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Abstract—We consider a particular form of the classical ap-
proximate joint diagonalization (AJD) problem, which we call
a “sequentially drilled” joint congruence (SeDJoCo) transfor-
mation. The problem consists of a set of symmetric real-valued
(or Hermitian-symmetric complex-valued) target-matrices. The
number of matrices in the set equals their dimension, and the
joint diagonality criterion requires that in each transformed
(“diagonalized”) target-matrix, all off-diagonal elements on one
specific row and column (corresponding to the matrix-index
in the set) be exactly zeros, yet does not care about the other
(diagonal or off-diagonal) elements. The motivation for this form
arises in (at least) two different contexts: maximum likelihood
blind (or semiblind) source separation and coordinated beam-
forming for multiple-input multiple-output (MIMO) broadcast
channels. We prove that SeDJoCo always has a solution when the
target-matrices are positive-definite . We also propose two possible
iterative solution algorithms, based on defining and optimizing
two different criteria functions, using Newton’s method for the
first function and successive Jacobi-like transformations for the
second. The algorithms’ convergence behavior and the attainable
performance in the two contexts above are demonstrated in
simulation experiments.

Index Terms—Approximate joint diagonalization, blind source
separation, independent component analysis, coordinated beam-
forming, multi-user MIMO, STJOCO, HEAD.

I. INTRODUCTION

HE general framework of approximate joint diagonal-
ization (AJD) considers a set of K (typically more than
two) square, symmetric, real-valued N x N matrices denoted
Q....,Qx (often termed the “target-matrices”). The goal in
AJD is to find a single matrix B (or its inverse A, see below)
which best “jointly diagonalizes™ the target-matrices in some
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sense. AJD is closely related to the problem of blind source
separation (BSS), in which the diagonalizing I3 serves as an
estimate of the demixing matrix, which is subsequently used
for recovering the sources from their observed mixtures. The
matrix A serves, in turn, as an estimate of the unknown mixing
matrix.

Quite a few approaches to the AJD problem have been sug-
gested in the past two decades (e.g., [1]-[8]), mainly differing in
the proposed criteria for measuring the extent of attained joint
diagonalization. These can be generally divided into “direct”
criteria, looking for B which makes all BQ,. BT (where ()T
denotes the transpose) “as diagonal as possible,” and “indirect”
criteria, looking for A (and K diagonal matrices D} ) such that
all Q, are “best fitted” with AD,AT. When B (or A) is re-
stricted (such as in [1]) to be orthonormal, the problem is com-
monly referred to as orthogonal AJD, otherwise it is nonorthog-
onal AJD.

In this paper, we consider a somewhat less familiar, very par-
ticular form of (nonorthogonal) AJD, which can be viewed ei-
ther as a specially structured joint congruence (STJOCO [9])
relation, or as “hybrid” exact-approximate joint diagonalization
(HEAD, [10]), satisfied both in its “direct” and in its “indirect”
formulation. For reasons that are explained below, we shall,
from now on, refer to this particular form as a “sequentially
drilled” joint congruence (SeDJoCo) transformation.

Unlike the problem of general AJD, the basic form of SeD-
JoCo considers exactly K = N target-matrices Q;,...,Qy
(namely, the number of matrices equals their dimension), and
seeks a matrix I3, such that the nth row and nth column of the
transformed rth matrix B Q,LBT would be all-zeros, except for
the diagonal (1, n)th element. For each matrix €}, , this structure
resembles a square that has been “drilled” along the rth row and
column (considering the elements which have been zeroed-out
as “empty”). Since the index of the “drilled” row and column
progresses sequentially with the matrix-index, we call this con-
gruence transformation “sequentially drilled”—hence the term
SeDJoCo , see, for example, Fig. 1, which depicts the case of
N = 5. We shall consider both the real-valued formulation, in
which all the IV target-matrices, as well as I3, are real-valued;
and the complex-valued formulation, where all @,,, as well as
B, may be complex-valued (in which case the desired congru-
ence relation takes the form BQ, B, with (-)¥ denoting the
conjugate-transpose).
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Fig. 1. SeDJoCo transformation of five target-matrices.
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The motivation for seeking this kind of transformations
stems from (at least) two different origins. One is encountered
in the context of maximum likelihood (ML) blind (or semib-
lind) source separation; another is encountered in the context
of coordinated beamforming (CBF) for multiple-input mul-
tiple-output (MIMO) broadcast channels. We shall elaborate on
these two contexts in the sequel.

To the best of our knowledge, the first formulation of the as-
sociated set of equations was derived by Pham and Garatin [11],
in the context of quasi-ML (QML) blind separation of stationary
sources. Although the set of equations in [11] was equivalent to
SeDJoCo, there was no explicit association of these equations
in [11] with a form of joint diagonalization. A Newton-based
iterative solution was proposed, but involved an approximation
which assumed that the sources are nearly separated. Later on,
Dégerine and Zaidi derived in [12] a similar set of equations in
the context of ML blind separation of Gaussian autoregressive
(AR) sources and proposed a solution approach termed “itera-
tive relaxation.” Both solutions (in [11] and in [12]) only ad-
dressed the real-valued version.

A unified view of the set of equations, presented as a special
form of joint diagonalization (termed “HEAD”), was proposed
by Yeredor in [10] (in its real-valued form). It was further shown
by Yeredor in [13], that ML separation of general (not neces-
sarily stationary) Gaussian sources requires the solution of this
set of equations (with various forms of target-matrices).

In independent, parallel work [9], Song ef al. considered the
same set of equations in a different context—of CBF in MIMO
channels. The problem was termed “STJOCO” in [9], and a dif-
ferent iterative solution was proposed.

The intriguing occurrence of similar forms of this set of equa-
tions in such different contexts (with different interpretations for
the target-matrices Q. . . . , @ and for the transformation ma-
trix B) has motivated us to present an integrated, self-contained,
comprehensive view of the problem (newly termed “SeDJoCo”
in this work), along with some theoretical analysis, proposed so-
lutions, performance study and application examples, both for
the real-valued and complex-valued cases.

Our main contributions in this work are as follows:

+ presentation of different equivalent formulations of the
problem and their association with the joint diagonaliza-
tion problem;

+ a proof of existence of a solution for positive-defi-
nite target-matrices, both in the real-valued and com-
plex-valued cases;
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* two iterative solution algorithms, both based on formu-
lating the problem as different optimization problems and
taking different approaches in the maximization or mini-
mization of the associated cost-functions. Both approaches
are provided in both a real-valued and a complex-valued
version:

— An approach based on Newton’s method: Normally, the
application of Newton’s method would require the in-
version of an N2 x N2 Hessian matrix in each itera-
tion, which might be computationally expensive when
N is large. However, by identifying and exploiting the
sparsity of the Hessian, we are able to apply the conju-
gate-gradient method and enjoy the fast (quadratic) con-
vergence of Newton’s method at a moderate computa-
tional cost per iteration.

— An approach based on successive unitary transfor-
mations involving multiplications by parameterized
lower and upper diagonal matrices. This method offers
linear convergence at a reduced computational load per
iteration.

* Empirical comparison of the proposed algorithms and their
resulting performance in simulation experiments in the re-
spective applications contexts.

