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Abstract

The paper presents a classification and analysis of the results achieved using fuzzy logic to model com-
plex traffic and transportation processes. Fuzzy logic is shown to be a very promising mathematical
approach to modeling traffic and transportation processes characterized by subjectivity, ambiguity, uncer-
tainty and imprecision. The basic premises of fuzzy logic systems are presented as well as a detailed ana-
lysis of fuzzy logic systems developed to solve various traffic and transportation engineering problems.
Emphasis is put on the importance of fuzzy logic systems as universal approximators in solving traffic and
transportation problems. Possibilities are shown regarding the further application of fuzzy logic in this
field. © 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the past several decades a variety of deterministic and/or stochastic models have been
developed to solve complex traffic and transportation engineering problems. These mathematical
models use different formulae and equations to solve such problems. During their education and
training, engineers are most often directed to the use of exclusively objective knowledge (formulae
and equations). However, when solving real-life engineering problems, linguistic information is
often encountered that is frequently hard to quantify using ‘classical’ mathematical techniques.
This linguistic information represents subjective knowledge. Since we are unable to quantify some
linguistic information, different assumptions are made in the models. Through the assumptions
made by the analyst when forming the mathematical model, the linguistic information is very
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often ignored. On the other hand, a wide range of traffic and transportation engineering parameters
are characterized by uncertainty, subjectivity, imprecision and ambiguity. Human operators,
dispatchers, drivers and passengers use this subjective knowledge or linguistic information on a
daily basis when making decisions. When we are behind the wheel, backing out of a parking
place, we understand the passenger sitting next to us quite well when he says to ‘wait a bit for
this speeding car to pass’. We would certainly not be able to quickly process the information
that ‘the car is going 32.5 mph and is 52.7 meters away from our car’. In order to properly use
such information we would have to write formulae, make calculations and reach a decision about
when to finally leave the parking spot. We also understand quite well when told not to use a
certain route since ‘there is considerable congestion on it’. Most drivers did not attend a
course on ‘Traffic Flow Theory’” and ‘describing’ congestion using numerical values related to
traffic flow parameters would be of no use. These simple examples show that in certain situa-
tions we accept linguistic information much more easily than numerical information. In the
same vein, we are perfectly capable of accepting approximate numerical values and making
decisions based on them. In a great number of cases we use approximate numerical values
exclusively. For example, when subjectively estimating travel time between two nodes in a net-
work we use expressions of the type ‘travel time is around thirty minutes’. Not a single driver will
ever say that travel time between two nodes is ‘17 minutes and 26 seconds’. The assertion that
travel time is ‘approximately 20 minutes’ results from a subjective estimation, i.e. our subjective
feeling. This assertion is neither the result of some measurement, nor is it the execution of the
random variable that represents travel time. If we were to record travel time between two nodes
over a longer period of time, we would receive a series of different values, each one being an
execution of the random variable—travel time. When we subjectively estimate travel time we do
not have numerical information about probability density functions, rather our own estimate
based on experience and intuition. It should be emphasized that the subjective estimation of dif-
ferent traffic parameters differs from dispatcher to dispatcher, driver to driver, and passenger to
passenger.

When solving real-life traffic and transportation problems we should not use only objective
knowledge (formulae and equations) or only subjective knowledge (linguistic information). We
simply cannot and should not ignore the existence of linguistic information, i.e. subjective
knowledge. Fuzzy logic is an extremely suitable concept with which to combine subjective
knowledge and objective knowledge.

The primary goal of this review paper is to acquaint the reader with the basic elements of fuzzy
set theory, fuzzy logic, fuzzy logic systems, the relationship between fuzzy logic and probability
theory, applications of fuzzy logic to date in traffic and transportation engineering, and to indi-
cate the directions for future research in this area.

The paper is organized as follows. The basic assumptions of fuzzy set theory are presented in
Section 2. Section 2 also deals with the relation between fuzzy set theory and probability theory.
The characteristics of fuzzy logic systems are presented in Section 3. Section 3 also concerns
fuzzy logic systems for transportation engineering, including fuzzy transportation planning
models, transportation investment projects, traffic control models, vehicle routing and schedul-
ing, accident analysis and prevention, level of service considerations, air transportation and
river transportation applications. Section 4 contains the final remarks and directions for future
research.
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2. Basic assumptions of fuzzy set theory

More than 30 years have passed since Zadeh’s paper appeared (1965), introducing the concept
of a fuzzy set. Ample scientific literature has been written on fuzzy sets and fuzzy logic, and a
large number of commercial products based primarily on the principles of fuzzy logic has
appeared on the market.

