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Abstract—Over the last two decades, much research effort has been spent on nearest neighbor search in high-dimensional data sets.

Most of the approaches published thus far have, however, only been tested on rather small collections. When large collections have

been considered, high-performance environments have been used, in particular systems with a large main memory. Accessing data on

disk has largely been avoided because disk operations are considered to be too slow. It has been shown, however, that using large

amounts of memory is generally not an economic choice. Therefore, we propose the NV-tree, which is a very efficient disk-based data

structure that can give good approximate answers to nearest neighbor queries with a single disk operation, even for very large

collections of high-dimensional data. Using a single NV-tree, the returned results have high recall but contain a number of false

positives. By combining two or three NV-trees, most of those false positives can be avoided while retaining the high recall. Finally, we

compare the NV-tree to Locality Sensitive Hashing, a popular method for �-distance search. We show that they return results of similar

quality, but the NV-tree uses many fewer disk reads.

Index Terms—High-dimensional indexing, multimedia indexing, very large databases, approximate searches.
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1 INTRODUCTION

THE applications of nearest neighbor search in high-
dimensional space are very diverse and include

content-based image retrieval, copyright protection, finding
correlations in stock data, and searching for similar
chemical structures. Nearest neighbor search is therefore a
field of interest for many different research communities,
and over the last two decades, significant research effort has
been spent trying to improve its efficiency.

Most of the approaches published thus far, however,
have only been tested on rather small collections ranging
from tens of thousands of descriptors to a few million (e.g.,
see [25], [16], [3], [7]) and some have been explicitly shown
not to work well at high-dimensions or large scale [1], [14].
Only a handful of studies have considered very large
descriptor collections. In all such large-scale studies,
however, accessing data randomly on disk has been
avoided because random disk operations have been con-
sidered to be too slow.

1.1 Previous Large-Scale Studies

Liu has studied the use of a distributed hybrid Spill-tree, a
variant of the Metric-tree [24], for a collection of 1.5 billion

global descriptors [17], [21]. In that study, 2,000 work-
stations were used, presumably having at least a terabyte or
two of total main memory. In general, however, Gray has
shown [10], [8] that using very large main memory is not
economical; that data, which is accessed less frequently
than every 5 minutes, should not be kept in main memory.

Locality Sensitive Hashing (LSH) by Indyk et al. [9], [6]
has also been considered for large-scale retrieval. LSH is
based on the concept of projecting descriptors onto a
random line and classifying locations along this line with
different symbols. Doing such projections for many lines,
LSH concatenates the symbols to a fingerprint for this
specific descriptor. This fingerprint has the property that
descriptors which lie within a fixed �-distance threshold
generate with high likelihood the same fingerprint. By
storing all of these fingerprints in a hash table, it is possible
to retrieve similar descriptors with a single disk read.

Ke et al. [13] studied the use of LSH for a local descriptor
scenario. They used LSH to yield a number of potentially
matching descriptors, and then scanned the descriptor
collection on disk to calculate the precise result. While
sequentially scanning the collection may work in a high-
throughput scenario, as many queries batched together can
benefit from a single sequential scan, it yields very poor
response times. Joly et al. [11] studied an application with
1.5 billion 20D local descriptors. They also completed
processing with a sequential scan.

1.2 Contribution of This Paper

This paper addresses approximate search in very large
high-dimensional collections. It makes several major con-
tributions:

. First, we propose the Nearest-Vector-tree (NV-tree),
a disk-based data structure that gives good approx-
imate answers with a single random disk read, even for
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very large collections of high-dimensional data.
Furthermore, searching the NV-tree incurs negligible
CPU overhead, making it suitable for main-memory-
based processing. We describe the fundamentals of
the NV-tree, as well as different strategies for its
construction.

. Second, we analyze the properties of a large-scale
copy detection application using the well-known
Scale Invariant Feature Transform (SIFT) descriptors
[20]. We show that the SIFT descriptors are very
distinctive and have high contrast, even in a collection
of 180 million data points. Furthermore, we show that
using contrast-based ground-truth sets is necessary to
obtain meaningful results for all queries.

. Third, we analyze the performance of the NV-tree and
show that the NV-tree works well for our workload.
We show that using a single NV-tree yields high recall
but also a number of false positives. By combining the
results from two or three NV-trees, however, most of
those false positives can be avoided while retaining
the high recall.

. Finally, we compare the NV-tree to two competing
data structures. In particular, we focus on LSH,
which is currently a very popular high-dimensional
indexing method. We show that LSH can return
results of similar quality but only by using many
more disk reads.

The remainder of this paper is organized as follows:
First, we present the NV-tree in Section 2 and its
implementation details in Section 3. Then, we present the
collection and workload used in our experiments in
Section 4. In Section 5, we analyze the ground-truth result
quality of our workload and, in Section 6, we describe the
performance of the NV-tree. In Section 7, we compare the
performance of the NV-tree to that of LSH. We conclude in
Section 8.

2 THE NV-TREE

The NV-tree is a disk-based data structure designed for
efficient approximate k-nearest neighbor search in very
large high-dimensional collections. In essence, it transforms
costly nearest neighbor searches in the high-dimensional
space into efficient unidimensional accesses using a
combination of projections of data points to lines and
partitioning of the projected space. By repeating the process
of projecting and partitioning, data is eventually separated
into small partitions, which can be easily fetched from disk
with a single disk read and are highly likely to contain all
the close neighbors in the collection.1

The curse of dimensionality phenomenon suggests that
close descriptors might get separated by a partition
boundary when partitioning the space. Therefore, the NV-
tree also adds redundancy by allowing the partitions to
overlap. Due to the redundancy, good approximate results
are obtained by processing a single partition. The drawback,
of course, is higher storage requirements, but, given the low
cost of disk space, this is a good trade-off.

In this section, we first outline the algorithms for NV-tree
creation (Section 2.1) and search (Section 2.2). Then, we

consider strategies for projections (Section 2.3) and parti-
tioning (Section 2.4). Finally, we briefly describe insertion
to, and deletion from, the NV-tree (Section 2.5), before
highlighting key properties of the NV-tree (Section 2.6). The
implementation of the NV-tree is described in Section 3.

2.1 NV-Tree Creation

Overall, an NV-tree is a tree index consisting of: 1) a
hierarchy of small inner nodes, which are kept in memory
during query processing and guide the descriptor search to
the appropriate leaf node, and 2) larger leaf nodes, which are
stored on disk and contain references to actual descriptors.

When the construction of an NV-tree starts, all descrip-
tors are considered to be part of a single temporary
partition. Descriptors belonging to the partition are first
projected onto a single projection line through the high-
dimensional space. Strategies for selecting the projection
lines are discussed in Section 2.3.

The projected values are then partitioned into disjunct
subpartitions based on their position on the projection line.
For each pair of adjacent partitions, an overlapping
subpartition, covering 50 percent of both partitions, is
created for redundant coverage of the partition borders.
Information about all these subpartitions, such as the
partition borders on the projection line, form the inner
node of the first level of the NV-tree. Strategies for
partitioning are described in Section 2.4.

To build subsequent levels of the NV-tree, this process of
projecting and partitioning is repeated for all of the new
subpartitions using a new projection line at each level,
creating the hierarchy of inner nodes. The process stops
when the number of descriptors in a subpartition falls
below a specified limit designed to be disk I/O friendly
(this limit includes extra space for subsequent insertions). A
new projection line is then used to order the descriptor
identifiers of the subpartition, and the ordered identifiers
are written to a leaf node on disk.

2.2 NV-Tree Nearest Neighbor Retrieval Process

During query processing, the query descriptor first tra-
verses the hierarchy of inner nodes of the NV-tree. At each
level of the tree, the query descriptor is projected onto the
projection line associated with the current node. The search
is then directed to the subpartition with center point closest
to the projection of the query descriptor. This process of
projection and choosing the right subpartition is repeated
until the search reaches a leaf node.

