becomes trivial so
sentinel hosts can issue an alert the instant they detect a worm.

We have implemented a prototype of our system based
on the Jones and Kelly program transformation for memory
safety. During normal operation, our system incurs only 5%
overhead. We take advantage of static analysis to develop several
optimizations and make the Jones and Kelly approach to memory
safety efficient and practical.

I. INTRODUCTION

Internet worms have caused billions of dollars in damage,
have interfered with critical services, and may have even
indirectly caused loss of human life [12]. Worms exploit bugs
in host software and spread automatically from computer to
computer. Criminal organizations use worms to build botnets
from which they launch DDoS attacks, steal personal infor-
mation via keyloggers, conduct phishing attacks, and send
spam [9]. Many worms exploit zero-day vulnerabilities and
researchers have demonstrated that a well-engineered worm
could infect all vulnerable hosts in a matter of seconds [14],
[22].

Previous proposed worm defense systems have not met
the desirable needs of low overhead, fast responsive, auto-
matic, accuracy and vulnerability-specific. Much research has
focused on automatic signature generation[11], [20]. Input
filters are exploit-specific and therefore may have both false
positives and false negatives. Even defense systems that gen-
erate vulnerability-specific mitigations, such as Vigilante or
Sweeper, may still break working systems. Some installations
may routinely cause benign safety violations (e.g. they may
silently overflow a buffer into unused space, causing no visible
ill effects), so applying a mitigation, even a mitigation that
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has no “false positives”, may break such an installation.
Furthermore, these systems are large and complex — they use
different mechanisms for the detection, analysis, verification,
and application tasks.

We show that the worm defense system can be simple and
can offer two seemingly contradictory features: complete pre-
dictability, and the ability to respond to zero-day worms. We
propose a compiler transformation that inserts instrumentation
that can be dynamically enabled or disabled at run-time. Hosts
can perform worm detection by enabling a random subset
of these checks. The system can have low overhead because
hosts do not turn on all checks, enabling a large fraction
of hosts to participate in worm detection. Upon detecting a
worm, analysis is greatly simplified, since the host knows
exactly which check failed. Alerts can include the identifier of
the relevant check, simplifying alert verification and making
mitigation application trivial: the recipient simply needs to
activate the indicated check. This simply can respond quickly
because a significant amount of the analysis and mitigation
generation work is done at compile time.

Since mitigations are checks embedded in the program at
compile time, software vendors and users can test mitigations
in advance. They can, for example, test the software with
all checks turned on. Any check violation discovered during
testing will correspond to a real software bug that can be fixed
before deployment. Thus vendors and users can have high
confidence that the defense system will unlikely break their
installations. There is a slight chance that turning on different
sets of checks may change the undefined program behavior
that a bug depends to trigger, however, it is impractical to
prevent all the undefined and unspecified program bugs from
the compiler level. In turn, it is more difficult for attackers
to exploit some undefined bugs from programs with random
distributed checking mechanism.

We have implemented a transformation supporting individ-
ually activation based on the Jones and Kelly [10] memory-
safety transformation [7], [26], [15], and we have solved sev-
eral shortcomings of the original design. Our transformation
has a sophisticated optimizer for reducing run-time overhead.
It supports out-of-bounds pointers without the complexity of
OOB structures [18]. It also supports linking transformed
and untransformed code, providing good compatibility with
libraries that may not have our defense applied.

We evaluate the performance of our system under four
scenarios. Some hosts may not be performing detection and
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Fig. 1. A general collaborative worm defense system.

hence will have all the checks disabled. In this scenario, the
average overhead of our latent run-time checks is 5%. Once
a host receives a valid alert, it will activate a single check.
The overhead of our system in this scenario is 9%. A host
performing worm detection will have a small random subset
of checks enabled. For example, with 5% of checks enabled,
our system incurred a 29% overhead. Finally, we evaluate the
overhead of our system with all checks activated: the average
overhead was 108%. This demonstrates that our optimizations
provide a significant speedup of the Jones and Kelly defense
(10X) , and that dynamically-activated checks can provide a
significant additional reduction in overhead.

In summary, this paper makes the following contributions:

o We show that much of the work in detecting, analyzing,
verifying and patching the vulnerabilities in a collabora-
tive worm defense system can be made simpler and more
efficient with compiler support.

e As a side benefit, we show that an automated worm
defense system can be totally predictable.

o We build a prototype compiler and show that our program
transformation for collaborative worm defense has low
overhead.

e We show how to use static analysis to dramatically
improve the performance of the Jones and Kelly memory
safety transformation, how to support a larger set of safe
programs, and how to solve several compatibility issues
between transformed and untransformed code.

II. RELATED WORK

A. Internet Worm Defense Systems

Figure 1 shows the overall architecture of a collaborative
worm defense system. There are several variations on this
basic design. In some defense systems, the sentinel hosts are
a specially designated subset that are willing to tolerate the

overhead of run-time monitoring [8], [21], [6], [24]. Other
defense systems attempt to reduce monitoring overhead so
that every host can be a sentinel. Recipients of alerts may or
may not trust the sentinel host that generated it. Most defense
systems include a copy of the worm in alert messages so that
the recipient can replay the bad input to verify that an anti-
body is really necessary. They may then generate the anti-
body themselves, eliminating the need to trust other hosts in
the defense system.