In the classic theory of sets, very precise bounds separate the elements that belong to a certain
set from the elements outside the set. In other words, it is quite easy to determine whether an
element belongs to a set or not. For example, if we denote by A the set of stoplight intersections
in a city, we conclude that every intersection under observation belongs to set A if it has a stop-
light. Element x’s membership in set A is described in the classic theory of sets by the membership
function u 4(x), as follows:

1,if and only if X is a member of A

palx) = { 0, if and only if x is not a member of A

Many sets encountered in reality do not have precisely defined bounds that separate the elements
within the set from those outside the set. Thus, it might be said that a certain stoplight has a
‘long’ waiting time. If we denote by A the set of ‘long waiting time at a stoplight’, the question
logically arises as to the bounds of such a defined set. Does a waiting time of 25 s belong to this
set? What about 15, 37 or 60 s? All these times, depending on the context and perceptions could
belong to the set called ‘long waiting time at a stoplight’. Other members of this set could equal
18, 32, 55 s, etc. On the other hand, we intuitively feel that a waiting time of 60 s belongs to the
set called ‘long waiting time at a stoplight’ ‘more’ or ‘stronger’ than a waiting time of 18 seconds.
In other words, there is more truth in the statement that a waiting time of 60 s is a ‘long waiting
time at a stoplight’ than in the statement that a waiting time of 18 seconds is a ‘long waiting time
at a stoplight’. Within the context of this simple example we can fully appreciate Kosko’s (1993)
observation that ‘everything is a matter of degree’. All waiting times at a stoplight can be treated
as long. If we introduce a set called ‘short waiting time at a stoplight’, we note that, depending on
the context and perceptions, different waiting times at a stoplight can also be treated as short.
Finally, we can ask ourselves whether a waiting time of 15 s is long, short or perhaps medium.
The answer is very simple. A waiting time of 15 s is long, short and medium, all at the same time.
In other words, a waiting time of 15 s belongs to the sets ‘long waiting time’, ‘medium waiting
time’ and ‘short waiting time’ with different grades of membership. The membership function for
fuzzy sets can take any value from the closed interval [0, 1]. Fuzzy set A is defined as the set of
ordered pairs A = {X,u4(x)}, where u4(x) is the grade of membership of element x in set A. The
greater u4(x), the greater the truth of the statement that element x belongs to set A.

Up until the middle of this century, probability theory was considered the only theory capable
of explaining uncertainty phenomena. During the past several decades, alternative theories
appeared that also try to explain uncertainty phenomena, including the most important: fuzzy
sets (Zadeh, 1965, 1996; Klir and Folger, 1988; Self, 1990; Zimmermann, 1991; Kosko, 1992b,
1994; Bezdek, 1993; Tyler, 1993; Bezdek and Pal, 1992), evidence theory (Shafer, 1976), imprecise
probabilities (Kruse and Meyer, 1987; Waley, 1991), possibility theory (Dubois and Prade, 1988),
rough sets (Pawlak, 1991)), and fuzzy measures (Wang and Klir, 1992)). A number of researchers
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from the field of probability theory have strongly opposed the new theories, fuzzy set theory in
particular (Lindley, 1994). I firmly believe that both theories should exist side by side, that it is
possible to combine them, and that both have a very important role in explaining complex
transportation processes. Bezdek (1994) completes his brilliant paper with the statement that
‘fuzzy memberships. . . represent similarities of objects to imprecisely defined properties’, and that
probability ‘conveys information about relative frequencies’. When solving different traffic and
transportation problems, Bayes’s formula will still be used, and we will continue to use normal,
exponential or some other probability density function to describe certain laws. But we must also
be tolerant and accept the fact that some other phenomena are properly described using fuzzy
membership functions.

3. Fuzzy logic systems for transportation engineering

Basic results linked to the development of fuzzy logic date from Zadeh (1973) and Mamdani
and Assilian (1975). Introducing a concept he called ‘Approximate Reasoning’, Zadeh success-
fully showed that vague logical statements enable the formation of algorithms that can use vague
data to derive vague inferences. Zadeh assumed his approach would be beneficial above all in the
study of complex humanistic systems. Realizing that Zadeh’s approach could be successfully
applied to industrial plant controllers, Mamdani and Assilian (1975) applied this method to
control a pilot-scale steam engine. They used fuzzy logic in order to express linguistic rules. Pio-
neer papers in the field of fuzzy controllers include Mamdani (1974), Kickert and van Nauta
Lemke (1976), Ostergard (1976), and Tong (1976). Tong (1977) made a control engineering
review of fuzzy systems. Regarding the application of fuzzy logic in engineering, the tutorial given
by Mendel (1995) is of utmost importance, as is the recently published book by Ross (1995).