The remainder of this paper is structured as follows. In the
two following subsections we briefly elaborate on the two
different contexts of SeDJoCo: ML source separation and CBF.
In Section I we consider some theoretical issues, outlining
equivalent problem-formulations and proving the existence of a
solution for any set of symmetric or Hermitian positive-definite
target-matrices. In Section III we outline our two solution
approaches. Simulation results are presented in Section IV,
demonstrating and comparing typical convergence patterns, as
well as attainable sum-rates in CBF and separation performance
in complex-valued source separation. The paper is concluded
in Section V.

A. Motivation in ML Blind or Semiblind Source Separation

Consider the problem of blind (or semiblind) source sep-
aration, in which N statistically independent, zero-mean
wide-sense stationary (and real-valued) source signals
s[t] £ [s1[t]. ..., sx[t]T (with different spectra) are mixed by
an unknown, square invertible (real-valued) mixing-matrix A,
yielding the N mixture signals z[t] 2 [z[f]....,zx[H]”

z[t] = As[t], t=1,2,...,T. (1)

When the power spectral densities (PSDs) of the sources
h1(v),...,hn(v) (respectively) are known, the scenario is
called “semiblind.” When the PSDs are unknown, the sce-
nario is “fully blind,” see, e.g., [13]. In either case, consider
some presumed PSDs (either the true PSDs in a semiblind
scenario or some “educated guess” in a fully blind sce-
nario) hi(v),...,hn(v), and denote by ¢,[t] the inverse
discrete-time Fourier transform (IDTFT) of h,, (), namely

1

2
R -1 )
(/)n[t]é/h PPy ne{l,2,....N}. (2
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It is shown in [11] (see also [14, Ch. 7]) that for ML (in the
semiblind scenario, assuming Gaussian sources) or quasi-ML
(QML) (in the fully blind scenario) separation, the likelihood
equations (often also called “estimating equations” in this con-
text) for estimation of A from z[1],. .., z[7] take the form

T-1 . .
Z dnlrleE A R[T)A e,
T=1-T

=0

Ym#n, myne{l,2,...,N} (3)

where e,, denotes the nth column of the N x N identity matrix
I, and where R[7] denotes the observations’ empirical (biased)
correlation matrix estimate at lag 7,

min(T,T—7)

. 1
Ri71E = > ozt [t+ 7). 4)
t=max(1,1—7)
Thus, defining the set of N matrices
T-1
Q.2 Y ¢urR[7), n=12....N (5
T=1-T

and denoting B & 2171 (the ML or QML estimate of the
demixing matrix), we observe that the likelihood (3) can also
take the form

s

i

(BQ,”BT)CTL =0 Vm#n, mne{l,2,....,.N} (6)

which implies that for each n € {1,2...., N}, all off-diag-
onal elements in the nth column of the transformed matrix
BQHB should be zeros. It is straightforward to show that
a “symmetrized” version of R[] (a result of averaging R[]

with RT[T]) can also be used in (3), in which case the re-
sulting matrices (,, would also be symmetric, and the form
(6) would imply that all off-diagonal elements in both the nth
column and nth row of EQ,LBT must be all-zeros (for each
n € {1,2,....,N}).

It is also shown [11], [14] that an additional likelihood equa-
tion (related to the scaling of the reconstructed sources) requires
that the expression in (3) equal 1 for n = m. Consequently, the

respective diagonal (7, n)th element of BQ,,,BT should equal
1 as well—but this is merely a scaling condition, which may
be substituted with other scaling constraints if desired. As we
shall see in the sequel, this scaling constraint is used in the con-
text of BSS, but is not applicable in other contexts, such as our
CBF application. Note that all other elements (in columns and

LT
rows other than the nth) of BQ,, B are irrelevant to the ML (or

QML) solution, namely, the resulting structure of each BQRBT
may generally be far from diagonality, as long as its nth row and
column are exactly of the form expected in a diagonal matrix.

A similar form of estimating equations is encountered in a
somewhat more specific context of Gaussian AR sources in
[11] (see also [14, Ch.7 ]), and in a more general context (of
Gaussian source signals which are not necessarily stationary, but
have general temporal-covariance patterns) in [13]. The com-
plex-valued version would also be encountered in these con-
texts (with complex-valued sources), but only when all signals
in question are circular complex-valued random processes.
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General AJD is basically an ad-hoc tool which attempts to
“best fit” a prescribed model to the set of target-matrices, with
no claim of optimality in any significant sense. As shown in [8],
[15], in some particular cases general AJD can be made asymp-
totically optimal by the introduction of proper weighting. How-
ever, the same asymptotic optimality appears in a much more
“natural” and computationally simpler way in SeDJoCo (with
particular choices of target-matrices), since SeDJoCo can di-
rectly attain the ML estimate of A or B in such cases. In fact,
following [13], it can be concluded that (asymptotically) op-
timal separation of independent Gaussian sources with any kind
of time/frequency diversity (whether stationary, nonstationary,
partly stationary, and partly nonstationary, etc.) can always be
attained via the solution of a SeDJoCo problem.

B. Motivation in Coordinated Beamforming

The SeDJoCo problem is further motivated by the application
of coordinated beamforming for a multiuser MIMO broadcast
channel, when the system has a smaller number of transmit
antennas than the aggregate number of receive antennas. In
this case, many existing linear precoding techniques [e.g.,
zero-forcing (ZF) and block diagonalization (BD)] cannot be
used due to the dimensionality constraint [16].

Previous CBF algorithms (e.g., [17], [18]) allow a smaller
number of data streams than the number of receive antennas
by jointly optimizing the combining vectors at the transmitter
and receiver and enforcing zero multiuser interference (MUI) at
each receiver. However, iterative computations are required to
update the transmit beamformer and receive beamformer alter-
nately, and the convergence of these iterative algorithms cannot
be guaranteed. In order to avoid these iterative computations,
in [19] a closed-form expression for CBF was proposed, but it
is only valid for a system with Mt = 2 transmit antennas and
K = 2 users. We show that this task can be transformed into a
SeDJoCo problem, and the coordinated transmit-receive beam-
formers can be calculated directly for an arbitrary number of
transmit antennas M. Consequently, this SeDJoCo-based CBF
can be considered as a closed-form CBF technique.

Consider a multiuser MIMO system with a single base sta-
tion (BS) and K users, where the BS is equipped with My
transmit antennas and user &£ has Mg, receive antennas. The
aggregate number of receive antennas is denoted by Mg (i.e.,
Mg = ¥4y Mr,).

The number of transmit antennas is denoted MT, and we shall
assume Mt = K < Mpy (for reasons that are explained later
on). The propagation channel between the BS and each user is
assumed to be flat fading. The matrix H; € CMr*MT repre-
sents the channel between the BS and the kth user. Let 2, denote
the transmit signal for the kth user, and b, € CM7*! indicate
the unit-norm transmit beamformer. Denoting the receive com-
bining vector for user & by wy, € C*=+*! and restricting our
attention to one data stream per user, the received signal of the
kth user after receive combining is given by

K
yk = wil Hibyy, + wil Hy, Z by +wivy,

=1
t+£k

(7
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where v, € CMRe*1 denotes the additive, zero-mean complex-
valued white noise vector present at the kth receiver.

The maximum ratio combinations (matched filters) at the re-
ceivers are given by wy = H b;. The coordinated transmission
strategies choose the transmit beamforming and receive com-
bining vectors such that each user experiences zero MUI. This
implies that for the kth user wf H b, = 0 for all £ # k, which
is equivalent to b2 HY H b, = 0 (V£ # k).