Vigilante presents approaches to detect the worm and gen-
erate the self-certifying alerts (SCA) and then distribute the
alerts to other hosts. Vigilante shows the dissemination of SCA
can take up to seconds and its normal execution overhead is
too high for practical widespread deployment. TaintCheck [17]
based on Valgrind also suffers from high normal execution
overhead.

Designed in response to the expensive instrumentation
of Vigilante and TaintCheck, Sweeper picks address space
randomization [3] as the lightweight runtime checker of its
detection engine. During the normal execution, Sweeper only
runs lightweight checkpoints and lightweight monitoring until
an attack is detected. After an attack is detected, Sweeper
rolls back and replays the attack in combination with dynamic
taint analysis and dynamic backward slicing to analyze the
vulnerability and generate the anti-body. As compared to
Vigilante and Sweeper, CAWDOR does not intend to redesign
or re-implement the whole worm system. Instead, it explores
how much more the complex collaborative worm system can
simply get out of the source code—-CAWDOR can always
go with randomization or recovery technology of the Sweeper
as an integral part of worm defense system. CAWDOR offers
some properties which the above defense systems can not,
the predictability and controllability, without sacrificing their
desired properties of performance and accuracy. CAWDOR
implements the SCA like concept with even simpler verifier
since latent instrumentation can pre-generate the signature and
thus lead to a trivial replay verification. Like the detection en-
gine of Sweeper, CAWDOR also speculates the light mode is
more usual for normal execution. Unlike Sweeper which com-
bines two different monitoring mechanism and attack replay
to make lightweight normal execution possible, CAWDOR
keeps the same runtime-checker for both the detection and the
analysis. Last but not least, Sweeper employs dynamic taint
analysis to track the exploit input and then backward dynamic
slicing to analyze the vulnerability. These two technologies
may duplicate some track logic with each other. CAWDOR
pre-slices the program and generates the run-time checker in
advance. The detection and analysis are integrated and will not
duplicate the application logic. it is easy to trace back to the
root cause of the vulnerability by following the dependency
chain.

B. Runtime Checker

Program instrumentation and transformation have played
important roles in enforcing security properties at run-time:
RICH [5] is an integer overflow(underflow) checker. Dynamic



taint-tracking verifies the data input from tainted source.
Squashy [4] tracks and erases sensitive information from
crash reports. Jones and Kelly [10], CRED [18], CCured [7],
MSCC(Memory Safety C Compiler) [26] and SoftBounds [15]
are runtime checker for C memory access. The full discussion
about C run-time checker is deferred to next session.

ITI. IMPLEMENTATION
A. CAWDOR

CAWDOR assigns each instrumentation site a unique index
within a global bit-vector. The instrumentation at that site only
executes if its corresponding entry in the vector is set. The
transformation generates inter-instrumentations dependency
and encodes their dependency as a data structure inside the
resulting object file. The contents of the global bit-vector are
loaded from a file at program startup. The run-time system
uses the dependency information to enable all supporting
checks after initializing the bit-vector from disk. Our trans-
formation generates fast-path/slow-path code. Each function
decides whether to run its fast path or its slow path upon
entering the function. The function can also switch between
fast and slow paths at the beginning and end of every loop.
Thus, for example, if the function is executing along its slow
path and reaches a loop that contains no active instrumentation,
then the function will temporarily switch to the fast path for
the duration of the loop. The optimal placement of switching
points depends on the program’s run-time behavior, so we
chose the above heuristic since it is likely to give a good pay-
off for relatively few switching points. If a function contains
no instrumentation, then we only generate a single path for
it. As with dependencies between instrumentations, there are
also control-flow dependencies between switch points and
instrumentations. CAWDOR computes these dependencies at
compile time and embeds them in the same dependency data
structure as the inter-instrumentation dependencies. The run-
time dependency resolution algorithm thus activates the correct
set of switch points for any set of active instrumentations.

In this section we describe CAWDOR, the implementation
of our prototype collaborative worm defense transformation.
CAWDOR is implemented in the CIL(C intermediate lan-
guage) [16]. Our prototype inserts latent checks to enforce
memory safety, although the basic idea could be applied to
transformations for enforcing other safety properties. CAW-
DOR follows the general approach of the Jones and Kelly[5]
bounds checker, although we have made several enhancements
described below.

1) Jones and Kelly: The Jones and Kelly transformation
inserts instrumentation to maintain bounds information for
each allocated object in the program. As long as a pointer
points to a valid object, the bounds for the pointer can be
obtained by looking up the bounds for the pointer’s referent.
When the program performs pointer arithmetic, the Jones
and Kelly transformation inserts code to verify that the new
pointer points to the same object as the pointer from which is
derived. When the program dereferences a pointer, the Jones
and Kelly transformation inserts code to look up its bounds

and ensure that the dereference does not violate those bounds.
Pointer assignments require no instrumentation. Finally, the
transformation adds code to register bounds for new objects
when they are allocated, and to remove bounds for objects
when they are destroyed.

2) CAWDOR bounds tracking: Jones and Kelly bounds
tracking strategy has several advantages. It supports linking
transformed code with most untransformed code, such as
system libraries. We describe an improvement that enables
even greater interoperability between transformed and untrans-
formed code. Jones and Kelly’s bounds tracking organization
also makes dependencies between instrumentations simpler.
Since our project enables each instrumentation to be activated
individually, it must handle any inter-check dependencies
introduced by the transformation. Simple dependencies make
this process easier.