What is a fuzzy logic system? Mendel (1995) explains the concept of a fuzzy logic system-a
(FLS) as follows: ‘In general a FLS is a nonlinear mapping of an input data (feature) vector into
a scalar output (the vector output case decomposes into a collection of independent multi-input/
single-output systems)’. We would also note that a fuzzy logic system maps (most often crisp)
inputs into crisp outputs.

The basic elements of every fuzzy logic system are rules, fuzzifier, inference engine and defuz-
zifier (Fig. 1).

Input data are most often crisp values. The task of the fuzzifier is to map crisp numbers into
fuzzy sets (cases are also encountered where inputs are fuzzy variables described by fuzzy mem-
bership functions). Models based on fuzzy logic consist of ‘If~Then’ rules. A typical ‘If~Then’
rule would be:

—» Fuzzifier Defuzzifier—>>

A
Rules » Inference

Fig. 1. Fuzzy logic system.
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If the ratio between the flow intensity and capacity of an arterial road is SMALL
Then vehicle speed in the flow is BIG

The fact following ‘If” is called a premise or hypothesis or antecedent. Based on this fact we can
infer another fact that is called a conclusion or consequent (the fact following ‘Then’). A set of a
large number of rules of the type:

If premise
Then conclusion is called a fuzzy rule base.

We would note that in classical expert systems, rules are derived exclusively from human
experts. In fuzzy rule-based systems, the rule base is formed with the assistance of human experts;
recently, numerical data has been used as well as through a combination of numerical data-
human experts. An interesting case appears when a combination of numerical information
obtained from measurements and linguistic information obtained from human experts is used to
form the fuzzy rule base. In this case, rules are extracted from numerical data in the first step. In
the next step this fuzzy rule base can (but need not) be supplemented with the rules collected from
human experts. A fuzzy rule base obtained from numerical data can be used to solve the same
type of problem solved by artificial neural networks. The inference engine of the fuzzy logic maps
fuzzy sets onto fuzzy sets. A large number of different inferential procedures are found in the
literature. In most papers and practical engineering applications, minimum inference or product
inference is used. During defuzzification, one value is chosen for the output variable. The litera-
ture also contains a large number of different defuzzification procedures. The final value chosen is
most often either the value corresponding to the highest grade of membership or the coordinate
of the center of gravity.

Drivers, passengers or dispatchers make decisions about route choice, mode of transportation,
most suitable departure time or dispatching trucks. In each case the decision-maker is a human.
The environment in which a human expert (human controller) makes his decisions is most often
very complicated, making it extremely hard to formulate a suitable mathematical model. Thus,
the development of fuzzy logic systems seems justified in such situations. Special importance
should be given to the fact that Wang and Mendel (1992) showed that a fuzzy logic system
(representing a nonlinear mapping) is capable of approximating any real continuous function to
arbitrary accuracy.

Pappis and Mamdani (1977) published the first paper in which a practical traffic and trans-
portation problem was solved using fuzzy logic. In the mid- and late-1980s, a group of Japanese
authors made a significant contribution to fuzzy set theory applications in traffic and transpor-
tation. Nakatsuyama et al. (1983), Sugeno and Nishida (1985) and particularly Sasaki and Akiyama
(1986, 1987, 1988) solved complex traffic and transportation problems indicating the great
potential of using fuzzy set theory techniques. At the end of the 1980s and beginning of the 1990s,
the fuzzy set theory in traffic and transportation became extensively used at American universities.
The pioneering work of the research team of the University of Delaware deserves special attention,
headed by Professor Shinya Kikuchi (Chakroborthy, 1990; Chakroborthy and Kikuchi, 1990;
Perincherry, 1990; Perincherry and Kikuchi, 1990; Teodorovi¢ and Kikuchi, 1990, 1991; Kikuchi
et al., 1991, 1993; Kikuchi, 1992). In the early and mid-1990s, interest in fuzzy logic applications
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in traffic and transportation increased in other world universities. Different traffic and transpor-
tation problems successfully solved using fuzzy set theory techniques were presented in the works
of Chen et al. (1990), Tzeng and Teng (1993), Lotan and Koutsopoulos (1993a,b), Xu and Chan,
1993a,b), Teodorovic and Babi¢ (1993), Akiyama and Shao (1993), Chang and Shyu (1993),
Chanas et al. (1993), Teodorovi¢ and Babic (1993), Akiyama amd Yamanishi (1993), Deb (1993),
Nanda and Kikuchi (1993), Perkinson (1994), Hsiao et al. (1994), Vukadinovi¢ and Teodorovi¢
(1994), Teodorovic et al. (1994), Teodorovi¢ (1994), Teodorovi¢c and Kali¢ (1995), Milosavljevi¢
et al. (1996), Teodorovi¢ and Pavkovi¢ (1996) and Tzeng et al. (1996).