If B ¢ CMv*K denotes the combined transmit beam-
formers for all users and @, € CYT*M7 denotes a scaled ver-
sion of the sample correlation matrix of user %, we have

BY = [b1,b2, ..., bK] )
Q. =H{H, )
and BQ, B* can be calculated as
b Qb b Qb by Qbx
BQ,B" = | b7 Qb by Q,.bx by Qbx
b Qb b Qb by Qb
(10)

Using the zero MUI condition b @b, = 0 (V¢ # k €
{1.2,...,K}), we find that the off-diagonal elements on the
kth row and the kth column of BQ, B must be zero. This in-
dicates that the matrix B can jointly eliminate the off-diagonal
elements on the kth row and the kth column of @;, for the entire
set of matrices {@ k}klil . This property allows us to directly use
the SeDJoCo solution to obtain the combined transmit beam-
former BY .

Here, the number of users K is the same as the number of
target-matrices, and the number Mt of transmit antennas cor-
responds to the parameter N (namely, to the dimensions of the
target-matrices). Normally, /V would equal the number of users
K :If N is smaller than K, then the number of matrices exceeds
their dimensions, and generally SeDJoCo does not have a solu-
tion in such cases (meaning that the zero MUI condition cannot
be met); Conversely, if NV is larger than K, then the system con-
tains inherent redundancy, and either more users can be added,
or multiple data-streams can be transmitted to some (or all) of
the users: for example, if the sequence of K “target-matrices”
is augmented from {Q,,...,Qx} to a sequence of N > K
target-matrices {Q, ..., @, @k, ..., @k} (such that @ is
repeated N — K 41 times), then following the SeDJoCo solution
the K'th user would be able to receive N — K + 1 data-streams
(transmitted with the resulting N — K +1 different beamformers
by ....,by) with zero MUI We shall therefore concentrate in
the sequel on the case N = K. Evidently, in this case the con-
dition b Q,be = 0 (V£ # k € {1,2,..., K}) is equivalent to
(6).

The receive beamformer of each user (w, = H.b,, n =
1,2,..., K) is matched to the user’s effective channel. In a
system where dedicated pilots are used for the downlink, each
user can estimate its own receive beamformer.
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II. EQUIVALENT FORMULATIONS AND
EXISTENCE OF A SOLUTION

The SeDJoCo problem formulation can take several alterna-
tive, equivalent forms, each shedding a somewhat different light
on the basic aspects of this problem. The three alternative for-
mulations presented below apply both to the real-valued and
complex-valued cases.

As already mentioned, in the basic SeDJoCo formulation the
number of matrices K must equal the matrices’ dimensions,
namely K = N. Thus, consider N symmetric (in the real-
valued case) or Hermitian symmetric (in the complex-valued
case) target-matrices @, . . . @, each of dimensions N x N.
The SeDJoCo problem can be stated as:

Pl: Given N target-matrices Q,...Qy, find an N x N
matrix B = [by by --- by]®, such that

b2Q, b, = 6pn Ym,ne{1,2,...,N} (11)

where 0,,, denotes Kroneckers delta function (which is 1 if
m = n and 0 otherwise).

Equivalently, the same problem can be stated as:

P2: Given N target-matrices Q1. ...Qy, find an N x N
matrix B, such that

BQ,B%, =e, VYne{l,2,....N}. (12)

In other words, each transformed matrix BQ, B should
be exactly “diagonal” in its nth column (and, since it is sym-
metric/Hermitian, also in its nth row), in the sense that all off-di-
agonal elements in these row and column must be exactly zero.
All other elements may take arbitrary (nonzero) values. In ad-
dition, with the problem formulations above we also require
that the diagonal (n,n)th element of BQ, B* be 1—but this
is merely a scaling constraint on the rows of B—once any ma-
trix I satisfying the exact off-diagonal equations is found, it
is straightforward to simply rescale each of its rows such that
bf Q,.b, = 1, without any effect on the “n-wise diagonality”
property. As we shall see in the sequel, this scaling constraint is
used in the context of BSS, but is not applicable in other con-
texts, such as our CBF application.

Multiplying both sides of (12) by A = B! on the left we
obtain

Q,Bfe, = Ae, = Ve {1,2,...,N}

(13)
where a,, denotes the nth column of A = [a; - - - ay]. In other
words, the same problem can be stated as follows:

P3: Given N target-matrices Q, . . . Q v , find two reciprocal
N x N matrices B and A = B, such that the n-th column
of A is given by Q.,.b,,, with bil denoting the n-th row of B,
n=12..,N.

Assuming that all target-matrices are invertible, we may also
swap the roles between B and A, obtaining that the nth column
b, of B should be given by Q,, la,,, where af denotes the
nth row of A%, n = 1,2,..., N. This means that the same
problem formulations P/ and P2 above may be cast in terms
of AT (instead of B) with the inverses of the target-matrices
substituting the target-matrices. This implies that the “direct”
and “indirect” formulations of SeDJoCo coincide: If B is the

a, = Qn bn
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SeDJoCo diagonalizer of Q;....,Q,, then its (conjugate)
transposed inverse A is the SeDJoCo diagonalizer of the
inverse set ¢, 1. .,ngl. It is important to note that this
desirable “self-reciprocity” property, is generally not shared
by other nonorthogonal AJD algorithms. In fact, it is easy
to show that this property is satisfied in nonorthogonal AJD
when (and only when) the target-matrices are exactly jointly
diagonalizable. In general, however, the target-matrices are not
exactly jointly diagonalizable: In the context of BSS they are
merely estimates of exactly jointly diagonalizable matrices,
and therefore would almost never be themselves exactly jointly
diagonalizable; Moreover, in the context of CBF there is no
reason (in general) for @, = H ,,H H,, to even be close to an
exactly jointly diagonalizable form. Nevertheless, the SeDJoCo
solution always enjoys the “self reciprocity,” reflecting some
intuitively appealing kind of “self-consistency.”

As obvious, e.g., from P/, in the real-valued (com-
plex-valued) case, SeDJoCo requires the solution of
N? ((2N)?) real-valued equations in N2 ((2N)?) real-valued
unknowns—the real-valued parameters comprising B. Since
these equations are nonlinear, real-valued solutions may or
may not exist in general, and may or may not be unique. We
shall show, however, that if all the NV target-matrices are posi-
tive-definite (PD), a solution must exist (but we do not have an
explicit condition for uniqueness).

Let us consider the real-valued case first. Let Q;,..., @y
denote a set of (symmetric, real-valued) PD target-matrices, and
let A,, > 0 denote the smallest eigenvalue of @,,,n = 1,..., N.
Consider the function

no

N
1
C(B) £ log | det B| - 5 Z egBQnBTen.

n=1

(14)

For all nonsingular B, C(B}) is obviously a continuous and dif-
ferentiable function of all elements of B. In addition, C(B) is

bounded from above:
N

C(B) = log| det B| — Z b7 Q,.b,
n=1
N 1 N
n=1 n=1

N
1 .
=3 > {log|Ball* = Anlbnll}

n=1

N
1
<5 > {-log A, — 1}

n=1

(15)

where [|b,,||> = b2 b,, denotes the squared norm of b,, , and where
we have used the properties

1) |det B| < H::l ||b. || (Hadamard’s inequality);

2) b, Q,b, > Allbnl[*; and

3) logz — Az < —logA — 1 forallz > 0.

Note also that C(B) tends to —oo when B approaches any
singular matrix, and that, in addition, C'(B) has the property

(16)

Consequently, C({B) must attain a maximum for some nonsin-
gular B. Being a smooth function of B for all nonsingular B, its

x—00

Cla-B)—=5 - VB.
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derivative with respect to (w.r.t.) B at the maximum point must
vanish.