Object-based bounds tracking has some disadvantages. The
Jones and Kelly system stores object bounds in a splay
tree. Lookups in the splay tree are quite slow, causing high
overhead — programs can run over 10 times slower after
being transformed. Even worse, pointers must always point to
valid objects, since otherwise the system may not be able to
lookup bounds for a pointer. Many real-world program violate
this assumption, making the original Jones and Kelly system
impractical.

Other program transformations, such as CCured or Soft-
Bounds, use pointer-based bounds tracking. In these systems,
bounds information is associated with the pointer, not the
object to which it points. When a pointer is dereferenced, it
is checked against its associated bounds. When one pointer is
assigned to another, the associated bounds information is also
copied. Pointer arithmetic does not require a check. Therefore,
these systems support programs that generate pointers that go
out of bounds, as long as the program does not dereference
the pointer while it is out of bounds. It can also be faster
to lookup a pointer’s bounds in these systems — for example,
SoftBounds uses a hashtable to store bounds. Pointer-based
bounds tracking harms compatibility: Pointers passed from
untransformed code to transformed code will not have any
associated bounds information or lose track of updating the
bounds information.

We use a hybrid bounds tracking scheme to achieve the
library compatibility and simplicity of the Jones and Kelly
approach and the efficiency and program compatibility of
pointer-based approaches. We store bounds information for
objects in a splay tree, and we cache this bounds information
with pointers that point to the object. A pointer can go out
of bounds as long as its bounds information is cached with
the pointer. We now explain the CAWDOR bounds caching
mechanism.

CAWDOR classifies every pointer expression in the pro-
gram as either solid or non-solid. Solid pointers can have
bounds caching, non-solid pointers cannot.

Solid pointers: Solid pointers are local variables (or param-
eters) that do not have their address taken. Solid pointers have
the strong update property: all updates to the pointer must be



performed by assigning to the pointer itself. Thus, no weak
update through its alias. For example, the pointer cannot be
changed by an assignment through some other pointer, e.g.

int *p = ...; // Solid pointer
int g = ...; // Does not point to p
*q = ...; // Definitely does not modify

CAWDOR creates a bounds variable for each solid pointer
and inserts code to update the bounds variable whenever the
pointer is updated in the original program. By the strong
update property, CAWDOR can statically identify all the
locations in the program that update the original pointer, so
the bounds information will always be correct. Consequently,
solid pointers can go out of bounds (but cannot be derefer-
enced while out of bounds), and bounds information can be
obtained without an expensive splay tree lookup. When one
solid pointer is assigned to another, the bounds variable of
the first is assigned to the bounds variable of the other, as
well. CAWDOR modifies functions so that they take bounds
information for their solid pointer parameters.

Non-solid pointers: Non-solid pointers may not have the
strong update property: it may be possible to change the
pointer through its aliases without mentioning the pointer by
name. CAWDOR uses object-based bounds information for
these pointers. Whenever the program needs the bounds for
one of these pointers, it looks up the information in a splay
tree. Consequently, these pointers must always be in bounds.
We conjecture that in most programs, only solid pointers go
out of bounds. The benchmark results presented in Section V
support this hypothesis.

When a solid pointer is assigned to a non-solid pointer,
CAWDOR inserts a check to confirm that the solid pointer
is in bounds. When a non-solid pointer is assigned to a solid
pointer, the bounds information of the non-solid pointer is
looked up and stored in the bounds variable for the solid
pointer.

To sum up, CAWDOR bounds-tracking strategy reduces
run-time overhead by storing and propagating pointer based
bounds information to eliminate many lookups. By storing
bounds information, CAWDOR can manipulate temporarily
out of bounds pointers as long as the pointers are not deref-
erenced, which enables CAWDOR support most programs
without the complexity of CRED OOB structures [18].

We now describe compatibility improvements and optimiza-
tions to this basic approach. We then describe the optimizer
of CAWDOR.

B. Compatibility

CAWDOR must support function calls between transformed
and untransformed code. There are two key challenges: (1)
untransformed code does not register bounds information for
objects it allocates and, (2) untransformed code does not pass
or expect bounds information.

Bounds passing with untransformed code is easy to handle.
Whenever CAWDOR adds bounds parameters to a function,

it changes the name of the function and creates a wrapper
version of that function that does not take bounds information.
The wrapper function has the same name as the original
function. The wrapper uses the splay tree to look up any
missing bounds information and calls the real function with
the required bounds. Thus callers in other compilation units
or in untransformed libraries can always call the original

Punction by its original name without passing any bounds
information. This ensures backwards compatibility. Whenever
the program takes the address of a transformed function,
CAWDOR rewrites this code to take the address of the
wrapper, since the wrapper can be called anywhere the original
function could. When a function in a transformed compilation
unit calls a function outside that compilation unit, CAWDOR
cannot determine whether the targeted function will be trans-
formed or not. Therefore, CAWDOR calls the function without
passing bounds information. The caller verifies that all pointer
arguments are in bounds before making the call.

Programs can allocate memory in three places — on the
stack, on the heap, and in their data or bss segments — so CAW-
DOR uses three strategies to register allocations performed by
untransformed code. First, CAWDOR intercepts all calls to
malloc, free, etc., to register the resulting object allocated
on the heap. Second, CAWDOR intercepts the dynamic linker
to register the data and bss segments of dynamically loaded
libraries.