Let us try to explain why fuzzy logic systems were developed for transportation engineering.
Great many of the problems in the field of transportation planning and traffic control are often ill
defined, ambiguous and vague. As already mentioned, many traffic and transportation problems,
phenomena and parameters are characterized by subjectivity. It is hard to disregard the fact that
subjective judgment is present in problems dealing with the choice of route, mode of transporta-
tion and carrier, a driver’s perceptions and reactions, an established level of service, defining
safety standards, defining criteria to rank alternative transportation plans and projects, etc. It
should also be emphasized that both deterministic and stochastic models that have been devel-
oped to solve a variety of complex traffic and transportation problems are characterized by
mathematics based on binary logic. Without denying the importance of binary logic as the basis
for the development of many scientific disciplines and technology leading to the prosperity of
man’s society, we must note that it cannot deal effectively with passengers’, dispatchers’ or dri-
vers’ feelings of uncertainty, vagueness and ambiguity. Since the fuzzy set theory recognizes the
vague boundary that exists in some sets, different fuzzy set theory techniques need to be used in
order to properly model traffic and transportation problems characterized by ambiguity, sub-
jectivity and uncertainty.

3.1. Trip generation

Trip generation problem was solved using fuzzy logic byKali¢ and Teodorovic¢ (1997b). Fuzzy
rule base was generated by learning from numerical examples. For this purpose, the procedure
proposed by Wang and Mendel (1992a) was used. Firstly, the available set of data was divided
into two subsets: the first was used for generation of the fuzzy rule base, and the other was
intended to be a control data subset. After the fuzzy rule base was created, the obtained fuzzy
system was tested on both subsets of data. The estimate of the number of trips for the subsets was
also determined using artificial neural networks, as well as by multiple linear regression. The
training of the neural network was done using simulated annealing technique. After the testing,
the fuzzy logic approach proved to give the closest estimate of the actual number of trips gener-
ated in a given area.

One of the most important problems in the field of transportation planning is the problem of
origin—destination estimation from link counts. In order to decrease the cost of passenger surveys,
traffic count are undertaken on certain links of the transportation network. In the next phase an
origin—destination matrix is estimated from the link counts. In the last two decades a greater
number of models have been developed for origin—destination estimation from link counts. Xu
and Chan (1993a,b) were the first to use the fuzzy set theory techniques when analyzing the pro-
blems arising from the poor quality of link count data. As known, traffic counts are often subject
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to errors. Xu and Chan (1993a,b) particularly pointed out the problem of traffic counts in countries
such as China in which mixed urban traffic flow with heavy bicycle volume is common. In such
situations the heavy bicycle volume also makes precise vehicular counts very difficult. Xu and
Chan (1993a,b) estimated an origin—destination matrix with fuzzy weights. They based their
method on that of Chan et al. (1986) which was developed for a non-fuzzy case.

3.2. Trip distribution

Trip distribution problem was also solved using fuzzy logic by Kali¢ and Teodorovic¢ (1996,
1997a). Like in the case of trip generation problem, Kali¢ and Teodorovic (1996) generated fuzzy
rule base by learning from numerical examples. Again, Wang and Mendel (1992a) procedure for
generation of the fuzzy rule base was applied, and the obtained fuzzy system was tested. The aim
of testing was to estimate the number of air passengers travelling between major industrial cities
and given regions. In comparison to non-fuzzy methods, the fuzzy logic approach gave the best
estimate of the actual number of observed air passengers. In subsequent research, Kalic and
Teodorovic (1997b) improved previous results by combining genetic algorithms with fuzzy logic:
fuzzy rule base generated by learning from numerical examples was randomly changed a certain
number of times, thus producing the pool of fuzzy rule bases, each of which represented one
individual in the initial population. The value of the fitness function was taken to the mean
square deviation between the actual and fuzzy-estimated number of trips. By using the common
genetic operators (reproduction, crossover, and mutation), several generations of fuzzy rule bases
were obtained. In this way, the final fuzzy rule base was created, based on which the best estimate
of the actual number of trips was acquired.