Indeed, differentiating C(B) w.rt. B, ) (the (n,m)th
element of B) and equating zero we get (for all m,n €

{1.,2,...,N})
N
90(B) 1 &, r
m =A@mn) T 5 Z2€k E,mQ.B" e
; k=1
N
= A(m,n) - Z 6kne£1,QkBTek
k=1
= A(m,n) - elz‘l—:l,Q‘VLbn' =0 (17)
where we have used the relation
dlog|det B|  Ologdet B
P = = A(m,n) (18)
OB n,m) 9B n.m)

(the first equality holds for all nonsingular real-valued B), and
where K,,,, = e,e denotes an all-zeros matrix with an only
1 at the (n, m)th locatlon. By concatenating these equations for
m = 1,2,..., N into a vector we get @, = @,,b,, which has
to be satisfied for eachn = 1,2, ..., N—as required in formu-
lation P3 above. This means that the solution of SeDJoCo can
be expressed as the maximizer of C'(B), which, as mentioned
above, always exists when the target-matrices are all PD.

Naturally, this derivation is closely related to the fact that
SeDJoCo yields the ML (or QML) estimate of the demixing ma-
trix in some specific BSS contexts (e.g., [11]-[13]) with some
specific target-matrices. However, we obtained here a more gen-
eral result, which holds for any set of PD target-matrices, and
not only for the specific matrices used for ML or QML estima-
tion in [11]-[13].

We now turn to consider the complex-valued case. The main
formal difficulty in applying the same proof to the complex-
valued case stems from the fact that C'(B) as defined above
would be a real-valued function of a complex-valued matrix,
and as such would not be differentiable w.r.t. B. To mitigate this
difficulty, we take the well-known approach of Brandwood [20]
(or van den Bos [21]), reformulating C(B) as C(B, B*), such
that B and B* are considered independent variables. The “com-
plex-gradient” w.r.t. B is then defined as the partial derivative
of C(B, B*) w.r.t. B, considering B* to be constant (and this
gradient equals the complex-conjugate of the similarly defined
complex-gradient w.r.t. B*). At a maximum point, the com-
plex-gradients of C'(B, B*) w.r.t. both B and B* must vanish.

Indeed, define!
N
Z ez:BQn,(B*)TeTI
n=1

(19)
and assume that the target-matrices ¢},, are all Hermitian and
PD, denoting the smallest eigenvalue of Q,, as A, > 0 (n =
1,..., N). Using the complex-valued version of the same argu-
ments used above in support of (15), we have

Z{ log Ay — }

n=1

C(B,B*) £ logdct B + log det B* —

C(B, B*) (20)

I Although similar to (14), this expression is not meant to be interpreted as a
“complex-valued generalization” of(14).
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so C(B, B*) is also bounded from above, and must also be max-

imized by some nonsingular B, such that its complex-gradient

w.r.t. B (and to B*) at the maximum point must vanish.
Differentiating w.r.t. B(;, ;) we obtain

N

aC(B, B*) T o T
0 :A(m.n) -0- € Eank(B ) €k
aB(7L7'V’L) ' ;
N
= A(m,n) -0- Z 5kﬂ/e1j;an(B*)Tek’
k=1

= A(m,n) - eﬁ,an" =0 (21)

where b,, is the nth column of B*, namely bf is the nth row of
B—as defined earlier for formulations P/ and P3. Differentia-
tion w.r.t. B* would simply yield the complex-conjugate ver-
sion of the same equation. Once again, by concatenating these
equations form = 1,2,..., N into a vector we geta,, = @Q,,b,,
which corresponds to P3 foralln € {1,2,..., N}.

We note in passing that we have shown the existence but not
the uniqueness of the solution. The number of equations (in-
cluding the scaling constraints) is K(K — 1) + K = K2,
which equals the number of free parameters in B. However,
since the SeDJoCo equations are nonlinear, this certainly does
not imply, in general, uniqueness of the solution. Indeed, with
arbitrary (positive-definite) target-matrices the SeDJoCo solu-
tion might not be unique; and yet according to our experience,
in the context of BSS with sufficiently long observation length
T, when the target-matrices are nearly jointly diagonalizable,
the solution is unique (and approximately equals the inverse of
the mixing matrix).

III. SoLUTIONS OF SEDJOCO

Unlike classical AJD, the SeDJoCo problem and its solutions
have rarely been addressed in the literature. To the best of our
knowledge, with the exception of our recent conference-papers
[9], [10], so far only two different iterative algorithms have been
proposed (both in the context of ML or QML BSS): One by
Pham and Garat [11], which is based on multiplicative updates
of B, and the other by Dégerine and Zaidi [12], which is based
on alternating oblique projections w.r.t. the columns of B. Both
algorithms were developed for the real-valued case only, but can
also be extended to the complex-valued case. A brief summary
of these two algorithms can be found in [10], as well as in [14,
Ch. 7].

In this section we propose two new solution approaches: One
is based on Newton’s method, possibly employing a conjugate-
gradient solution (e.g., [22]) of the intermediate sets of sparse
linear equations [10]; and the other is based on a modification
of an existing LU-based nonorthogonal AJD algorithm [9]. Both
algorithms will be presented for both the real-valued and com-
plex-valued versions of the problem.

A. Solution by Newton's Method With Conjugate Gradient
(NCG)

Beginning with the real-valued version, we propose to apply
Newton’s method for the maximization of C(B) in order to
solve the nonlinear equations (17). To this end, let us define
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the N? x 1 gradient vector g and the N? x N? Hessian ma-
trix H as follows (some of the basic relations used in the fol-
lowing derivations can be found, e.g., in [23]). First, we define
the indexing function iz(m,n) = (m — 1)N + n, which deter-
mines the location of By, ,,) in vee(BT) (the concatenation of
the columns of B” into an N2 x 1 vector). Then, as we have
already seen in (17), the elements of the gradient vector g are
given (form,n € {1,2,...,N}) by

e
q,T(m”> 8B(m,n)

Put a little differently, g can also be seen as a vectorized version
g = vec (GT) of the gradient matrix

= Apmm) — € Qubu  (22)

G2 AT —[Qb) - Qubn]T. (23)

Differentiating (17) once again w.r.t. B, ,y we get the elements
of the Hessian H (for all m,n,p,q € {1,2,...,N})

H, , 2 M
(ta(m,n),ix(p,q)) aB(’my") aB(p,q)
a
= A ream) T eng,bm
9B, Ao }
= —e] AE,,Ae,,
- ez;Qm,eq ' 6771,])
= - A(‘Vl.7p)A(q,’rIL)

- Qm(n,q) . 6m,p (24)

(where we have used the relation JA = —A - OB - A). The key
observation here, is that if we differentiate at B = I, then H be-
comes considerably sparse, since at B = I we alsohave A = I,
50 A(n pyA(g,m) = npdym. The computation of the associated
N? x 1 update vector —H ~' g (for updating all N elements of
B), which apparently requires the inversion of an N2 x N2 ma-
trix, can then be attained with relative computational simplicity
using the conjugate gradient method (which exploits this spar-
sity). Note, indeed, that with B = I we have

’ QN)

where the Bdiag(-) operator creates a block-diagonal matrix
from its matrix arguments, and where P is merely a permuta-
tion matrix transforming the vee(-) of a matrix into the vee(+)
of its transpose, namely for any N x N matrix Y, we have
P -vee(Y) = vee(YT) (note also that P = PT = P 1),

Therefore, the operation of H on any vectorized N x N ma-
trix Y7 can be easily expressed as

H. Vec(YT) = —vec ([Q1y1 e QNyN]T + Y)

where y;, ...y, denote the columns of YT (rows of Y). This
relatively simple relation, requiring N? rather than N* mul-
tiplications, can be conveniently exploited in a conjugate-gra-
dient-based computation of H ™~ *vec(GT).