Stack allocations are slightly trickier. Whenever an untrans-
formed function calls a transformed one, CAWDOR needs
to register any objects allocated on the stack by the untrans-
formed code. Making matters more complicated, the untrans-
formed function may have been called by a transformed one,
so CAWDOR needs to infer the exact range of stack space used
by the untransformed code. Figure 2 shows how CAWDOR
handles this situation. Whenever a transformed program calls
a function in another compilation unit (which may or may not
be transformed), it records the current stack pointer in a global
variable. Whenever a wrapper function gets called, which will
always be the case when untransformed code calls transformed
code, it registers the entire stack between the saved stack
pointer value and its current value. The wrapper deregisters
this range before returning.

C. Optimizations

CAWDOR includes optimizations to the data structures used
to track bounds information and static analyses to remove
unnecessary checks.

Data structure optimizations Jones and Kelly use a splay
tree to lookup bounds information because a splay tree sup-
ports range queries. Range queries are necessary because a
pointer may point into the middle of an allocated region.
However, this is relatively uncommon — most pointers point to
the beginning of an allocated region. Therefore we maintain
a hash table of the starts of allocated objects and attempt to
lookup pointers in the hash table first. The hash table lookup
is fast and likely to succeed. Only if it fails do we fall back
to the splay tree.



~ foo.c ~

void foo (void) {

b = bar(callback);

int callback(int * p) {

foo.transformed.c
static

void foo_with_bounds(void) {

sp_record = cur_sp;
b = bar (callback);

}

a=x(p+ 2);

int callback (intx p) {/+wrapper=*/

foo_with_bounds

BRegister (cur_sp, sp_record) ;
bnd = BLookup (p);

sp_record —
bar

bar_with_bounds (p,bnd) ;

}
e — callback static
i [oewe (e (epxe)  (amiE o) ){ int callback_with_bounds(int * p,
. callback_with_bound Bnd p_bnd)
int 1i; i
SRR (E L) BCheck (p+2, p_bnd)
! . a: *(p + 2);
}
- /
Fig. 2.  An example of CAWDOR instrumented code interacting with un-instrumented code and the corresponding stack

Second, stack allocations are guaranteed to occur in de-
creasing address order, so we can maintain a simple sorted
array of bounds information for stack allocated objects. New
allocations get pushed onto the end of the array, and popped
off when de-allocated. Bounds lookups on the stack can be
accomplished with binary searchm, which may be slower than
a splay tree lookup. However, most pointers into the stack
are solid pointers, so stack bounds lookups are relatively rare.
Overall, this trade-off is expected to be a net performance gain.

Static analysis optimizations After inserting checks to track
pointer bounds and to verify that all pointer dereferences are in
bounds, CAWDOR uses static analyses to merge and eliminate
unnecessary checks. All the optimizations are built around a
simple theorem prover that can answer queries of the form
e1 < ez. Such queries can be used to determine if one check
is covered by another.

The optimizer recognizes when two adjacent checks can be
converted into a single check. Checks are of the form (p, s) C
B, where p is a pointer, s is the size of a dereference, and B
is the bounds the pointer must satisfy. If two adjacent checks
are of the form (p1,s;) € B and (p2,s2) C B, where the
theorem prover can verify statically compute min(p,p2) and
max(p; + s1,p2 + S2), then the optimizer will convert these
two checks to a single check

(min(pq, p2), max(max(p; + s1, p2 + s2) —min(p1,p2)) C B

CAWDOR also uses a loop analysis to move instrumenta-
tions outside of loops. The analysis can hoist both invariant
checks and checks on affine loop variables, i.e. variables that
change by a static constant on each iteration of the loop.

CAWDOR uses a CCured-like safe pointer analysis to
eliminate bounds checks on singleton pointers. Safe pointers
do not participate in any casts or pointer arithmetic They are
therefore always NULL or safe to dereference. In the example

in Figure 4, the 1p local variable in foo_with_bounds is
safe.

An escape analysis can help to reduce the unused registra-
tions. If we can statically verify that all accesses to an allocated
object are safe, then its bounds information will never be
needed, so it does not need to be registered. An undo-bounds-
optimizer can remove bounds arguments that are never used
in the body of the function.

Most optimization for spacial dereference of MemSafe
[19], including its Non-incremental Dereference, Monotomi-
cally Address Ranges and Unused Metadata, can be found
correspondingly in the above optimization of CAWDOR. The
Dominated Dereference of Memsafe is achieved by a more
thorough and more aggressive control flow optimizer of CAW-
DOR called HCheck Placement.

Considering the following example:

if (condl) {*p = 0;} else {*p = 1;}
a = ps
if (cond2) {*xg=0;}

check(q) is redundant as it is covered by any path which
can reach *q from condl, though it is not dominated by any of
them, which means the Dominated Dereference Optimization
does not help with this case-not until the common factor
check(p) of both branches is hoisted over the condition and
check(q) is hypothetically hoisted over ¢ = p.

The location, and logically equivalent replacement, of the
inserted checks is very important to enable other optimizers
and discover the redundant checks, which is not trivial even for
the simple example as above. Considering another example:

if (cond2) {*p = 1; p++;
for (i=0;i<n;i++)sum += al[i];
*p = sum;}

else {xp=0;}



The optimizer has to figure out the better placement of
check(p + 1) is ahead of the loop so that it can get merged
with check(p). However, if it does not merge with check(p),
check(p) on both branches may be hoisted ahead of the
condition. For either of the cases the static count of the checks
would be two but the actual executions may be different. A
good optimizer should be able to model the placements of
both circumstances.