The leaf node is fetched into memory and the query
descriptor is projected onto its projection line. The search
then starts at the position of the query descriptor projection.
The two descriptor identifiers on either side of the projected
query descriptor are returned as the nearest neighbors, then
the second two descriptor identifiers, and so forth. Thus, the
k=2 descriptor identifiers found on either side of the query
descriptor projection are alternated to form the ranked
k approximate neighbors of the query descriptor.

Note that, since leaf partitions have a fixed size, the NV-
tree guarantees query processing time of a single disk read
regardless of the size of the descriptor collection. Larger
collections need deeper NV-trees but the intermediate nodes
fit easily in memory and tree traversal cost is negligible.
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2.3 Projection Strategies

Projecting high-dimensional data points to random lines
was introduced by Kleinberg [12] and subsequently used in
several other high-dimensional indexing techniques [7], [6],
[18]. Such projections have two main benefits. First, in some
cases, they can alleviate data distribution problems. Second,
they allow for a clever dimensionality reduction, by
projecting to fewer lines than there are dimensions in the
data. Random lines are best generated isotropically in a
quasi-orthogonal manner (requiring a minimal angle
between pairs of lines).

In the NV-tree, projection lines are used at each level of
the tree and, hence, a strategy is needed for selecting those
lines. The default strategy is a Random strategy, which picks
random lines as described above; this strategy is simple and
data independent. The retrieval quality, however, can be
improved with data-dependent generation of lines, for
example using the well-known Principal Component
Analysis (PCA). Instead of picking a random line for a
partition, PCA can be run to determine its best projection
line, the line with the largest projection variance. Running
PCA for each partition, however, is very expensive because
there are many partitions and each partition holds many
points. We have therefore devised a faster Approximate PCA
strategy for selecting projection lines, which we describe in
the remainder of this section.

Before starting the NV-tree creation, a large set of
isotropic, quasi-orthogonal random lines is generated and
kept in a line pool in main memory. During line selection,
the partition about to be projected is first sampled. The data
points in this small sample are projected onto all the
precomputed lines and a fraction of the lines with the
highest variance is selected. A larger sample of the same
partition is then extracted and projected onto only the
selected lines. Fewer lines are in turn selected, again the
ones with the highest variance. By repeating this process a
few times, a single line is finally elected as the projection
line of the partition.

Instead of choosing the single best possible line for the
partition, determined by costly PCA calculations, this
efficient process picks a “reasonably good” line from the
large line pool by using many cheap projection calculations
over small samples.

2.4 Partitioning Strategies

A partitioning strategy is likewise needed for the NV-tree.
In the following, we describe three strategies: Balanced,
Unbalanced, and Hybrid. We end with a discussion of their
implications.

The Balanced strategy partitions data based on cardin-
ality. Therefore, each subpartition gets the same number of
descriptors, and all leaf partitions are of the same size.
Although node fan-out may vary from one level to the
other, depending on the desired tree height and leaf size,
the NV-tree becomes balanced as each leaf node is at the
same height in the tree.

It has been observed in the literature that the density of
projections of large high-dimensional data sets onto a
random line generally follows a normal distribution. As a
result, the absolute distance between partition boundaries
varies significantly along the line with the Balanced strategy.
Dense areas in the data space have very close boundaries,
while sparse areas have more distant boundaries. This

strategy may therefore separate close data points from
dense areas while storing together distant data points from
sparse areas, which can reduce the accuracy of the search.

The Unbalanced partitioning strategy avoids this problem
by using distances instead of cardinalities. In this case,
subpartitions are created such that the absolute distance
between their boundaries is equal. All of the data points in
each interval belong to the associated subpartition. With
this strategy, however, the normal distribution of the
projections leads to a significant variation in the cardinal-
ities of subpartitions. Due to the repeated application of the
partitioning strategy, the NV-tree becomes unbalanced as
dense areas are partitioned more often than sparse areas.

To implement this strategy, we calculate the standard
deviation � and mean m of the projections along the
projection line. Then, a parameter � is used to determine
the partition borders as . . . ;m� 2��;m� ��;m;mþ
��;mþ 2��; . . . : Small adjacent subpartitions are merged
until the resulting cardinality hits the leaf node size limit
and then written to disk. Subpartitions containing many
data points, on the other hand, are subsequently reparti-
tioned. Overlapping partitions are created similarly, using
�, m, and �, by shifting the borders by 0.5. For example, the
central overlapping partition borders are m� 0:5�� and
mþ 0:5��.

The subpartitions farthest away from the mean are likely
not to be partitioned again, as their cardinality is such that
they fit into a leaf node. Conversely, partitions close to the
mean are likely to require further partitioning. Thus, the
“center” of an Unbalanced NV-tree is typically partitioned
deeper than its “sides.”

The Unbalanced strategy tends to produce significantly
larger trees, due to two reasons. First, it frequently creates
trees that are deeper on average than the Balanced strategy.
Due to the overlapping partitions, each additional level in
the tree roughly doubles its size. Second, as partitions no
longer contain precisely the same number of descriptors,
leaf partitions tend to be less filled, resulting in higher space
requirement. To give an example, consider a subpartition
that has one more descriptor than would fit in to a leaf
partition. In this case, at least three partitions would be
created (including the overlapping partition) in place of the
one, giving rise to both problems described above.

In order to alleviate this data explosion problem, we
propose the Hybrid strategy. This strategy follows the
Unbalanced strategy until a subpartition is of a size that
could fit in l leaf partitions (including extra space for
insertions; we have found l ¼ 6 to be a good number). The
Balanced strategy is then used to construct the leaf
partitions. As a result, leaf partitions are better utilized
and the tree is shallower, resulting in smaller space
requirements.

Overall, the Unbalanced strategy requires twice as much
space as the Balanced strategy, while the Hybrid strategy is
much closer to Balanced in size. We have observed that
Unbalanced and Hybrid NV-trees yield equivalent results but
significantly better than Balanced NV-trees.

Note that all strategies can be partitioned aggressively,
by specifying many subpartitions in the Balanced strategy or
a small � in the Unbalanced strategy. Aggressive partitioning
tends to produce shallow and wide NV-trees, while a
“gentle” partitioning scheme tends to produce deep and
narrow trees. Aggressively built NV-trees occupy less disk
space but may yield lower recall.
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2.5 Insertions and Deletions

In many application settings, dynamic maintenance of the
data collection is required, for example when reindexing the
collection leads to intolerable interruption of service. Due to
the redundancy arising from overlapping partitions, how-
ever, each descriptor must be dynamically inserted into (or
deleted from) many leaf nodes. Unlike the search, insertion
(or deletion) must, at each level, descend into the two
subpartitions that contain the projection of the descriptor. In
the worst case, a descriptor must thus be inserted into (or
deleted from) 2h leaf nodes, where h is the number of levels
in the tree. Although, in the case of the Unbalanced tree, the
number of affected leaf nodes will be lower in practice, it is
still high enough that a careful implementation is required.
In Section 3.4, an efficient implementation of insertions and
deletions is described.

2.6 Summary

Overall, an NV-tree consists of a hierarchy of small inner
nodes, which fits in memory, and larger leaf nodes, which
are stored on disk and contain descriptor identifiers. In this
section, we have described the processes for index creation,
index search, and insertions and deletions, as well as
alternative strategies for the index creation.

One fundamental property of the NV-tree is that it
requires a single disk read per query descriptor. This
property holds even with very large descriptor collections,
making query processing cost largely independent of the
collection size.

Another fundamental property of the NV-tree is that this
single disk read is used to return approximate results in a
ranked order, rather than distance order. Having a ranked
result list has three major consequences. First, since no
distance calculations are required, little CPU cost is
incurred, even for large collections. Second, the descriptors
themselves need not be stored within the leaf nodes,
making it possible to store many descriptor identifiers in
a single leaf node, which increases the likelihood of having
actual neighbors in that leaf. The redundancy introduced
with overlapping partitions further increases that like-
lihood. Third, as the results are based on a projection to a
single line, false positives do arise when processing a leaf
node. Since distances cannot be calculated, other means of
removing false positives are required.