3.3. Modal split

Teodorovi¢ and Kali¢ (1996) used fuzzy logic to solve the mode choice problem. The authors
illustrated the possibilities of fuzzy logic in solving the mode choice problem using a hypothetical
numerical example. The fuzzy rule base was generated using available numerical data on the dif-
ferences between the travel times and travel costs of competitive modes. In other words, learning
from examples generated the fuzzy rule base. The technique proposed by Wang and Mendel
(1992a) was used to generate the fuzzy rule base by learning from examples. There was extremely
good agreement between the results obtained using fuzzy logic and real results.

Quadrado and Quadrado (1996) used fuzzy logic to determine the accessibility of different
transportation modes in the Lisbon Metropolitan Area. The authors first pointed out that all
variables used in the ‘classical’ way of calculating accessibility are characterized by fuzziness. A
fuzzy rule base was developed for each mode of transportation. Accessibility was shown as a
percentage between 0 and 100%. One of the typical rules to calculate accessibility reads:

If the number of people involved in movements is VERY BIG
and the time used in those movements is VERY SMALL
Then the accessibility is HYPER BIG

The authors thus put an end to the tradition of treating accessibility as a deterministic concept
and offered the possibility of a better representation of accessibility.
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3.4. Route choice

In the past four decades, the route choice problem, along with the traffic assignment problem,
has been considered by a large number of authors worldwide. In addition to the large number of
prominent works devoted to the problem of traffic assignment, mention should also be made of
the books by Florian (1976) and Sheffi (1985). Teodorovi¢ and Kikuchi (1990) were first to model
the complex route choice problem using fuzzy logic. They used fuzzy inference techniques to
study the binary route choice problem. Akiyama et al. (1993) also developed a model for route
choice behavior based on the fuzzy reasoning approach. Lotan and Koutsopoulos (1993a,b)
developed models for route choice behavior in the presence of information based on concepts
from approximate reasoning and fuzzy control. The research of Lotan and Koutsopoulos
(1993a,b) is particularly important within the context of ongoing research in Intelligent Vehicle
Highway Systems (IVHS). Teodorovi¢ and Kali¢ (1995) developed an approximate reasoning
algorithm to solve the route choice problem in air transportation. Akiyama and Tsuboi (1996)
studied route choice behavior by multi-stage fuzzy reasoning.

The following discussion will present the results of Teodorovi¢ and Kikuchi’s (1990) work. Let
us consider the simplest case when the user is to choose one of two possible paths between the
origin and destination of movement. Perceived travel time is very often ‘fuzzy’ and can be treated
as a fuzzy set. In other words, when subjectively estimating travel time between two points,
expressions are used such as ‘it takes about 20 minutes from point C to point D’, ‘you’ll get there
in about half an hour’, etc. Teodorovi¢ and Kikuchi (1990) assumed that users choose their paths
based on a comparison of the characteristics of alternative paths. Despite the fact that travel time
is a measurable parameter, a driver’s notion of travel time when he/she makes the route choice is
often fuzzy. Thus, driver’s preference for a route is based on a comparison of two fuzzy numbers.
As a result, his/her certainty of choosing a route is also not crisp. The Teodorovi¢ and Kikuchi
(1990) model can represent the decision process under two layers of uncertainty: driver’s judg-
ment of time and driver’s preference.

Let us denote by TA and TB, respectively, fuzzy sets representing estimated travel time (by one
user) along path A and path B. When comparing travel times along paths A and B, the user
might estimate, for example, that travel time along path A, TA is ‘much shorter than TB’,
‘shorter than TB’, ‘equal to TB’, ‘longer than TB’, and ‘much longer than TB’. These fuzzy sets
are denoted in the following manner: MLTB—'much less than TB’, LTB—'less than TB’, GTB—
‘greater than TB’, MGTB—'much greater than TB’.