HCheck Placement aims to optimize the placement of
checks. HCheck Placement uses Hoare’s assignment axiom to
hypothetically hoist checks up through the program’s control
flow graph and attempts to search the optimal solution of
hypothetical checks set. Hoare’s assignment axiom states that,
if Ple/xz] is true before executing assignment z := e, then P
will be true afterwards. Thus, for example, the program

p = 4a;

assert (lo <= p && p <= hi);

can be rewritten as

assert

p =4

We define base-checks are the checks emitted by CAWDOR
instrumentation. hypo-Loc for a check is a location at which
the check could be hoisted up in conformity to Hoare’s
assignment without introducing any false positive. A hypo-
check is the representation of a check when hoisted up to its
hypo-loc. HCheck Placement algorithm has 4 steps.

(1). Compute the set of all program locations where each
hypo-check could be placed using a backward data flow
module in figure 3. The convergence is guaranteed because
the value domain is of finite height, up to the set of all
the checks. The transfer and joint functions are monotonic
in terms of hypo-checks. In the implementation the iteration
is based on each basic control block and bounds look-up is
actually included as part of value domain in addition to bounds
checking.

(2). Each program location now has a set of hypothetical
checks. Compute redundancies among these checks (i.e. merge
all the ones that can be merged). In the above example of loop,
hypo-check on p + 1 can merge with hypo-check on p.

(3). Compute logical implications between the hypo-checks.
CAWDOR encodes the control flow graph information into
the implication graph of hypo-checks. First of all, we map
every hypo-check at each program location to a node called
hypo-node. The structure of the node contains its id, the hypo-
check and the program location. If there is an implication
between two hypo-checks, then a path is drawn between two
corresponding hypo-nodes. If a program location p has only
one successor s and a hcheck(i,ptr) appears in both of their
hypo-checks set, then the hcheck(i,ptr) in both p and in s are
logically implied by each other. The hypo-checks only in p not
in s must have their base-checks in p. The hypo-checks only in
s not in p must have been stuck in p during hoisting. The base
and stuck nodes, which indicate where the base-checks are
initially placed and where the hypo-checks are stuck, will then

(lo <= g && g <= hi);

Initial:
, tfsuccs[s]=l
Out[s] = 0, ifsu <[ 1=0
U, otherwise
Iteration:

{OW«‘[S] = Mpesuces[s) [Pl

Injs] = {Checks(()ut[s], s) if s is a check

Hoist*(Outls],s) otherwise
o succs|s]: the successors of s.
o ek, chy) = cky, if(bou'n:ds,ptr, size)ek, = (bounds, ptr, size)ck,
@,  otherwise
d, s’ € d,idy = ids A ptry = ptrs
o Checks(d,s) =< d—s, 3§’ €d,idy =ids A ptrg! = ptrg
dU{s}, otherwise
o Hoist*(d,s) = {cki |Y(x :=€) € Ef fect(s),ck; € d A a(ck;) N Ef fect(s) =0,
ckj = ck;[e/x]} in which o maps the pointer of a check to its alias set.
Fig. 3. hypo-checks computation

be generated and connected. If program location p has multiple
successors si, So, ...S;, ..., and a hypo-check hcheck(i,p) shows
in the hypo-checks set of all s; and p, then hcheck(i,p) in p
shall logically imply the corresponding hcheck(i,p)s in all s;.
Joint program location works the other way around.

if (condl) {*p=0;g=r}
else {*xp=l;g=r+1} xg=-1;

if statement has hcheck(ip), {xp = 0;q = r} has
hcheck(i,p) and hcheck(j,r), {xp = 0;q = r + 1} has
hcheck(i,p) and hcheck(j,r+1) and xq = —1 has hcheck(j,q).
Therefore the hcheck(i,p) on the if statement can imply
the hcheck(i,p) on both branches. hcheck(j,q) implies both
hcheck(j,r+1) and hcheck(j,r) but hcheck(j,r+1) has to be
combined with hcheck(j,r) to imply hcheck(j,q).

(4). Brute force search for smallest set of hypo-checks that
logically imply the base-checks. We heuristically set the least
static checks count as the optimal criteria, however, the model
is open to other heuristic scheme, for instance, to minimize
the checks on busiest path for the worst execution case.
We sort the hypo-checks in an ascending order of distance
to the start of the function and run a brute-force search.
Checks closer to the top of the function has some advantages:
the closer to definitions of the variables upon which they
depend, the higher chance for the theorem prover to statically
verify them. This can also bring related more checks together,
enabling the optimizer to merge them into a single check.
In order to reduce the searching space, CAWDOR splits the
implication graph into disjoint sets of connected components.
CAWDOR implements some pruning algorithms to compact
the implication graph, including reducing the self-contained
loop nodes chain into one node and shrinking the straight-line
nodes. Empirical experiment on benchmark shows HCheck
Placement only accounts for a small part of compilation time
compared to the whole program pointer analysis.