The method we use to eliminate false positives is based
on aggregation of the ranked result sets from multiple NV-
trees, which are built independently over the same
collection. Since each NV-tree is based on random projec-
tions, the contents of the ranked results are very likely to
differ, except for descriptors that are actual near neighbors.
Therefore, false positives can largely be eliminated by
applying any rank aggregation method to combine results
from more than one NV-tree index. The effectiveness of this
method is studied in Section 6.3.

3 NV-TREE IMPLEMENTATION OVERVIEW

One NV-tree is stored in three different files: 1) the line pool file,
which stores the details of each random line created for the
tree, 2) the in-memory file, which stores the hierarchy of inner
nodes that is kept in memory during query processing, and
3) the leaf file, which stores all the leafs of the NV-tree.

The NV-tree is written in C++. The code has been
embedded in a server, which listens for requests for
searches or insertions. Upon invocation, the server first
reads the line pool file and the in-memory file, and opens
the leaf node file. At that point, it can receive requests for
searches and insertions. During insertions, the server also
takes care of the maintenance of the files.

In the remainder of this section, we give a high-level
description of the implementation of the NV-tree. The
description focuses on the Unbalanced partitioning strategy,
which requires the more complicated implementation. We
first outline the index creation process. Then, we describe
the data structures used for storing intermediate nodes and
leaf nodes. Finally, we briefly describe the implementation
of insertions and deletions.

3.1 NV-Tree Creation

As described in Section 2.1, the NV-tree is constructed via
repeated applications of projection and partitioning. During
the NV-tree creation process, the descriptor collection is
first sampled to create the initial projection line, as
described in Section 2.3. The collection is then sampled
yet again, using a larger sample, to determine approximate
values for the m and � parameters, described in Section 2.4
(this is done to avoid sorting the entire collection). Finally,
the entire collection is scanned and each descriptor is
projected to the initial random line. The descriptor is then
assigned to the appropriate (one or two) subpartitions and
written to temporary files for those subpartitions. This
whole process is then repeated for each of the temporary
files in a depth-first manner. When a leaf partition is
formed, the (projected value, descriptor identifier) pairs of the
leaf partition are sorted in memory by their projected values
and written to the leaf node.

3.2 Intermediate Nodes

As mentioned above, the NV-tree is composed of a
hierarchy of small intermediate nodes that eventually point
to much larger leaf nodes. Each intermediate node contains
four arrays:

. Child: This array points to child nodes of the
intermediate node, including those child nodes
created for overlapping subpartitions. The child
nodes may in turn be intermediate nodes or leaf
nodes.

. Partition Border: This array keeps track of the upper
and lower borders of each child node along the
projection line. This array is used during insertions
to guarantee that each descriptor is inserted into all
relevant subpartitions.

. Search Border: This array is used to direct the query
descriptor search to the appropriate child node. This
is done by using projection values that are halfway
between the upper and lower partition borders of
adjacent child nodes.

. Projection Line: As described in Section 2.3, the
potential projection lines are kept in a line pool in
memory. This array stores pointers into the line pool,
which point to the projection lines of the child nodes.

Each intermediate node typically has a fan-out of 2-32,
including the overlapping partitions. These intermediate
nodes therefore require little space and can easily be kept in
main memory.
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3.3 Leaf Nodes

All leaf nodes are kept in a single large file on disk. Each
leaf node is the size of a suitable I/O granule and contains
(projected value, descriptor identifier) pairs. For efficiently
finding the pair of the leaf, which has its projected value
closest to the projection of the query descriptor, leaves are
organized by the projected values in a sorted lookup table.

The leaf nodes can also be organized in a sparse manner,
where fewer projected values are stored, and interpolation is
used to find the “correct” location in the leaf. With the sparse
organization, almost twice as many descriptor identifiers can
fit into the leaf partition. This typically results in half the
number of leaf nodes, and a correspondingly smaller index.
The reduced space requirement comes at the potential cost of
more inaccurate query results as the exact position of
descriptors along the projection line is not available. When
evaluating this optimization, however, we observed next to
no influence on the result quality. Our implementation
therefore typically only stores every 16th projected value;
this setting is used throughout this paper.

3.4 Insertions and Deletions

Recall that, due to the redundancy arising from overlapping
partitions, each new descriptor must be dynamically inserted
into many leaf nodes. In order to avoid immediately reading
and writing each of those leaf nodes, a memory-based
holding area is employed. The holding area contains, for
each leaf node, a list of all (projected value, descriptor identifier)
pairs that have been inserted to the node but not written to
disk. The search has been modified to scan this holding area
also, when reading a leaf node. When the holding area fills,
leaf nodes are opportunistically updated and written to disk
as they are read by the search process. This way, disk activity
due to insertions is minimized.

When a leaf node is full, it must be split. As part of the
splitting process, new random lines must be chosen from the
line pool for the resulting new leaf nodes. As the actual
descriptors are not stored in the leaf node, the projection
along this new random line requires costly random accesses
to the descriptor collection. It is therefore more profitable to
delay and buffer splits. Once the split buffer fills up, the whole
collection is sequentially scanned, and the buffered leaf nodes
are split in a manner similar to the index creation process.

A key consideration is how many new partitions a leaf
node should be split into. With too many new partitions,
each will have low utilization and the index will grow fast.
Choosing a small number of new partitions will lead to
small intermediate nodes, however, which in turn leads to
deep NV-trees and fast index growth. To avoid both
situations, we have chosen a policy where, when the parent
of a full leaf node has low fan-out, the parent node is split
by taking the contents of all of the leaf node’s siblings into
account in the splitting process. This results in a parent
node with higher fan-out, without hurting disk utilization.

The deletion of descriptors from the NV-tree is imple-
mented similarly to insertions, by opportunistically propa-
gating the deletions to the appropriate leaf nodes.
Additionally, however, a list of deleted descriptors is
maintained and used to filter search results, such that the
deletion is immediately apparent in the search results. A
reference count is maintained to remove the deleted
descriptor from the list once all its redundant occurrences
have been removed from the disk.

4 EXPERIMENTAL SETUP

In this section, we describe the experimental environment
used in our performance studies. First, we describe the
descriptor collection and query workload used in all the
experiments. Then, we describe the result quality metrics
studied in our analysis.

All experiments were run on DELL PowerEdge 1850
machines, each equipped with two 3 GHz Intel Pentium 4
processors, 2 Gbyte of DDR2-memory, 1 Mbyte CPU cache,
and two (or more) 140 Gbyte 10 Krpm SCSI disks. The
machines run Gentoo Linux (2.6.7 kernel) and the ReiserFS
file system.

4.1 Descriptors and Queries

In this study, we use the well-known SIFT method [19], [20],
which is the standard method in the image processing
community for extracting local features from images. The
SIFT extraction process is performed over several scales of
the image and finds interest points where the contrast
changes significantly. Once the interest points have been
identified, the signal around them is encoded into a
128D vector, which is normalized to a length of 512.

The descriptor collection was obtained by extracting
local features from an archive of about 150,000 images
obtained from Morgunblaðið, the major newspaper in
Iceland (www.mbl.is). The images are largely high-quality
press photos, which are highly varied in content. In order to
reduce the number of descriptors extracted from each
photo, the images were first resized such that their larger
edge was 512 pixels. The resulting descriptor collection
contained a total of 179,443,881 SIFT descriptors.

SIFT descriptors are particularly suited for near-dupli-
cate image detection (e.g., see [20]) and have also been
shown effective for detecting copyright violations of images
[15]. We have therefore created query descriptors by
modifying copies of images from the collection, following
the approach in [15], using the Stirmark benchmarking tool
[22]. The image transformations include rotation, rescaling,
cropping, affine distortions, and convolution filters. SIFT
descriptors cope rather well with most of these distortions
at the image level [20], [15], meaning that a significant
percentage of interest points are found in the same location
as in the original image and that the corresponding
descriptors are relatively close in the Euclidean space. But,
the transformations also include distortions that the SIFT
descriptors have been shown not to handle well [15].