Luckily, the joint congruence structure of the SeDJoCo
problem enables us to always work in the vicinity of B = I,
as each update of B can be translated into a transformation
of the target-matrices, defining a “new” problem in terms of
the transformed matrices. In other words, suppose that a set of

H = —P — Bdiag(Q,, ... (25)

(26)
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target-matrices @, ..., @, is given, and that an initial guess
for Bis B? = 1. Following a single iteration of the Newton
algorithm at B © = T, a correction matrix A is found and

used for updating BV = B(Y) + A = I + A. Apparently, the
next step would be to apply the next iteration of the Newton
algorithm by calculating the correction matrix at BW (so as
to obtain B<2)), but this would no longer be computationally
appealing, since at BW # I the structure of the Hessian
severely departs from (26) and becomes cumbersome and
nonsparse. Fortunately, an attractive alternative exists in SeD-
JoCo: Rather than computing the next update at B ) with the
original target-matrices, transform these matrices into a new
set of target-matrices, using the congruence transformation
implied by B, namely obtain Q,, = BMQ, (BM)T (for
n =1,2,...N). This transformation fully accounts for the up-
date in B, so that with the new set Ql, QQ, R QN, once again
B = T would be used as an “initial guess” (consistent with
the result of the previous step in the Newton algorithm), leading
to a convenient calculation of the next update. The process
proceeds by retransforming the new target-matrices at each
step, and accumulating the updates by applying the respective
left-multiplicative updates of B (such that the resulting B is
the solution for the original set).

Summarizing our algorithm, given the target-matrices
and some initial guess of B, we repeat the following until
convergence

1) Update the transformed target-matrices

Q,—BQ B" n=12.N.
2) Using (23), construct the gradient matrix G at B = 1,
G=1I-[Qe - Quyey|’.
3) Find the correction matrix A, given by
vec(AT) = —H ' - vec(GT).

Note: A key observation here is that the associated
system of linear equations H - vec(A”) = —vec(GT)
may be conveniently solved using the conjugate-gra-
dient or the conjugate-gradient-squared method? (e.g.,
[22]). Since H is of dimensions N? x N2, a direct so-
lution may be computationally too expensive for large
values of N. In such cases, the sparsity of H calls
for employing the conjugate-gradient method, an iter-
ative solution with guaranteed convergence in a finite
number of steps. The method does not involve explicit
inversion of H, but merely requires computation of
products of the form I - y in each iteration. As shown
in (26) above, such products can be computed with N3
(rather than N*) multiplications, by exploiting the spe-
cial sparse structure of H.

4) Apply and accumulate the correction B «—(I + A)B
This algorithm is somewhat similar in structure to Pham’s mul-
tiplicative updates algorithm [11]. However, it is based on an it-
erative solution of (17), which, unlike the direct solution of (11)

2Conjugate-gradient requires —H to be PD. Although B(liag(Ql, e QN)
is PD, —H is generally not PD, since P is not PD. In such cases the slightly
modified conjugate-gradient-squared algorithm may be used.
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(used in [11]), conveniently lends itself to the use of a conjugate
gradient algorithm in each Newton iteration, by exploiting the
sparsity of H. We note further that the multiplicative updates
algorithm in [11] assumes, for further simplification, that at the

vicinity of a solution the transformed matrices EQ"B ! are all
nearly diagonal. While this assumption may be reasonable in
the context of BSS (since near separation the empirical corre-
lation matrices are all nearly diagonal if the observation length
T is sufficiently long), it excludes non-BSS applications (such
as our proposed CBF), in which there is no reason for the trans-
formed matrices to exhibit any diagonality on top of the attained
“p-wise diagonality.”

In order to extend the algorithm to the complex-valued case,
we must recall once again that for complex-valued B, the
gradient and the Hessian of the real-valued C{B) w.r.t. B are
undefined. We must therefore resort once again to van den Bos’
“complex-gradient” and “complex-Hessian” [21], and apply
Newton’s approach to the maximization of (19). To this end,
we need:

« The gradient of C'(B, B*) w.r.t. B, which we shall denote

in vector form as the N x 1 vector ¢°;

* The gradient w.r.t. B*, which we shall denote g*;

* The Hessian w.r.t. B and B, which we shall denote by the

N? x N? matrix H°®;

« The Hessian w.r.t. B and B*, which we shall denote H°*;

* The Hessian w.r.t. B* and B, which we shall denote H*°;

* The Hessian w.r.t. B* and B*, which we shall denote H**;
Evidently,

. 9C(B,B") "
o 2T Ay — bun 27
gzm(m,n) aB(m,n) (r,m) €, Qm ( )
which is a vectorized version g° = vec((G°)?) of
G° 2 AT — Qb1 Qpby]". (28)

Differentiating once again w.r.t. B, o)

o A 0°C(B,BY)
(iz(m,n),ix(p,q)) 8B(m,n)8B(pq)
9
- =z A n,m 763: m(B*)Tem/
dB(p-q){ e }

= — el AE, Ae,, — 0

= — A p)Agm)- 29

*

Conversely, differentiating w.r.t. B (0.a)

s 0°C(B,B)

FL’TE(m,n) iz (p.q))

aB('rn,n)aBz(p’q)
0
=——— JA, . _ L T B* T »
3B€ { (n,m) ean( ) [ }
P.q)
=0- emequem
= - eZQmeq‘SWV (30)

Naturally, we also have g* = (¢°)*, H™* = (H°°)* and H*® =
(HO*)*.
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The vectorized update matrix is then given by

6 _ Hoo Ho* -1 go
6* — H*o H** g* .
Obviously, it is sufficient to solve for the first half only. Using

the four-blocks matrix inversion relation, the solution for & is
also given by

€2))

6 _ _[H—oo _ H‘O*(HOO)f].H*O]fl[gO _ HO*(HOO)flg*].
(32)
In order to simplify, we once again take advantage of the ability
to work at B = I. Substituting B = I (and A = TI) for the
Hessian matrices (29),(30), we get

HOO :H** — —P ,
H°" =(H™)" = —Bdiag(Q,.....Qx), (33)
so that (32) reduces into
8§ =[P - APTA"| 1[g° — A" PTg7]. (34)

where A =
notation.

The conjugate gradient method can be used here as well, by
exploiting the sparsity of the complete Hessian matrix (at B =
1), since forany N x N (complex-valued) matrix Y, the product

] [t

_ [ vee (Y + @y - - QNyN]T)
vee (Y* + (@Y, - ‘QN:’IN]H)

can be computed in N? instead of (2N)* (complex-valued)
multiplications.

To summarize, the complex-valued version of the NCG algo-
rithm takes the following form: Given the target-matrices @,,,
n=1,2,..., N and an initial guess of I3, repeat the following
until convergence

1) Update the transformed target-matrices

Bdiag{@,...,Qx} is used as a shorthand

(35)

Q'rLHBQnBH n = 1,2./...[\[.