CAWDOR also includes two inter-procedural optimizations.
The inter-function optimizer hoists a check at the top of a
function body to all the call sites of this function, including



Before Optimizations

1 xDependencies: (1, ); (4, 3); (3, 8);(8, 9); (2, 1)
2 (6, 1);(5,11); (10,11); (11,-1); (-1,8); (-1,1)«

3 int * gp;

4 int foo_with_bnd(int n, int * a, Bound B_a) {

5 Bound B_lp, B_t;
int t ;

int xlp = &t;
BCheck (B[6], B_a, a, Sizeof(*x(a+0))+*n);
B_gp = BLookup(B[11l],9p);

10 B_t = BRegister(B[8], &t, B_t,
1 B_lp = BAssign(B[3], B_t);

2 BCheck (B[4], B_lp, lp, Sizeof(xlp));
13 *1lp = -1;
14 BCheck (B[5],
15 1f (xgp==0)
16 BCheck (B[10],
17 *gp = -1;

18 }

19 BCheck (B[6], B_a, a, Sizeof(*(a+0))*n);

2 for (int i=0;i<n;i++) {

21 BCheck (B[6], B_a, a+i, Sizeof (x(a+i));
ali] = 0;

Sizeof (t));

gp, B_gp, sizeof (xgp));

B_gp, gp, sizeof(xgp));

N BDeregister (B[9], &t);
return 0;

7 int bar (void) {

28 Bound B_arrl;

29 int arrl([5];

30 int arr2[6];

3l BRegister (B[1l],arrl,
E) BCheck (B[2], B_arrl, arrl,
33 gp = arrl;

B_arrl, 5+int);
1bit);

zeof (int) x5) ;

34 B B[6 B _arrl, arrl Size

35 foofwith;bﬁd(Sj arrl, B_arrl);

36 BDeregister (B[7],arrl);
37 }
After Optimizations
1 > i :
2 int * gp;
3 int foo_with_bounds (int n, int * a) {
4 int t ;

int xlp = &t;

6 B_gp = BLookup(B[11l],9p);
7 BCheck (B[5], gp, 9gp, sizeof (xgp));
8 *1lp = -1;
9 if (xgp==0) {
10 *gp = -1;
1 }
2 for (int i=0;i<n;i++)
13 a[i] = 0;
14 return 0;
15
16 int bar (void) {
17 Bound B_arrl;
18 int arrl[5];
19 int arr2[6];
20 BRegister (B[1l],arrl,B_arrl, 5xint);
21 gp = arrl;
2 foo_with_bounds (5, arrl);
23 BDeregister (B[7],arrl);
4
}

Fig. 4. CAWDOR intermediate output before and after optimizations. In blue
are solid, in redare non-solid, underlined are inserted instrumentations. In i7alic
gray are hypothetical instrumentations of BAction 6 along the optimization
passes

its wrapper function. The intra-procedural optimizer can then
attempt to eliminate the check from the callers. For example,
in Figure 4, once the hypothetical check on a reaches line 8§,
it can be hoist ahead of foo (line 34), then the intra-procedural
optimization will kick in and finally the static checker will get
rid of it.

Figure 4 gives an example of the impact of the CAWDOR
optimizations. The only check remaining after optimizations,
BCheck 5, is for non-solid pointer gp. Ip is a solid pointer

so CAWDOR could always cache bounds for Ip. However,
gp is weak-updated because it is a global variable subject to
change anytime. Aiken et al. [1] has pointed out with pointer
analysis, we can infer the restricted scope of non-solid pointers
in which non-solid pointers do not have any local alias. In
another word, within their restricted scope, non-solid pointers
are the only way to access their referents. CAWDOR then
generates temporal bounds variables for non-solid pointers and
apply similar optimization within the restricted scopes. Hence
any check on gp is on its temporary bounds variable which
is looked up at the beginning of its restricted scope and any
its value in and out its restricted scope has to be checked
in bounds first (Figure 4 (top) line 32). The transformation
modifies foo to expect bounds as additional parameters though
later on the optimizer removes this bounds-passing, since it is
unneeded by the optimized callee.

For the example in Figure 4 (top), three instrumentations
(line 10-12) on Ip and line 32 are removed by the peephole
and static checker. The check on afi] within loop will be
hoisted out as a check on (a,a+n*sizeof(*a)) at line 19. The
check hoister will indicate that it can be moved to the top
of function body(line 8). Now the inter-procedure-optimizer
takes over and pulls it to the call site(line 34), which feeds off
other optimizers. The BAction 10 is optimized out because it
is covered by BAction 5.

These optimizations are described separately but they are
integrated to work together. We split the optimization phase
from core transformation and run each optimizer in turn.
We repeat the optimization phase until the program reaches
a fixed point. The optimizers all operate independently, but
one optimization my create a state that will allow another
optimization to proceed where previously it could not.

IV. APPLICATION: COLLABORATIVE WORM DEFENSE
SYSTEMS

The key idea of applying CAWDOR to worm defense
system 1is that anti-bodies can be generated in advances.
Sentinel hosts can perform worm detection by activating a
random subset of the latent checks. When a worm begins
spreading through the Internet, it will eventually hit a sentinel
host that is monitoring the vulnerability exploited by the worm.
At that point, the sentinel will have detected the worm and will
know precisely how to mitigate it: activate the failed check. It
can then disseminate this information to other hosts, who can
verify the alert by replaying the worm input with the indicated
check enabled. If the check fails, then they know the alert is
legitimate and can leave the check enabled to remain protected
against future attacks.

An exploitable underflow vulnerability in ncom-
press/decompress42.c, reported in CVE-2006-1168 is
transformed in Figure 5. The while loop performs zero
bounds check, which is subject to a global segment
underflow.