4.2 Result Quality Metrics

We place a strong emphasis on recall, for two main reasons.
First, we expect only a few answers to each query, unlike
more interactive applications. Second, large-scale applica-
tions typically arise with local descriptors, where many
descriptors provide evidence of matches. Such local
descriptors can typically tolerate some false positives, as
they are distributed randomly among all the data items. A
small number of false positives are thus acceptable, but
strong recall is imperative.

Computing result quality requires the definition of a
ground-truth set against which the results are compared. In
the literature, one of two different approaches is typically
used to define the ground-truth set. The first approach is to
run an exact k-nearest neighbor search for every query
descriptor, leading to a result set of fixed cardinality but
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with arbitrary distances. The second approach is to run an
exact �-range search for each query descriptor, which
returns all neighbors within distance of � from the query
point, leading to a result set with a bounded distance but of
arbitrary cardinality. In both cases, an exhaustive sequential
scan is typically used to ensure that the result lists defining
the ground truth truly reflect the contents of the descriptor
collection. The resulting quality of the indexing scheme in
question can then be computed by comparing its results to
these ground-truth sets. Of course, both methods are highly
sensitive to the choice of k or �, respectively.

Recent results by Beyer et al. [5] and Shaft and
Ramakrishnan [23], however, have shown that high-dimen-
sional data sets must exhibit some contrast to be indexable
and to draw any meaningful conclusion from search results.
In this work, contrast means that a nearest neighbor must be
significantly closer to the query point than most other
points in the data set in order to be considered meaningful.
In the absence of contrast, collections suffer from vanishing
variance and instability of near neighbors, which preclude
the construction of meaningful result sets.

A direct consequence of the theoretical analysis in [23] is
that it is possible to construct a contrast-based ground-truth
set, against which indexing schemes can be compared. In
order to construct such a set, a sequential scan may be used
to determine, for each query descriptor, all the descriptors
in the data set that fulfill a given contrast criterion.

Using a contrast-based ground-truth set has several
theoretical benefits. First, the size of the ground-truth set
tends to be small compared to the k-NN approach, which
collects (irrelevant) neighbors regardless of their distance
from the query descriptor. Second, using the contrast-based
ground truth alleviates the two typical problems that
�-range search faces. On one hand, when query points fall
in very dense areas, very many vectors are returned using
an �-range query, although the results are hardly distin-
guishable from each other. On the other hand, when query
points fall in sparse areas, no results may be returned using
an �-range query, while there may be many useful answers
in the collection. Overall, therefore, building a ground truth
based on contrast will allow more reliable result quality
measurements.

According to Lowe, computing SIFT over an image
collection produces a contrasted set of descriptors [20]. In
his work, Lowe considered the nearest neighbor n1 of a query
descriptor q meaningful if and only if dðn2; qÞ=dðn1; qÞ > 1:8,
where n2 is the second nearest neighbor [20]. When the
nearest neighbor passed the criteria threshold, then further
checks were run to see whether n1 was indeed a modified
copy of the query descriptor. If the nearest neighbor did not
pass the criteria threshold, then n1 was rejected and no
answer returned. Since, for many applications, a query may
have more than one meaningful result, we adapt Lowe’s
criterion, by saying that returned neighbor ni is meaningful
with respect to contrast c (default value of c is 1.8) when
dðn100; qÞ=dðni; qÞ > c.2

Using this contrast criterion, it is possible to build a
ground-truth set for an application. In Section 5, we analyze

the quality of these three approaches to generate the
ground-truth sets for our application from the results of a
sequential scan.

5 ANALYSIS OF GROUND TRUTH

The goal of this section is to analyze the properties of the
query workload and descriptor collection and establish a
meaningful ground-truth set for our experimental studies. To
that end, we have chosen 500,000 query descriptors at
random from the workload described in Section 4.1. We have
then run a sequential scan to calculate the 1,000 nearest
neighbors for each query descriptor, yielding 500 million
neighbors in all.

Note that the semantics of the copyright protection
application, from which the workload is drawn, is such
that, for each query descriptor, precisely one descriptor in
the collection is a correct match, while the remainder should
be considered false matches. In our collection, a total of
248,852 query descriptors found a correct match among the
top 1,000 neighbors, or slightly less than 50 percent. While
this may at first seem a low percentage, it is still a good
recognition performance considering that some query
descriptors originated from severely modified images [15].
What we seek in this section is a general method for
building a ground-truth set, which includes a large number
of the 248,852 correct matches and only a small number of
false matches.

5.1 Ground Truth Based on k-NN

When taking a close look at the individual results, we
observed that the correct matches that appeared among the
1,000 nearest neighbors were in most cases ranked first in
the result set. This indicates that by far the best choice for
building a ground truth based on k nearest neighbors
would be by choosing k ¼ 1. But, even with k ¼ 1, more
than half of the neighbors in the ground-truth set would be
false matches. Furthermore, for many other applications,
choosing a ground-truth set of k ¼ 1 would be too
restrictive.

5.2 Ground Truth Based on �-Distance

We now analyze how the absolute distance between the
query descriptor and returned neighbors affects the result
quality. Fig. 1 shows the distribution of all 500 million
neighbors depending on the distance of each neighbor to
the query descriptor. The x-axis shows the absolute distance
(corresponding to varying �), while the y-axis shows the
number of neighbors with approximately that distance (the
point at 0 corresponds to a distance of 0, while the point at 5
corresponds to the distance range (0, 5], and so on). We
observe that the number of descriptors stays rather uniform
and small for short distances. Once the distance surpasses
25, however, we can see an exponential increase in the
number of neighbors at each distance range (note the
logarithmic scale). Recall that in our application almost all
of these descriptors are false matches.

Fig. 2, on the other hand, shows the cumulative distance
distribution of the correct matches. In the figure, the x-axis is
the distance from the correct match to the query descriptor,
while the y-axis shows the cumulative fraction of correct
matches found below that distance. From the figure, we see
that about two thirds of the correct matches can be found
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2. In fact, we can generalize Lowe’s criterion, by saying that
returned neighbor ni is meaningful with respect to contrast c when
dðnj; qÞ=dðni; qÞ > c, where j � 2 and i < j. In our work, we have found,
however, that, with j between 2 and 100, the number of descriptors passing
the contrast criterion grows fast, while, for j > 100, it grows slowly. We
have therefore used j ¼ 100 in the remainder of this paper.
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within an �-distance of 100 and that, within this distance, they
are rather uniformly distributed. The final third lies beyond a
distance of 100, where the likelihood of finding further
neighbors slowly becomes smaller; the last correct matches
can actually be found at a distance of 370.

More importantly, however, Fig. 2 shows that fewer than
20 percent of the correct matches are found at a distance
smaller than 25, which is where the number of false matches
started increasing exponentially. Thus, it is impossible to
select a global � for building a ground-truth set that includes
a large number of correct matches and only a small number
of false matches.

5.3 Ground Truth Based on Contrast

Finally, we consider the effect of contrast on the quality of the
ground-truth set. Fig. 3 shows an analysis of the correct
matches based on different thresholds of the contrast
criterion. The x-axis shows the contrast c, while the y-axis
shows the percentage of correct matches with contrast higher
than c, defined in Section 4.1 as dðn100; qÞ=dðni; qÞ > c. The
figure shows that 36 percent of the correct matches are more
than five times closer in distance than the 100th nearest
neighbor in the result list. For c ¼ 1:8, which is the value that
Lowe recommended, 186,290 out of 248,852 correct matches,
or about 74.9 percent, pass the contrast threshold. About
20 percent of the correct matches have a contrast threshold
lower than 1.5 and are therefore rather hard to detect from the
false matches.3

Fig. 4, on the other hand, shows the effects of the contrast
criterion on the number of descriptors that pass the
threshold filter (these include the correct matches). This
time, the x-axis shows the absolute distance from the result
descriptor to the query descriptor, while the y-axis shows
the number of descriptors found at each distance. Overall,
we observe that a contrast threshold of c ¼ 1 shows an
exponential increase in the number of descriptors (similar to
Fig. 1 but at a smaller scale since at most 100 neighbors are
considered), while all values of c � 1:5 avoid this behavior
and show a well-controlled number of descriptors; the
higher the threshold, the fewer descriptors are returned.