2) Using (28), construct the gradient matrix G° at B = I

Go = I - [Qlel e Ql\re}\,"]T.

and denote g° = vec((G°)T).
3) Find the correction matrix A, given by

vec(AT) = [P — APTA*| 7 1[g° — A* P (¢°)"]

with A = Bdiag (Ql, e ,Q\> To alleviate the compu-
tational load, the conjugate-gradient method can be used
for this part, exploiting the sparsity of the complex Hes-
sian by the use of (35) (with each @,, substituted by Qn).

4) Apply and accumulate the correction B «—(I + A)B
We emphasize in passing that although the scaling equations
b-Q, b, = 1 (or b7 Q, b, = 1) are inherently built into the
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NCG algorithm above, they are sometimes irrelevant. For ex-
ample, in the CBF application this scaling constraint does not
apply, since a unit-power constraint in the transmission trans-
lates into b%'b, = 1, and a large value of b1 Q, b, leads to a
large power of the desired nth signal at the receiver. Clearly, if
a matrix B solves the SeDJoCo problem with any scaling equa-
tions, then for any diagonal matrix D, D - B also solves SeD-
JoCo, but with possibly different scaling equations. Therefore,
the NCG solution can be used with different scaling constraints,
simply by renormalizing the rows of B as desired.

B. Solution by Structured Joint Congruence (STJOCO)
Transformation

Another approach for solving SeDJoCo is to employ a
modified version of an existing AJD algorithm. To this end,
we propose a method based on modifying Afsari’s LU-based
nonorthogonal matrix joint diagonalization [24]. Our proposed
approach is given the acronym structured joint congruence
(STJOCO) transformation [9].

Our goal in the successive minimization approach is to find a
matrix B which minimizes the magnitudes of the off-diagonal
elements in the nth row and the nth column of the nth trans-
formed target-matrix, BQT,BH . Unlike NCG, we shall ignore
the scaling constraint, using the following criterion for mini-
mization, which is based on a modification of Afsari’s scaling-
invariant cost-function [24]:

N

'](B) = Z ||Q7L - B71 [Dlag<BQnBH) + G"L:I B7H||i‘

n=1

(36)
where G,, = BQ, BY , except for its diagonal elements and the
off-diagonal elements of its n2th row and nth column, which are
all set to zeros , and where || - || denotes the Frobenius norm.
We introduce an LU-based algorithm using triangular Jacobi
matrices for the minimization of .J. The matrix B is updated
iteratively in the following manner:

B—(I+AB=L-U-B (37)

where diag(A) = 0, and A is sought so as to minimize the re-
sulting JJ(B). However, instead of finding (I + A) explicitly,
STJOCO employs an iterative LU-based algorithm, and finds L
and U separately, so as to maximally reduce the resulting .J(B)
at each step. The matrices L and U are N x N unit lower and
upper triangular matrices, respectively. Here a unit triangular
matrix is a triangular matrix with diagonal elements of one. Unit
lower and upper triangular matrices of dimension N x /N form
Lie groups denoted by £{N) and i/ (N), respectively. This fact
simplifies the minimization process significantly, since any ele-
ment of L{N') or (N can be represented as a product of unit
lower or upper triangular Jacobi matrices, namely of lower or
upper triangular matrices with only one nonzero off-diagonal
element in each. Then, the NN=1) _dimensional minimization
problem of finding L or U so as to minimize .J can be decom-
posed into a sequence of one-dimensional problems of finding a
unit lower or upper triangular Jacobi matrix for minimizing .J.
1) The Case of Real-Valued Symmetric Matrices: Let us de-
fine L,, ,(a) as a unit lower triangular Jacobi matrix with pa-
rameter a € R corresponding to the position (m,n),m > n
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and the rest of its off-diagonal entries are zeros. Lm,n(a) 1S an
element of £(N). Similarly, we define a unit upper triangular
Jacobi matrix with parameter a corresponding to the position
(m,n),m < n as U,, ,(a), which is an element of U(N).
Now the minimization problem is a sequence of one-dimen-
sional problems of finding the parameter a of a triangular Jacobi
matrix Ly, ,,(a) or U, ,(a) for minimizing J. We propose a
simple lemma to solve the one-dimensional problem.

Lemma 1: For both Ly, ,(a) with m > n, and Uy, »(a)
with m < n, the respective cost-functions J(L,, (a)) and
J(U m,,,,(a,)) can be expressed as fourth-order polynomials in
a

J(U n(0)) = T (Lpn(a))

= b4(l + bg(l + ()2(12 + bra + by (38)

with coefficients

by =4 Z Q%(n,n)

ke{mn}

by=8 3 Qulnn)Qu(m,n)

ke{m,n}

D>

ke{mmn} p=1
pFEm,n

ba

{2 Q3 (n,n) + 4 Q%(m,n)

2 Qi(n.,m]
b=t Y Qulmm)Qu(nm)

ke{m,n}

N

+4 > Qulrm, p)Qm(n,p)
p=1
pFEmMLT

N N
bo :22 Z Q% (k,p) .

k=1 p=1
p#k

Here Q) (index;,indexs) denotes the (indexy,indexs) ele-
ment of the matrix Q.

Notice that by definition J(L,, ,,(a)) and J(U,, . (a)) are
always nonnegative. For a small @ (i.e., |a| < 1) J is convex
on R and we can alwazs find a global minimum by solving the

cubic polynomial 37((1)) 0 or M =0.Asa
result, the value of the cost -function .J is reduced at each step.
Note that for the minimization of J(L,, »(a)) and J (U ,_n(a)),
a only depends on the elements of the matrices @Q,,, and @,,. The
STJOCO procedure is summarized here.
1) Set B = I and set a threshold ¢.
2) Form=1,...,Nandn =1,...,N (n # m)
« Upper triangular part (m < n):setU =T
—find a such that J(U,, ,(a)) is minimized according
to Lemma 1.
— Update all @, (k € {1,2,....K}) and U by setting

m

Qk — Um:n(a)QkU'rn,n(a')T
U—U, .(a)U.
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 Lower triangular part (m > n):set L =1T
—find a such that J(L,,_(a)) is minimized according to
Lemma 1.
— Update all @,, (k € {1,2,...,K}) and L by setting
Q. — Lm,n(a)QkLm,n(”’)T
L—1L,,,(a)L.
3) Update B by setting B — LUB. If % >,
then go to step 2. Otherwise, the procedure has ended.
We can also use other stopping criteria such as tracking the
changes in B (e.g., ||LU — I||y).

2) The Case of Complex-Valued Hermitian Matrices: We de-
fine Ly, (o - cxp(jo)) as a unit lower triangular Jacobi matrix
with a-cxp(j¢) at the position (m, n) for m > n, the remaining
off-diagonal entries of Ly, (¢ - cxp(jy)) are zero. The param-
eters ¢ and g are real-valued and ¢ > 0. In a similar fashion we
define a unit upper triangular Jacobi matrix U, ,,(« - cxp(j¢))
for m < n. Then, we use a sequence of one dimensional min-
imization problems to replace the w dimensional mini-
mization problem. However, in contrast to the real-valued case,
two parameters a and ¢ have to be determined. We propose
Lemma 2 to solve the complex one-dimensional problem.