When a worm triggers this check in a sentinel host in
a worm defense system, the host will instantly know the
location of the bug and the mitigation that other hosts should



1 bounds28 = BAssign (BActions[256],bounds_global_htab) ;
»stackp = (char_type %) (& htab[(1 << 17) - 1]);

3.

4.

swhile (code >= 256L) {

7 bounds28 = BAssign (BActions[265], bounds28); /x to be optimizeds/

8 stackp ——;

9 3Che (BAction 66],errMsg266, bounds_global htab, (htab)

10 BCheck (BActions[267],errMsg267, bounds28, stackp,

1 «stackp = x ((char_type x) (htab) + code);
Check (BActions([268], errMsg268,bounds_globa

12 BChe
13 code =
14

(long )codetab[code] r

Fig. 5.
and the irrelevant checks disabled are in gray.

Detection
Program Type | Purify | Valgrind | CCured | CAWDOR
gzip-1.2.4 GO Y Y Y Y
be-1.06 HP Y Y Y Y
polymorph-0.4.0 ST Y P Y Y
ncompress-4.2.4 GO N N Y Y
tpop3d-1.5.5 ST - Y
TABLE I

EFFECTIVENESS OF DETECTING VULNERABILITIES. Y = YES. N = NO. P =
PARTIALLY. -= NOT AVAILABLE GO=GLOBAL SEGMENT OVERFLOW; HP =
HEAP BUFFER OVERFLOW; ST = STACK BUFFER OVERFLOW

apply: they should also enable check 267. Thus, our compiler
infrastructure makes the analysis phase of a worm defense
system trivial.

V. EVALUATION

In this session, we experimentally evaluate CAWDOR’s (1)
effectiveness, (2) correctness, and (3) overhead. An effective
defense system should catch attempts to exploit programs. A
correct defense system should not break working programs.
We evaluate CAWDOR’s overhead under several different
scenarios: during detection, defense, and testing.

A. Effectiveness

We evaluated CAWDOR’s effectiveness on BugBench [13]
and tpop3d. BugBench provides several programs — ncom-
press, bc, polymorph, and gzip — with memory safety bugs,
along with inputs for triggering those bugs. These programs
include a variety of buffer overflow against stack, heap and
global segments. We tested CAWDOR in two modes: with all
checks activated, and with the only the crucial check required
to catch the bug enabled. CAWDOR was able to catch all the
bugs in our benchmark programs, both in all-checks-on mode
and in crucial-check-only mode. We compare the detection
ability of CAWDOR with some other C run-time checkers in
the Table I. tpop3d is not part of BugBench, but we discovered
a previously unknown bug in it while testing CAWDOR, so
we include it here.

sizeof (#stackp));

- 256 .-+ 265 266 267 268 ---

::.|l|...|1|0|1|0|...
N/

267 -> 265
265 -> 256

268 —> -1

The example of latent checks and inter-instrumentation dependency. The instrumentations activated to catch the bug are highlighted

B. Correctness

Apart from the effectiveness enabled by all-checks-on and
crucial-check-on, we have to verify the correctness of CAW-
DOR with arbitrary subsets of the checks enabled. Since
memory errors taken from real-world programs can be brittle
and highly-dependent on architecture and compiler details, we
have chosen to evaluate the correctness and security of our
transformation using a suite of simple test programs to cover
comprehensive overflows on stack, heap and global segments.
Each test program accepts a command-line argument indicat-
ing whether it should execute code with a memory violation.
The test programs are designed so that, when compiled with a
normal compiler, the memory access violation are all silent and
harmless. We run each of these programs through the CAW-
DOR transformation and verify that the resulting executables
all satisfy the following requirements

o With all checks disabled and with no memory access
violation, the program executes normally.

o When all checks are enabled and no memory access vio-
lation occurs, the program completes execution normally.

e When all checks are enabled and a memory access
violation occurs, the program aborts on a run-time check.

o We then turn off all checks except the failing check from
the previous test (and any supporting checks), and re-run
the program with the same bad input. It must abort as
before.

o Finally, we run the program several times with random
subsets of 10%, 20%, 30%, and 40% of the run-time
checks enabled, but with no memory access violation,
and confirm that the program always executes normally.

Our test-suite includes hand-written tests and tests derived
from programs written by the authors for un-related projects.
All tests, including buffer overflow tests targeting function
pointers, de-allocated pointers, variable arguments, pointer
parameters and arguments pass, cover most attacking cate-
gories [25]. The benchmarks used for the performance analysis
described below serve as further evidence of the correctness
of our transformation.

The sentinel host can always test the software with all
checks on in advance, which will ensure that there are no