Comparing Figs. 3 and 4, we see that choosing a higher
contrast threshold results in lower recall but fewer false
matches, and vice versa. Comparing these to Figs. 1 and 2,
however, we see that any choice from 1.5 to 2.5 performs
very well compared to the �-based criterion. So, the
threshold of 1.8, proposed by Lowe, seems reasonable.

With the threshold c ¼ 1:8, a total of 248,212 descriptors
pass the contrast filter.4 As described above, the number of
descriptors that are both correct matches and pass the c ¼
1:8 contrast criterion is 186,290. Thus, about 75.1 percent of
the descriptors in the contrast-based ground-truth set are
correct matches and about 24.9 percent are false matches.

5.4 Discussion

The discussion above shows that using a contrast-based
criterion to construct the ground-truth set is clearly
preferable to using either k nearest neighbors or �-distance,
as using the contrast-based criterion yields the best ratio
between correct matches and false matches (about 3:1 for
c ¼ 1:8). Furthermore, as described in Section 4.2, it is the
only approach with solid theoretical underpinnings. As a
result, we use contrast-based ground-truth sets in the
remainder of this paper. We typically use c ¼ 1:8 to build
the ground-truth set, but we also illustrate some results
using c values ranging from 1.0 to 2.5.

Furthermore, the quality of the ground-truth set is strong
evidence that the distinctiveness of the SIFT descriptors
holds even at large scale, which shows that we can expect
very small and meaningful result sets for nearly all query
descriptors.

6 NV-TREE PERFORMANCE

In this section, we start by describing the NV-tree configura-
tions used in the experiments. Then, we present two
experiments that analyze key properties of the NV-tree. In
Section 6.2, we discuss an experiment with a single NV-tree
index, which shows that the NV-tree yields high recall,
especially with neighbors having high contrast. In Section 6.3,
we then discuss an experiment with up to three NV-trees,
which demonstrates that with such configurations false
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3. A small portion of the correct matches has contrast smaller than 1,
which means that they were found at a rank higher than 100.

4. The fact that this number is similar to the number of correct matches in
the sequential scan results is purely a coincidence.

Fig. 1. The distribution of all neighbors based on distance to the query

descriptor.

Fig. 2. The cumulative distribution of correct matches based on distance

to the query descriptor.
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positives can be largely eliminated, while keeping most of
the high recall. Finally, we present experimental results for
insertions in Section 6.4.

6.1 NV-Tree Configuration

For all experiments reported in this section, we used the
following NV-tree configuration:

. We have used leaf partitions consisting of six disk
pages (24 Kbytes). As leaf nodes are sparse (keeping a
projected value for every 16th descriptor identifier), a
maximum of 5,579 descriptors identifiers can be
stored per leaf. Leaf nodes are typically filled to
67 percent of capacity, leaving room for insertions.
Recall that using sparse leaf nodes generally reduces
the index size by half without affecting result quality.
For all of the experiments, the in-memory hierarchy
fits in less than 60 Mbytes of main memory.

. We used the Approximate PCA strategy to select the
random lines. We generated an initial line pool of
1,000 lines,5 where each pair of lines has a minimum
angle of 72 degrees. Starting with a very small
sample from the partition (typically 0.01 percent), we
select a set of 128 potential random lines. In each
subsequent round, the sample size increases expo-
nentially, while the set of potential lines decreases
exponentially, until a single line is selected after
three rounds. Approximate PCA generally increases
recall by 10 percent over random lines.

. We used the Hybrid partitioning strategy with � set
to 0.55. Before partitioning, a sample of about
5 percent of the points in a partition are used to
determine m and � (see Section 2.4). The Hybrid
strategy generally yields about 5 percent higher
recall than a Balanced strategy but equivalent to the
Unbalanced, while only requiring about 20 percent
more space than the Balanced partitioning strategy.

. We retrieved 1,000 descriptors from each NV-tree (in
one experiment, we vary this number).

With this configuration, the index creation took less than
16 hours per NV-tree and one NV-tree requires about

50 Gbytes of disk space (about twice the size of the
collection). We created three NV-trees in total, as some
experiments use two or three NV-trees.

The NV-tree search is almost exclusively I/O bound, as
CPU time is typically 1 percent to 3 percent of the total
query processing time. Furthermore, the NV-tree is de-
signed such that a single disk read is required for each tree.
Therefore, the performance analysis focuses on index size,
index creation time, and running time of the search. Note,
however, that disk times are highly hardware dependent
and may vary significantly based on the size and location of
the index on disk, as well as how full the disk is, as we are
using an off-the-shelf file system.

Nevertheless, one NV-tree needs about 12.5 ms to return
the 1,000 neighbors of a query descriptor, which is
essentially the time required for a single random disk read.
This can be contrasted with our highly optimized sequential
scan, which takes 14 seconds per descriptor in a batch query
process. When three NV-trees are used, the response time is
about 38.5 ms.

6.2 Experiment 1: A Single NV-Tree

In this experiment, we ran the 500,000 queries and retrieved
each time 1,000 nearest neighbors from a single NV-tree. We
then used several contrast-based ground-truth sets having
different c values to compute recall and the number of false
positives.

6.2.1 Recall

Fig. 5 shows the recall of the search computed against four
contrast-based ground-truth sets for c ranging from 1 to 2.5.
The x-axis shows the distance from the retrieved neighbors
to the query descriptors and the y-axis shows the fraction of
meaningful neighbors returned for each distance category.

Consider first the ground-truth set where c ¼ 1:0. In this
case, the 100 closest neighbors to the query descriptor form
the answer. Overall, with this setting, descriptors that are
closer to the query descriptor than 25 in distance are always
found. For larger distances, the recall drops significantly.
Recalling, however, the corresponding line from Fig. 4,
where the number of neighbors for c ¼ 1:0 is increasing
exponentially, then the reason for such a strong decline for
distance larger than 25 is rather obvious; as very many
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5. We have experimented with line pools ranging from 64 lines to 4,000.
Generally, retrieval quality increases slightly with line pool size, but so does
index construction time. We have found 1,000 lines to be a good trade-off.

Fig. 3. The cumulative distribution of correct matches based on the
contrast threshold.

Fig. 4. Distribution of neighbors passing the contrast criterion by

distance to query descriptor, for various contrast thresholds.
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neighbors are returned, the meaningful ones become only a
small fraction.

Turning to the other recall lines when using ground-
truth sets having c 2 f1:5; 1:8; 2:5g, we observe that the
recall is much higher. While recall is still near-perfect only
for distances smaller than 25, the recall is significantly
higher in the range of 25-100. Turning back to Fig. 2, which
showed that about two thirds of the meaningful neighbors
are found at a distance closer than 100, this tells us that the
single NV-tree is finding most of the meaningful neighbors,
and in fact, the NV-tree is able to find 65.8 percent of all
meaningful neighbors.

Interestingly, varying the contrast threshold between 1.5
and 2.5 does not affect quality in the range from 0 to 100
because the NV-tree copes very well with contrasted data
and finds most of the meaningful neighbors. Two interest-
ing effects are worth noting when the distance goes beyond
100, however. First, the fluctuations in that range are due to
the small number of neighbors. Second, we observe that,
using c ¼ 2:5, no neighbors are found beyond a distance of
130; at that point, the other descriptors are not far enough to
allow any descriptors to pass this threshold. A similar effect
occurs with c ¼ 1:8 at a distance of about 180. In the
remainder of our experiments, we use the ground-truth set
defined by c ¼ 1:8, as proposed by Lowe.

6.2.2 False Positives

The NV-tree index performs approximate searches. Given
that the ground-truth set of descriptors that passes the
contrast criterion is quite small as we have observed, most of
the returned neighbors are indeed false positives. Since the
NV-tree does not store the actual descriptor (it stores only its
identifier) and retrieving the descriptor from disk to compute
distances is infeasible in practice, there are no means to filter
out these false positives using a single NV-tree.