Let us assume that a user has a specific preference regarding the choice of each of the possible
paths through the network. This preference can be ‘stronger’ or ‘weaker’. Let us introduce into
the discussion a preference index that can take values on the interval from 0 to 1. When the user
has an absolute preference for a specific path we consider the preference index to be equal to 1.
This preference index decreases along with a decrease in the strength of the preference. Fuzzy sets
such as ‘very strong’, ‘strong’, ‘medium’ can express the strength of the user’s preference, ‘weak’
and ‘very weak’.Teodorovi¢ and Kikuchi (1990) proposed the following rules of approximate
reasoning to establish the transport network user’s preference strength:

If TA=MLTB then PA=VERY STRONG
If TA=LTB then PA=STRONG
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If TA=TB then PA=MEDIUM
If TA=GTB then PA=WEAK
If TA=MGTB then PA=VERY WEAK

where PA is the preference index associated with path A.

An approximate reasoning algorithm was used to establish the preference strength for every
network user. Once the preference index has been determined for each network user, an algorithm
must be developed that will determine the number of users along individual links. Such algo-
rithms are known in the literature as network ‘loading’ algorithms. Teodorovi¢ and Kikuchi
(1990) developed a network ‘loading’ algorithm in which the basic input data are the preference
indexes of individual network users. Teodorovie and Kikuchi assumed that the perceived travel
times are distributed around a previously measured most likely travel time. The ‘loading’ algo-
rithm is based on the concept of hybrid numbers. [Kaufmann and Gupta (1985) introduced the
concept of a hybrid number representing the ‘combination’ of a fuzzy number and a random
variable].

Lotan and Koutsopoulos (1993a,b) also studied route choice behavior problem. They indicated
the great importance of studying this problem, especially in the light of intensive research con-
nected with the development of Intelligent Vehicle Highway Systems. When developing their
approximate reasoning algorithm Lotan and Koutsopoulos used rules dealing with perceived
travel times (or other measures of attractiveness) and rules dealing with real-time traffic infor-
mation. Real-time traffic information on current traffic conditions was primarily used to indicate
how default behavior changes. The attractiveness of different alternatives was measured on a
scale ranging from —1 to 1. A value of —1 indicates a complete aversion towards taking the
alternative, while a value of +1 corresponds to an assured choice of the alternative. Once the
initial set of rules was established, in order to improve the model it was necessary to test, update
and expand the rules.

Continuing the research of Lotan and Koutsopoulos (1993a,b), Vythoulkas and Koutsopoulos
(1994) studied the modeling of discrete choice behavior using techniques and concepts from fuzzy
set theory and neural networks. The authors used the neuro-fuzzy approach in order to calibrate
the proposed model. They assumed that the membership functions of the fuzzy sets that appear in
different rules are bell-shaped (gaussian functions). The authors presented the problem of rule
generation as an integer programming optimization problem. Vythoulkas and Koutsopoulos
(1994) used the fuzzy neural network procedure proposed by Lin and Lee (1991) to optimize the
parameters of the membership functions, as well as to adjust the rule weights. The developed
neural network was trained using an adaptation of the generalized delta rule. Two sets of data
were used in order to test the proposed approach. The first group represented stated preference
data collected by Lotan and Koutsopoulos (1993b) referring to the choice of one out of three
alternative routes in Boston in the presence of information. The second group consisted of
revealed preference data of the choice between rail and car for intercity travel. Data were
obtained by a population survey in the city of Nijmegen in The Netherlands. The authors made a
number of experiments with different combinations of input variables and finally concluded that
the most important variables for mode choice decision are travel time, travel cost and rail access/
egress time. Rule premises used differences between travel time by rail and travel time by car and
differences between travel cost by rail and travel cost by car. The model was calibrated using an
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error function that was the sum of the squares of the deviations between actual choice and cal-
culated preference.

Akiyama and Tsuboi (1996) used multi-stage fuzzy reasoning to describe the driver decision
making process on road networks. Their paper considers the multi-route choice pro-
blem.Akiyama and Tsuboi (1996) first made a survey and collected data. Experiment participants
were asked about the number of alternative routes they use going from their origin to their des-
tination (the authors asked the respondents to cite at most three alternatives they may use). For
each route considered they defined its characterizing factors (travel time, degree of congestion
and risk of accidents). All the participants estimated the values of all the factors using their own
perception and experience. Appropriate fuzzy numbers could then represent these values. The
third survey question dealt with the values of the utilities of the nominated routes. The authors
assumed the existence of two stages in the driver decision making process. The first approximate
reasoning algorithm they proposed determined the utilities of the alternative routes. A typical
rule in this approximate reasoning algorithm reads:

If T is large and CR is small and RA is medium
Then V is small
where:

(a) T=perceived travel time
(b) CR =congestion of a route
(¢) RA =risk of accident

(d) V=utility for the route.