Gee| CIL|MSCC|CCured |J & K|CAWDOR Ratio
Benchmark| LOC| time |ratio| ratio ratio| ratio[All Off] All On
bh 2010 1.03] 1.00| 2.82 1.44| 324 1.06 2.79
bisort 351| 1.28]| 1.01| 1.76 1.45| 183 1.00 1.02
em3d 590( 2.22| 1.03| 1.79 1.87 - 1.02 2.61
health 710| 4.12| 1.03| 2.72 1.29 - 1.04 1.04
perimeter 3991 0.8| 1.00| 3.37 1.09| 104 1.01 1.01
power 760 0.48| 1.00| 1.22 1.07 -1 098 1.00
treeadd 377| 2.32| 1.09| 3.23 1.10 7.5 1.05 1.06
tsp 583 0.93] 1.01 2.28 1.15 9.0 1.02 1.01
mst 482| 1.36| 1.00| 1.76 1.06| 224 1.07 2.78
Average - -] 1.01]  2.33 1.30| 16.7| 1.03 1.59
anagram 650| 2.27| 1.00 - 1.43 - 1.07 1.26
yacr2 3971 0.3] 1.17 - 1.56 - 1.13 2.8
be 7299| 0.55| 0.98 - 9.91 -l 098 35
ft 2001| 3.27| 0.99 - 1.03 - 1.05 1.12
ks 782 2.52] 1.11 - 1.11 - 1.13 1.66
Average - -| 1.05 - 3.01 - 1.07 2.07
mcf 2512|12.46| 1.03| 2.85 - - 1.08 45
milc 15042| 35.7| 1.02 - - - 1.02 1.71
sjeng 13847| 9.02| 1.00 - - 257 1.08 4.05
Average - -| 1.02 - - - 1.06 34
ncompress 1935|11.05] 1.04 - - - 1.11 1.73
tpop3d 16726 0.42] 1.02 - - - 1.05 34
gzip 8189 2.7| 1.07 - - 9.9 1.05 1.72
gunzip 0.49| 1.00 - - - 1.03 1.9
Average - -| 1.04 - - - 1.06 2.19
Average - -| 1.03| 2.38 1.91| 17.01 1.05 2.08

TABLE II

OVERHEAD OF CAWDOR TRANSFORMATION, COMPARED WITH THE
REPORTED OVERHEAD FROM OTHER C RUN-TIME CHECKERS [19], [15]

latent buffer overflows uncovered by a later check activation.
The correctness of CAWDOR should ensure that the program
will work with any subset of checks enabled.

C. Performance

The overhead of normal execution without any known
vulnerabilities, which is the most common scenario for real
applications, as Sweeper [23] pointed out, is one of the most
important concerns for a worm defense to be deployed widely.
CAWDOR can disable all the checks during normal execution.
Occasionally, the host will have a single check activated, along
with its supporting checks, on hearing of a known vulnerability
in the application from sentinel hosts. This overhead should
be as low as possible, but it is less important than overhead
with all checks off. The heavyweight monitoring enabled by
full checks on is useful when the programmer or sentinel
hosts want to test prior to deployment. This overhead is not
too important unless it is too high for the application to be
tested off-line. Finally, the administrator may wish to trade off
between run-time overhead and risk. Different proportions of
enabled checks might be set for specific scenarios and different
security levels. Thus, we measure the overhead of CAWDOR
transformation in these five configurations: all checks off, one
check enabled, 5% checks enabled, 10% checks enabled and
all checks enabled.

Table II shows the overhead of our transformation on the
programs from the Olden, Ptrdist and SPEC2006 benchmarks
on two important modes: all checks disabled and all checks
enabled. The transformation appears to incur slight overhead

(about 5%) when all checks are disabled. Relative to the base
overhead of CIL, all checks-off CAWDOR incurs negligible
performance penalty.

A few well known C memory runtime checkers are not
in Table II. Baggy (around 60% overhead) is so far the
fastest bounds checker [2]. It changes the OOB scheme to
perform efficient bounds checking but, as a result, some
benchmarks require a few manual changes to the source code.
SoftBounds and its variation MemSafe [19] (67% to 87%
overhead), provide good compatibility and separate meta-data
maintenance. Many of the optimization and implementation
ideas in CAWDOR could also be applied to a SoftBounds
implementation. The all checks activated mode of CAWDOR
(108% overhead) is not the best among all the bounds checker
but comparable to CCured and MSCC. Considering it is based
on Jones and Kelly approach, we believe this is a significant
progress over Jones and Kelly, which on average, slows down
application by a factor of 10.

Figure 6 show the overheads when a single check, 5% of
checks, or 10% of checks are activated in our benchmark pro-
grams. Since the overhead varies depending on which check
is activated, we ran each benchmark in Olden and Ptrdist 100
times and in SPEC 50 times, activating a randomly chosen set
of checks on each execution. We report the average execution
time ratio, along with error bars indicating the 95% confidence
interval. Overheads can vary significantly depending on the
activated check, but on average the overhead is around 9%(1
check), 29%(5% checks) and 41%(10% checks). Although 5%
checks and 10% checks are moderately high overhead, the
benefit is that, for most of the hosts, in the common execution
and the occasionally crucial mode, we just need to run all-
checks-off and one check enabled, the overhead are much
lower, less than 10%.

VI. CONCLUSION

We show how compiler support can assist the creation
of an Internet worm defense system. By using the compiler
to pre-generate mitigations for future vulnerabilities, we can
make a worm defense system that is faster, simpler, and more
predictable manageable. Our compiler support system can help
with the detection, analysis, verification, and application tasks
in a worm defense system. Without loss of flexibility, perfor-
mance or detection accuracy, our system uses the same run-
time checker for both lightweight monitoring and heavyweight
monitoring enabled by a fine instrumentation activation.

We present CAWDOR, a prototype compiler that transforms
C program to participate in a collaborative worm defense
system. Transformed programs incur low run-time overhead.
CAWDOR has lower overhead and better compatibility im-
proves than the Jones and Kelly memory safety transformation.
Our prototype also proved effective at detecting memory safety
violations — it caught all the violations we tested.
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Fig. 6.  CAWDOR overhead with respectively one check, 5% checks and 10% checks enabled.
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