In general, some applications may tolerate false positives
while others, such as applications with strong precision
constraints, may not. Requesting only a handful of nearest
neighbors from a single NV-tree tends to reduce the
number of false positives, but it affects recall quite
significantly (not shown). On the other hand, it is possible
to reduce the number of false positives by using more than
one NV-tree; this is the topic of the next experiment.

6.3 Experiment 2: Additional NV-Trees

In this section, we study the result quality obtained by using
two or three NV-trees together to yield nearest neighbors.
Take the case of two indices first. A technique called
median rank aggregation [7] can be used to combine the
two ranked lists from the two indices. While a precise
description of median rank aggregation is outside the scope
of this paper, it essentially traverses both ranked lists and
outputs as the nearest neighbor the first descriptor seen in
both lists, as the second neighbor the second descriptor seen
in both lists, and so on. When three indices are used, we can
either return as the nearest neighbor the first descriptor
seen in any two indices, or in all three. These three
strategies are called 2/2, 2/3, and 3/3, respectively, where
a=b means that b indices are used and the first descriptor to
be seen in a of those is returned as the nearest neighbor; in
all cases, we discard descriptors seen in fewer than
a indices. In this terminology, a single index is 1/1. We
first study briefly retrieval performance and recall, and then
focus on false positives.

6.3.1 Performance

The query response time (not shown) is directly propor-
tional to the number of indices used; using a single index
took 12.5 ms while using three indices took about 38.5 ms.

6.3.2 Recall

Fig. 6 shows the recall of the four strategies considered (1/1,
2/2, 2/3, and 3/3). For this experiment, the partition
fetched by the search for each NV-tree was entirely
processed, yielding as many descriptors as possible for
each configuration. As the figure shows, the overall shape
of the recall curves is similar when using more indices. The
2/2 and 3/3 strategies always perform worse than 1/1. This
is because some relevant descriptors may, by chance, miss
one of the two or three necessary partitions and thus not be
considered part of the answer.

Turning to the 2/3 strategy, we see that for descriptors
with short distances, it performs better than 1/1. This is due
to the fact that these relatively close descriptors are more
likely to be found in two corresponding partitions of three
possible, than in the single correct partition of a single
index. For descriptors that are farther away, the tables turn,
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Fig. 5. Recall for a single NV-tree retrieving 1,000 nearest neighbors per

query.

Fig. 6. Recall by aggregating the result lists of two or three independent

NV-trees (c ¼ 1:8).
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however, as then it is difficult for those descriptors to land
in two corresponding partitions. Overall, however, the 2/3
strategy has slightly higher recall than the 1/1 strategy; in
the following, we therefore focus on the 2/3 strategy.

6.3.3 False Positives

The major motivation for searching more than one NV-tree,
however, was not to obtain higher recall but to reduce the
number of false positives. The overall strategy used for this
purpose is given as follows: Each of the three NV-trees is
probed to yield a (ranked) result set of a specific size. Then,
these result sets are traversed to yield nearest neighbors to
the query descriptor as described above. This time,
however, only a few such “aggregated” neighbors are
retrieved; we even consider retrieving a single such
neighbor. The expectation is that these aggregated nearest
neighbors will be very meaningful, as they appear close to
the query point in at least two NV-trees; thus, we expect to
retain the high recall, while removing most false positives.

Fig. 7 shows the recall of this approach. The x-axis shows
the size of the result set obtained from each index. Each line of
the figure shows the recall for a given number of aggregated
nearest neighbors; recall that the sequential scan returns
248,212 neighbors. Considering the overall shape of the lines
first, we see that, as expected, small result sets give low recall.
When larger result sets are collected as input to the rank
aggregation, however, recall improves. Beyond retrieving
1,000 descriptor identifiers from each index, the recall curve
becomes flat and result sets over 2,000 descriptor identifiers
show next to no recall gains.

Turning to the effects of retrieving additional aggregated
nearest neighbors in Fig. 7, we see that recall is improved
significantly when going from one to two aggregated
neighbors. By returning just one aggregated neighbor, we
obtain a very reasonable recall of more than 130,000 mean-
ingful neighbors (out of the 248,212). By returning two
neighbors, recall improves to over 155,000 and with 10 ag-
gregated neighbors we reach over 160,000 meaningful
neighbors. Larger result sets achieve only minor improve-
ments, but as we will see in a moment, they increase the
number of false positives significantly.

Fig. 8 shows the number of false positives for the same
experiment. As before, the x-axis shows the size of the

result set obtained from each index and each line of the
figure shows the false positives returned for a given
number of aggregated nearest neighbors. Overall, the figure
shows that as the result set size grows and as more
aggregated nearest neighbors are returned, the number of
false positives returned grows very sharply. About 15 per-
cent of all queries return more than 10 nearest neighbors
and 2.5 percent even more than 100 neighbors; these query
descriptor are clearly landing in very dense areas. Note that,
in comparison, the number of false positives returned by a
sequential scan ranges from about 15 million when
30 nearest neighbors are returned to about 3 billion when
6,000 nearest neighbors are returned.

Combining the results shown in Figs. 7 and 8, we see that
returning a result set of 1,000 descriptor identifiers from
each index is necessary for recall, but we should limit the
number of aggregated nearest neighbors returned very
significantly, in order to limit the number of false positives.

Finally, we briefly discuss the 2/2 and 3/3 configura-
tions. As already shown, they yield lower recall, about
136,000 and 119,500 descriptors, respectively. On the other
hand, with these configurations, the false positives drop by
another order of magnitude. For the 3/3 setup, collecting a
maximum of five neighbors at a result set size of 1,000 gives
only 16,000 false positives with a recall of 119,500 mean-
ingful neighbors. Therefore, if false positives must be
reduced at all costs, then this setup is the right choice.

6.4 Experiment 3: Insertions

To measure the performance of insertions, as well as the
quality of the resulting index, we first indexed a 36 million
descriptor subset of our collection (about 20 percent of the
collection) and created a single initial NV-tree index. Then,
we created an insertion stream of the remaining 144 million
descriptors and measured the insertion performance at
regular intervals. Finally, we measured the retrieval quality
of the resulting index and compared it to the results of
Section 6.2 for an index built from scratch. In the following,
we briefly describe the results of this experiment.

6.4.1 Recall

The recall of the resulting NV-tree (not shown) is
65.6 percent. This can be compared with the recall of an
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Fig. 7. Meaningful neighbors of 2/3 NV-trees based on number of

neighbors retrieved.

Fig. 8. False positives of 2/3 NV-trees based on number of neighbors

retrieved.
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NV-tree built from scratch, which is 65.8 percent (see
Section 6.2). The recall is thus essentially the same
regardless of construction method. Given that the final
index after insertions contains five times as many descrip-
tors as the initial index, this is a strong result.

6.4.2 Efficiency

Turning to the efficiency of insertions, the key factor
deciding the performance is the buffer size of the holding
area for descriptors, with the split buffer having a smaller
impact. Recall that the holding area is used to postpone
actual insertions into leaves such that disk operations can be
performed opportunistically and the cost of disk operations
amortized over a large number of insertions. We have
experimented with buffer sizes ranging from 100 to
1,000 Mbytes (about 5 percent to 50 percent of the server’s
memory), of which 80 percent have been allocated to the
holding area and 20 percent to the split buffer.

Fig. 9 shows the average time to insert a single descriptor.
The x-axis shows the size of the collection that is indexed at
each time, while the y-axis shows the insertion time in
milliseconds. Overall, the figure shows that with limited
buffer sizes, the insertion time grows significantly as the
index becomes larger. With a buffer size of 500 Mbytes,
however, the insertion time only goes up to about 12 ms,
which is about the cost of a random I/O. Beyond a buffer size
of 500 Mbytes, few further benefits are seen.

We also analyzed the breakdown of the insertion costs
(not shown). With a 500 Mbyte holding area buffer, the cost
of updating leaf nodes on disk was about 40 percent of the
cost, and the cost of splitting leaf nodes was about
60 percent of the cost.

Overall, the time to insert all 144 million descriptors with a
500 Mbyte buffer was 13.4 days. This time can be compared to
the cost of building the index, which was less than 16 hours.
While the cost of bulk loading is thus much lower, the cost of
insertions is still quite reasonable. Even when the index
contained nearly 180 million descriptors, we observed an
insertion throughput of about 5,000 descriptors per minute.