Lemma 2: For both Ly, ,,(a - exp(j¢)) with m > n, and
U.in(a - exp(je)) with m < n, the respective cost-functions
can be expressed as fourth-order polynomials in a (with coeffi-
cients depending on ) as follows:

J (L n(a - exp(jp))) = cqat + 03(90)a3 + (:2(<p)a2
+ci(pla+co
JWU s n(a-exp(jp))) = cqat + 03(74,0)({3 + CQ((,O)LZZ

+ei(—p)a+co (39)
with coefficients
ey =4 Z Qi (n,n)
ke{m,n}
cs(p) =8 Y Qi(n,n)-Re{Qx(m,n)cxp(jeo)}
ke{mn}

FE D>

ke{mnn} p=1

p#Em;n

+1Qr(n. p)|* + Re { Q7 (n. m) exp(j2¢) }

ci(p) =4 Z Qr(n,n)-Re{Qr(n, m)cxp(je)}
ke{mn}
N

+4 Y Re{Qu(p,m)Qu(n,p)exp(jo)}

p=1
pFEM.N

N N
=25 Q)

k=1 p=1
p7k

[Qk n,n) + 4 |Qr(m,n)?

The cost-functions J(L,, »(a - exp(je))) and J(U,, »(a -
exp(j¢))) are fourth-order polynomials in ¢ and second-order
polynomials in cos(y). We can compute the algebraic solutions
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Fig. 2. RMS error for IR, NCG, and STJOCO with arbitrary positive-definite real-valued matrices (a) for &’ = N = 3; (b) for K = N = 10.

for dJ(Lm ,l(a exp(jp))) _ 0 and ()J(Lm n{a-exp(ie))) = 0.

However, these expressions are quite com}))hcated Alterna-
tively, we can employ numerical nonlinear convex optimization
methods (e.g., the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
quasi-Newton method [25] with cubic line search) to find
the optimal point (a, @) which minimizes the cost-function
J(Ly,n(a - exp(je))), since J is convex for small ¢ and
p (e, 0 < a < 1 and |y ). In our case these two
methods reach the same optimal point for (a, ). Lemma 2
shows us that, as in the real-valued case, the minimizations of
J (L n(a-exp(je))) and J(U,,. .. (a-exp(je))) only depends
on the elements of the matrices @,,, and Q,,.

The STIOCO procedure for the complex-valued case is the
same as for the real-valued case, except for step 2. In step 2 we
find both a and ¢ for the minimization of J( L., (o -exp(j¢)))
or J(U,,..(a - exp(jp))) according to Lemma 2.

IV. SIMULATION RESULTS

In this section we present the results of three different simula-
tion experiments. In the first subsection we demonstrate typical
convergence patterns of our two proposed iterative algorithms
(comparing also to an existing iterative algorithm) in solving
the generic SeDJoCo problem with random target-matrices. We
then turn to demonstrate the resulting performance in the con-
text of the two prominent applications mentioned above: CBF in
a MIMO channel in Section IV-B, and BSS of complex-valued
sources in Section IV-C.

A. Convergence Behavior

We evaluate the convergence of the proposed NCG and
STJOCO solutions of the SeDJoCo problem in the terms of
the logarithm of the residual root-mean-squares (RMS) error
versus the iteration number. The target-matrices are arbitrary,
randomly generated, symmetric, positive-definite, real-valued
matrices (we obtain very similar results, not presented in here,
for complex-valued matrices). The convergence is compared
to the iterative relaxation (IR) algorithm proposed in [12], but
not to the solution proposed in [11], since the latter does not

2753

—6— IR
——— NCG

—&— sTJoCO|]

-5
S
@ =10 F -
-t 10
=
4 :
g =15 b
o
w
i
\6 _20 ...............
=3
K]

-25 :

35 i i i i i i i i i i i

1 2 5 10 20 50 100 200 500 10002000 500010000
Number of Iterations
(b)

converge, in general, for arbitrary target-matrices (but only for
“nearly jointly diagonalizable” matrices). For all three solutions
we initialize the sought matrix I3 to the identity matrix (i.e.,
B = 1), except for the NCG algorithm with large values of N,
because as N grows, the NCG algorithm becomes more sensi-
tive to the initialization. Therefore, for NCG with N = 10 we
initialize I3 to the output of the IR algorithm obtained as soon
as the RMS error falls below 10~° (and, for fair comparison,
we continue the iteration count from the respective IR iteration
number).

Fig. 2(a) and (b) shows typical convergence patterns of the
three iterative algorithms (IR, NCG, and STJIOCO) for several
independent trials. (Note that the numbers on the y axis are log
of'the RMS error, and are not given in dB—the lower “saturation
line” reflects an average residual error of about 10~ 3°, which
means that a convergence pattern reaching that line attains the
exact solution, which zeros-out the respective matrix-elements
up to the machine-accuracy.)

It is evident that the NCG algorithm significantly accelerates
the convergence: For N = 3, in 100 independent trials the me-
dian number of iterations until convergence to an exact solu-
tion3 was 42 for IR, 13 for NCG, and 635 for STJOCO. For
N = 10, that number was 127 for IR and 23 for NCG. As evi-
dent from Fig. 2(b), STIOCO did not converge to a machine-ac-
curacy solution for N = 10 (with the maximal tested number
of 10 000 iterations), but still attained very reasonable solutions,
with small residual errors (way below 105 after more than 500
iterations)—which are probably local minima of its respective
cost-function.

The accelerated convergence of NCG is obtained at the cost
of only a moderate increase in the computational complexity
per iteration. The complexity per iteration is O(N*) for the IR
algorithm and approximately O(N3) for the NCG algorithm.
The STJOCO algorithm has a comparable computational com-
plexity O(N*) per iteration, but occasionally converges to local
nonzero minima of the cost-function J(B), which are not exact

3We define “convergence to an exact solution” as the state where the residual
RMS error drops to the machine-accuracy, around 1039,
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Fig. 3. Achievable sum rate comparison (a) for A+ = Mr, = K = 2; (b) for Mr = Mg, = K = 3;(c) for Mt = My, = K = 4.

solutions of SeDJoCo. As we shall see immediately, in the con-
text of CBF this apparent disadvantage of STJOCO is gener-
ally compensated for by larger values of the diagonal terms in
the “drilled” matrices, which implies a higher effective SINR,
partly compensating for the residual MUI.

B. Achievable Sum Rate of Multiuser MIMO Application

As mentioned above, one motivation for considering the
SeDJoCo problem is the application for “closed-form” coordi-
nated beamforming in multiuser MIMO broadcast channels. In
this subsection, we evaluate the performance of STJOCO and
NCG in terms of the achievable sum rate of a multiuser MIMO
system. Like in the previous experiment, we also compare our
results to the IR solution [12]. In addition, we compare them
to regularized block diagonalization (RBD) linear precoding
[26], since RBD can still be applied under the condition that
the system has a smaller number of transmit antennas Mt than
the total number of receive antennas Mp. In the simulations,
we have Mt = K and transmit one data stream to each
user. For simplicity, an equal power allocation is employed
among the users. The achievable sum rate is calculated as
R = Zf\:l log,(1 + SINR;), where SINR; indicates the
signal-to-interference-plus-noise ratio at the user 2. Dirty paper
coding (DPC) has been shown to achieve the capacity region
of Gaussian MIMO broadcast channels in [27]. Therefore, we
use the achievable sum rate of DPC as a benchmark.