6.5 Discussion

Overall, these experiments show that the NV-tree is a very
good data structure for approximate nearest neighbor
search in high-dimensional space. This is because the

construction of the NV-tree essentially respects the local
contrast of the descriptor collection and encodes it into the
partitions of the indices.

In general, the NV-tree returns more than 99 percent of
the meaningful neighbors that are found below a distance of
25. For neighbors beyond this distance, the detection rate
drops significantly, but overall, about two thirds of the
meaningful neighbors are found. Using a single NV-tree,
the returned results have high recall but contain a high
number of false positives. By combining two or three NV-
trees, those false positives can largely be eliminated while
retaining the high recall.

7 COMPARISON TO RELATED WORK

The two major data structures most related to the NV-tree
are the Spill-tree [18], [17], [21] and LSH [9], [6]. In this
section, we first briefly compare the NV-tree to the Spill-tree
before focusing on LSH in the remainder of the section.

7.1 The Spill-Tree

The Spill-tree is, like the NV-tree, based on repeated
partitioning of the descriptor collection into overlapping
partitions and then using a similar search algorithm to
process a single leaf node. It has significant differences,
however.

Most importantly, the Spill-tree only partitions the data
into two partially overlapping partitions at each level,
resulting in a much taller tree, which in turn leads to
significantly larger disk space requirements. Additionally,
the overlapping factor is globally defined and does not
consider the distribution of the data points along the
projection line. Since the projected high-dimensional data
tends to produce a normal distribution on the line,
intermediate splits are very likely to have large portions
of the data in common, resulting in a very limited
usefulness of those splits. In the worst case, when most of
the data falls in both partitions, the authors recommend
repartitioning without any overlap and subsequently
directing the search to both partitions (the guaranteed
query processing time is sacrificed in this case). This
approach is called a hybrid Spill-tree. While the higher
query processing time of the hybrid Spill-tree may be
acceptable for small collections in a main-memory setting,
the performance impact for large collections and/or disk-
based settings can be significant. Finally, each Spill-tree leaf
node contains a set of descriptors rather than a ranked list,
leading to high storage consumption and expensive dis-
tance calculations.

In order to understand the space requirements of the
Spill-tree, we have considered how it would deal with our
collection of 180 million descriptors. Given the nature of
high-dimensional projections, we expect average overlap to
be about 66.7 percent. We also assume a node size of
6,000 descriptor identifiers; note that this is larger than the
NV-tree nodes and leaves no space for insertions. In order
to determine the depth of the Spill-tree, we must then
solve the equation 180;000;000� 0:667x ¼ 6;000, which
yields x ¼ 25:5. The Spill-tree would thus require 26 hier-
archies, resulting in 180;000;000� ð2� 0:667Þ26 ¼ 300 bil-
lion pointers to descriptors, requiring more than a terabyte
of data just to store descriptor identifiers. If, as proposed,
the actual descriptors are stored, the space requirements
become larger by two orders of magnitude.
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Fig. 9. Average time to insert a descriptor as the index grows, for various

buffer sizes.
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Since the Spill-tree clearly has orders of magnitude
higher storage requirements and gives weaker query
performance than the NV-tree in a disk-based setting, we
do not consider it further.

7.2 Locality Sensitive Hashing

In the remainder of this section, we focus on LSH, which we
believe to be the most competitive method to our proposed
NV-tree for very large collections. In the following, we first
describe the algorithm behind LSH. Then, we present our
adaptation of LSH to a disk-based setting and explain how
the various parameters affect performance and quality of
the search. Subsequently, we compare LSH to the NV-tree,
before concluding with a discussion.

Unlike most other nearest neighbor search methods, the
algorithmic idea behind LSH is not based on a tree structure
but on hashing the data points into buckets. The chosen
hash functions are constructed so as to guarantee that very
close points coincide in the same bucket with much higher
likelihood than those far apart. LSH was first published for
the binary Hamming space in [9] and then later extended to
lp norm in [6]. Most of its applications, however, have used
rather small collections, which could easily fit in memory.6

One major benefit of LSH is the simplicity of its
algorithmic idea. Each descriptor is projected onto a set of
k random lines through the search space. The lines are
partitioned into fixed sized intervals (determined by a
radius r) and each of the intervals is named by a symbol.
Projecting to k lines gives k symbols, which are then
concatenated to a word of length k. These words are built
over an alphabet, whose cardinality is defined by the
number of partition intervals, and form a kind of locality
sensitive fingerprint. The smaller the radius r is chosen, the
more intervals are created and, hence, the more symbols the
alphabet contains. Note, however, that the probability of
individual symbols is very different because the projected
points are normally distributed along the projected line.
Increasing the number of partitions on the projected lines
increases the variety of words at a fixed size k but also
increases the chance that close descriptors generate a
different fingerprint.

In order to efficiently search for descriptors, they are
hashed via a standard hash function into a hash table. Since
LSH does not apply overlapping and the likelihood of
separating two close neighbors also increases with finger-
print length k, it needs several such hash tables (parameter
L in LSH notation) to guarantee a certain probability in
recall. With very large databases, however, each additional
hash table causes one additional I/O, making these
additional tables very costly.

During query processing with LSH, the query descriptor q
needs to look up the appropriate buckets for all L hash
tables. q is therefore projected to all k lines for each
individual table and the result is concatenated to a k length
fingerprint, which then references the bucket in the hash
table that must be read from disk. For all candidate
descriptors referenced in this bucket, the LSH algorithm
computes the precise distance between the descriptor and
the query point q. When the given descriptor falls within the
selected �-distance (the radius r), it is included in the result
set; otherwise, it is dismissed. After all L hash tables have

been looked up this way, all descriptors in the result set are
sorted according to their distances to q and returned.

7.3 Adapting LSH to Disk

In order to run LSH in our context, it would have been
necessary to keep not only the indices of the hash tables in
main memory but also the whole descriptor collection as
actual distances need to be computed. As our descriptor
collection consumes about 22 Gbytes, this approach is
impossible. Furthermore, keeping the collection on disk and
performing a random disk read to fetch each descriptor in
the result is also unacceptable.

For our experimental evaluation, we adapted the original
LSH implementation [2] to disk, using a standard sorting
library. In the interest of a fair comparison between the NV-
tree and LSH, we do not compare the running times of the
search since the NV-tree executable is very well tuned and
we did not wish to spend the same time on optimizing the
LSH algorithm. We can, however, make a fair comparison
by simply counting disk reads.

The settings recommended for memory-based LSH
create a very large number of hash tables. In order to make
LSH more competitive to the NV-tree, we have studied the
result quality of LSH with relatively few hash tables. In the
remainder of this section, we therefore take a closer look at
how to tune the quality of LSH in the context of very few
hash tables. Since the parameters k, L, and r, as well as the
cardinality of the result set, are strongly dependent on each
other, we split our evaluation into two experiments. First
we set the number of hash tables to L ¼ 3 and vary the
word-size parameter k from 6 to 12 (adjusting the radius r
accordingly). In the second experiment, we take the most
suitable configuration of the former experiment and
evaluate the quality when varying the number of hash
tables (effectively varying the number of disk reads
required for the search).

Fig. 10 shows the distribution of the result set size for the
500,000 queries, using LSH with three hash tables. LSH does
not give any guarantee on how many neighbors are returned,
so, when increasing the fingerprint size k, we need to shrink
the radius r correspondingly in order to keep the average
number of nearest neighbors at several hundreds. The x-axis
shows the quantiles of the distribution, while they-axis shows
the result size set at each quantile. The figure shows that by
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6. A disk-based strategy was developed by Ke et al. [13]. Since it was
only tested on a small collection, which was easily buffered in memory, it
cannot be taken as a conclusive disk-based evaluation of LSH.

Fig. 10. Distribution of result set size for LSH with three hash tables

ðL ¼ 3Þ.
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reducing fingerprint size k and radius r the cardinality of
the result sets grows slightly but becomes more stable.
Longer fingerprints and larger radius generally yield fewer
neighbors but have the drawback that for 5 percent to
10 percent of the results the answer set grows extremely
large. The LSH setup with k ¼ 6 and r ¼ 25 returns, on
average, 1,305 neighbors, but, in the worst case, 10,572
nearest neighbors. The setup with k ¼ 12 and r ¼ 80, on the
other hand, returns, on average, 445 neighbors but can
return as many as 83,041.

The setup with k ¼ 10 and r ¼ 65 was chosen in the
continuation and the number of hash tables L was varied.
Fig. 11 shows that the increase in nearest neighbors is
roughly linear for most of the quantiles. The largest result
sets are proportionally smaller because of the existence of
duplicates and because it is unlikely that many hash tables
yield very large buckets.

The major benefit of LSH over the NV-tree is the size of
the index, which is due primarily to the overlapping
partitions of the NV-tree. LSH needs three integers per
hash table entry: one for numbering the hash bucket, one as
a control hash, and, finally, the descriptor identifier. Since
the hash bucket number is only used for sorting the table on
disk, it can be removed afterward, resulting in 8 bytes per
descriptor on disk. With sparse leaf nodes, on the other
hand, the NV-tree only stores a little over 4 bytes per
descriptor. Due to the nonoverlapping nature of LSH,
however, each hash table requires only about 2.1 Gbytes of
disk space, which is significantly lower than the storage
needed for a single NV-tree.

7.4 Recall of LSH

We now turn to a comparison of the LSH and NV-tree data
structures. Fig. 12 shows a comparison of the recall of three
LSH hash tables to a single NV-tree. As the figure shows,
with this setting, LSH yields significantly lower recall than
that provided by the NV-tree. LSH has, on the other hand,
the desirable property that it retrieves in most cases a
significantly lower number of false positives (not shown).
Finally, we point out that LSH makes no distinction
between low and high contrast, as it is an �-approximate
search. This was already known from the design of LSH,
but we have observed this fact in our evaluation.

Furthermore, Fig. 12 shows that a large radius r combined
with larger k returns better results. This effect levels off,

however, once the radius gets too large, because normal
distribution and large symbol buckets along the lines make
certain symbols appear much more frequently than others.
Therefore, the LSH configuration with k ¼ 12 and r ¼ 80
gives only minor improvements over k ¼ 10 and r ¼ 65.

Fig. 13 compares the recall of LSH with varying number of
hash tables ðk ¼ 10; r ¼ 65Þ to that of a single NV-tree index.
The figure shows that by increasing the number of LSH hash
tables, the recall quality improves steadily. Note, however,
that this improved quality comes at the cost of extra disk
reads, and that those disk reads are not of a fixed size and
might, in some cases, go beyond the I/O granularity of
today’s hard drives, which is typically 128 Kbytes. Further-
more, it is well known that both small and large disk reads are
more costly than reads of an optimal size. Combining the cost
of each read with the number of disk reads, we see that LSH
has a much higher response time.

Fig. 13 shows that the point where LSH outperforms the
NV-tree lies roughly at L ¼ 8 hash tables, so we can say that
the NV-tree can deliver the equivalent recall quality with
single disk read that LSH can with eight disk reads. The
average number of false positives for L ¼ 9 hash tables is
1,201, so we can also say that here the NV-tree and LSH
yield the same “performance.”
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Fig. 11. Distribution of result set size for LSH with varying number of

hash tables ðk ¼ 10; r ¼ 65Þ.
Fig. 12. Recall for different LSH setups (varying word size and radius)

with three hash tables ðL ¼ 3Þ.

Fig. 13. Recall for LSH with varying number of tables ðk ¼ 10; r ¼ 65Þ.
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7.5 Filtering False Positives

As we did for the NV-tree, it is also possible to filter false
positives from the LSH results. In this case, we need to
aggregate the result sets of the individual LSH hash tables.
As explained in Section 7.3, adapting LSH to disk precludes
any actual distance calculations and, therefore, filtering
false positives based on distances is impossible. Further-
more, a rank-based approach cannot be used, as the buckets
are essentially sets that have no internal ranking. Instead,
we have taken the approach used in [4] and filter false
positives by simply counting the number of occurrences of
each descriptor in the result sets from all the hash tables and
ranking the result accordingly. Close neighbors are likely to
be found by many hash functions, and their occurrence
count will therefore be high. Then, we take a fixed number
of neighbors from this ranked list and declare these the
aggregated nearest neighbors.

Fig. 14 shows the recall of this method. As the figure
shows, LSH gives high recall with this method when we
have a large enough number of tables to provide a
distinguishable ranking among the aggregated result sets.
As the figure further shows, however, LSH only manages to
catch up with a three-index NV-tree setup once we collect
neighbor sets from 24 different LSH hash tables. Again, this
is a ratio of 1:8 in favor of the NV-tree.

Looking further at the false positives shown in Fig. 15,
we see no significant differences when using more LSH
hash tables. In contrast to the NV-tree, it is completely
dependent on the number of nearest neighbors as LSH
practically guarantees with very high probability very large
result sets for all queries. The generation of a small and
meaningful answer set is then just a matter of ranking the
neighbors.

7.6 Discussion

As we have seen in the experiments, LSH and NV-tree
can give similar quality for nearest neighbor search in
high-dimensional space. In order to provide a fair compar-
ison of both methods, we have put emphasis on choosing a
sound selection of the parameters for both techniques. The
results show that the NV-tree trades off disk space for the
benefit of better query performance while LSH trades off
search time for a smaller index on disk.

When false positives are tolerated, the NV-tree is about
eight times faster but uses 50 Gbytes of disk space versus

8� 2:1 Gbytes ¼ 16:8 Gbytes for LSH, or three times more
disk space. The same trade-off can be seen when we filter as
many false positives as possible, as then the NV-tree needs
three disk reads from 150 Gbytes of disk space while LSH
needs about 24 disk reads from 50.4 Gbytes of disk space.

One of the clear benefits of the NV-tree is that it always
loads fixed sized partitions from disk, while the number of
descriptor identifiers in a single LSH hash table bucket can
be very large. This behavior may lead to unpredictably
large result sets of almost 100,000 neighbors for our setup or
unpredictably small result sets, which in turn leads to
unpredictable I/O sizes.

8 CONCLUSIONS

In this paper, we have proposed the NV-tree, which is a
disk-based data structure that gives good approximate
answers with a single random disk read, even for very large
collections of high-dimensional data. Furthermore, search-
ing the NV-tree incurs negligible CPU overhead, making it
suitable also for main-memory-based processing. We have
described the fundamentals of the NV-tree, as well as
different strategies for its construction.

We have then analyzed the properties of a large-scale
copy detection application using the well-known SIFT
descriptors. We show that the SIFT descriptors are very
distinctive and have high contrast, even in a collection of
180 million data points. Furthermore, we show that using
contrast-based ground-truth sets is necessary to obtain
meaningful results for all queries. We have shown that the
NV-tree returns very good approximate results for this
workload and we believe that the NV-tree can be used for
any large-scale application, where the data set can be shown
to have contrast and yield meaningful results.

Finally, we have shown that the NV-tree and LSH are
two very good indexing schemes for nearest neighbor
search in high-dimensional space. While both methods are
built on the concepts of projection to lines and partitioning,
however, they have very different properties. The NV-tree
is a tree structure that guarantees fixed size I/O operations
and a maximum size on the result set. LSH is hashing based
and might in extreme cases return very large result sets. The
NV-tree trades off disk space for the benefit of fewer disk
reads during the search, while LSH focuses on rather small
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Fig. 14. Meaningful neighbors for the NV-tree and LSH ðk ¼ 10; r ¼ 65Þ. Fig. 15. False positives for the NV-tree and LSH ðk ¼ 10; r ¼ 65Þ.
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index sizes but needs more accesses to disk during the

search process.
Directions for future work include a theoretical study of

the approximation properties of the NV-tree, an analysis of

the impact of redundancy on result quality, further

comparisons to competing data structures, and a perfor-

mance study at even larger scales.
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