Fig. 3(a) shows the comparisons of the iterative coordinated
beamforming (CBF) algorithms [17], the proposed STIOCO-
and NCG-based, as well as IR-based closed-form CBF algo-
rithms, when the system has two transmit antennas with two
users and each user is equipped with two receive antennas. It
is observed that the STJOCO based closed-form CBF almost
achieves the same sum rate performance as the iterative CBF
and performs better than NCG-based and IR-based closed-form
CBF. After rescaling each column of the combined transmit
beamforming matrix B to have unit norm, the STIOCO so-
lution tends to yield larger diagonal elements on the “drilled”
rows and columns of the transformed target-matrices (compared
to the IR and NCG solutions). The larger magnitude of these di-
agonal elements results in an enhanced SINR, thereby leading to
higher achievable sum rates, even in cases where STJOCO does
not attain an exact solution and some residual MUI is present.
This has been consistently observed in our simulations.

In Fig. 3(b) and (c), the comparisons of the iterative CBF al-
gorithm [17], the proposed STJOCO- and NCG- and IR-based
closed-form CBF algorithms, the suboptimal coordinated BD
algorithm [16], and RBD precoding [26] are presented. We can
see that the STIOCO-based closed-form CBF performs much
better than the NCG- and the IR-based closed-form CBF algo-
rithms as well as the suboptimal coordinated BD, by achieving
almost the same performance as the iterative CBF. The per-
formance of RBD is heavily degraded when the system has a
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Fig. 4. Empirical mean ISR values and overall performance index (all in inverse dB). In each subplot the left, middle, and right bars show (respectively) the result

of nonorthogonal AJD, orthogonal AJD, and HEAD.

much larger number of total receive antennas than the number
of transmit antennas.

C. BSS of Complex-Valued Stationary Sources

ML separation of real-valued stationary Gaussian sources
has been addressed in [11]-[13]. However, although com-
plex-valued BSS has been considered extensively in the
literature (e.g., [28]-[30]), ML separation has (to the best of
our knowledge) only been addressed for the case of sources
with independent, identically distributed (i.i.d.) time-structure
(based on the sources’ non-Gaussianity and/or noncircularity
[28]-[30]), but not for (Gaussian) sources with temporal-do-
main or frequency-domain diversity. Although the extension of
ML estimation from the real-valued to the complex-valued case
is not straightforward in general (especially for noncircular
sources), for circular Gaussian sources the basic principles
are generally maintained, since the statistical information is
maintained in the ordinary correlation matrices.

Therefore, in this subsection we demonstrate the separation
of complex-valued circular stationary Gaussian sources, via a
straightforward extension of the results in [13] (originally de-
rived for the real-valued case), exploiting the complex-valued
NCG algorithm so as to outperform “ordinary” complex-valued
AJD.

Our experiment consists of a mixture of K = 4 complex-
Gaussian sources, which are all generated as third-order moving
average (MA) sources, each with three spectral zeros (in the
Z-plane) taken from a pool of four zeros: z; = 0.4e/5, 2z =
0.5¢7 %, z3 = 0.6e/3 = —0.6 and z; = 0.7¢/ 5. The kth
source was generated as

sklt] = wi[t] + Ry [Nwe[t — 1] + hg [2]wi [t — 2]
+he[3lwe[t — 3], k=1,2,3,4 (40)

fort = 1,...7T, where

Hy(2) = 1+ h (127" + hyf2]2 72
4

II (1—2="") @b

=1
£k
such that b [0](= 1), h[1], ki [2], hi[3] are the (evidently com-
plex-valued) MA coefficients of the kth source (such that H.(z)
has all the four zeros defined above, except for the kth zero). The
driving noise processes were all mutually independent, white
circular complex-valued Gaussian noise processes. All sources
were normalized to have unit power.
We have simulated 250 independent trials according to (1).
The elements of the 4 X 4 mixing matrix have been drawn inde-
pendently at each trial from an i.i.d. circular complex Gaussian

+hi[3]27% =
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distribution. We have used an observation length of 77 = 100
samples. The four target-matrices have been generated in each
trial as

Q,=XxC'x n=1,23.4 (42)
where X 2 [g[l],....z[I]] isan N x T = 4 x 100
matrix containing all the observed mixtures, and where
C., E[s,sH] is the covariance matrix of the nth source,
Sn $n[1],. ., 8a[T))F, n = 1,2,3,4. The covariance
matrices are assumed known (hence we work in a semiblind
scenario), and are actually band-Toeplitz matrices, which
are easily deduced from the MA structure of each source.
These target-matrices are the complex-valued version of the
target-matrices used for ML estimation in the real-valued
case (see [13]). We present separation results obtained from
applying to these target-matrices:

1) Ordinary nonorthogonal joint diagonalization (using the

AC/DC algorithm [3]);
2) Ordinary orthogonal joint diagonalization (using [1]); and
3) SeDJoCo (using NCG, which is guaranteed to attain the
ML estimate in this case, via its exact solution of SeD-
JoCo—unlike STJOCO, which might converge to a false
solution).

In Fig. 4 we present the resulting mean interference-to—source
ratio (ISR), defined in the form of an V x N matrix, whose
(m, n)th element (denoted ISR,, ) is the averaged square
absolute value of the (m,n)th element (normalized by the
(m,m)th element) of the overall mixing-demixing ma-
tix M 2 BA (where B is the estimated separation
matrix and A is the true mixing matrix). The values are
shown in the figure in “inverse dB” values, showing each
—10log1g(ISRm »n) (m # n) in the (m,n)th subplot. In
addition, we show in the (1, 1) (upper left) subplot the averaged
overall “performance-index” (also in “inverse dB”), which in
our case (of equal-power sources with no scaling ambiguity)
reduces to the mean of all ISRs.

The advantage of SeDJoCo over ordinary AJD for these
target-matrices is evident in this example (for these ISR
values). It is important to stress, however, that generally SeD-
JoCo cannot compete as a general AJD tool for other popular
sets of target-matrices (e.g., empirical correlation matrices at
different lags, as in SOBI [31])—its advantages in the BSS
context are restricted to the specific sets of target-matrices used
in the context of ML.

> >

V. CONCLUSION

We have presented a specially structured AJD problem,
which, given a set of N symmetric (in RV *¥) or Hermitian
(in CY*N) target-matrices Q, . .., @ 5, seeks a “sequentially
drilled” joint congruence transformation thereof. More ex-
plicitly, the SeDJoCo problem aims to find a matrix B, such
that each transformed matrix BQ, B (n = 1,2,...,N) has
all-zeros off-diagonal elements in its nth row and column.
Thus, the transformed matrices exhibit a “sequential drilling”
pattern, as illustrated in Fig. 1.

We have shown that the SeDJoCo problem arises in (at least)
two different contexts of practical interest: One is maximum
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likelihood source separation (based on second-order statistics),
and the other is coordinated beamforming for multiuser MIMO
communications systems. We have also shown several alterna-
tive formulations of SeDJoCo, each providing a different per-
spective on the problem, and have proven that a solution always
exists if all the target-matrices are positive-definite.

We have proposed two iterative solutions: One (termed NCG)
is bases on Newton-type iterations, conveniently employing a
conjugate-gradient solution if desired; and the other one (termed
STJOCO) is based on a modification of an existing AJD algo-
rithm employing LU decompositions. Upon convergence, NCG
is guaranteed to yield an exact solution of SeDJoCo—whereas
STJOCO may converge to local nonzero minima of its cost-
function, which are not associated with an exact solution. How-
ever, in the context of CBF the STJOCO solutions tend to yield
significantly stronger diagonal terms in the respective “drilled”
columns of the target-matrices, thereby attaining better overall
SINRs. The performance of both algorithms in both the CBF and
complex-BSS contexts has been demonstrated and compared in
several simulation experiments.
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