The first input variable DF in the second approximate reasoning algorithm is the difference
between the utilities associated with the shortest path and the second shortest path. The second
input variable DS is the difference in the utilities between the second shortest path and the third
shortest path. The third input variable N refers to the number of alternative routes. When N=2,
variable DS does not appear in the premises. A typical rule of the second approximate reasoning
algorithm reads:

If N=3 and DF is medium and DS is medium
Then FR(1) is large
FR(2) is medium
FR(3) is medium
where:

(a) DF=difference of utilities between the shortest path and the second shortest path
(b) DS=difference of utilities between the second shortest path and the third shortest path
(¢c) FR(i)=degree of frequency for route i.

Akiyama and Tsuboi (1996) also developed a neural network model for the second stage of
estimation. The neurons in the input layer represent the number of alternative routes and the
values of the utilities of individual alternative routes. The network output is route frequency.
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Connecting weights are determined using the back propagation method. The two-stage model
based on a combination of fuzzy logic (first stage) and neural network (second stage) produced
somewhat better results than the two-stage model based on fuzzy logic in both stages.

3.5. Traffic assignment

Many papers devoted to the traffic assignment problem were published in world literature.
There are two characteristics common to most of these papers: they are based on Wardrop’s
principle and they are travel time crisp. Akiyama et al. (1994) observed that ‘in real world, how-
ever, the driver can only use fuzzy traffic information even if several types of information are
available’. These authors succeeded in formulating the fuzzy user equilibrium with fuzzy travel
time. They confirmed their assumption about drivers’ perception of time as triangular fuzzy
numbers by organizing the survey on the network comprised of Hanshin Expressway and urban
streets in the Osaka area. In their paper, the authors introduced ‘the descriptive method of route
choice behavior to design the traffic assignment model’. They showed that ‘the state of user
equilibrium is also generated even if fuzziness of travel time exists’. Akiyama et al. (1994) developed
Fuzzified Frank—Wolfe algorithm to solve the problem considered. This pioneer paper undoubtedly
presents a significant study on the relationship between traffic information and drivers’ behavior.

3.6. Transportation investment projects

Tzeng and Teng (1993) considered transportation investment project selection with fuzzy
multi-objectives. The basic idea of the paper was to show the possibilities of using the fuzzy set
theory in transportation investment planning.

Smith (1993) applied fuzzy set theory techniques in the evaluation of potential suburban rail-
way station locations. His goal was to find the most convenient railway station locations among
the set of potential station locations on one of three possible railway line extensions to Brisbane’s
suburban network. Smith (1993) considered the following criteria when evaluating potential sta-
tion locations: (a) Magnets and Generators (regional business/shopping centers, secondary
schools, hospitals, recreation facilities,. . .); (b) Population Trends (the growth or decline of the
population in the station area); (¢) Site Centrality (‘based on an assessment of the proximity of
each potential station location to the ‘center’, ‘core’ or ‘focus’ of the built-up area to be serviced
by the station’); (d) Land Resumption Costs; (¢) Headwork Costs (all infrastructure and services
required for the station operation); (f) Population Catchment Area (a distance of 800 meters was
used, since around 70% of railway commuters walk to the station); (g) People Traveling by Bus
(number of bus passengers); (h) Topographical Considerations (contour lines on topographical
maps, vegetated areas,..); (i) Bus Interchange (the possibility of bus/rail interchange). Each of the
above criteria was based on the linguistic scale: ‘Low’, ‘Medium’ and ‘High’. Smith (1993) used
linear additive weighting to make his multicriteria evaluation.

3.7. Traffic control at the intersection

Fuzzy traffic control problems were the first problems from the field of traffic and transporta-
tion in which fuzzy logic was used. Pappis and Mamdani (1977) were first to use the principles of
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fuzzy logic to control the isolated signalized intersection of two one-way streets and developed a
model based on linguistic control instruction. Pappis and Mamdani (1977) assumed a uniform
distribution of vehicles arriving at the intersection. They also presupposed that the vehicle
detectors were placed sufficiently upstream from the intersection, so that it is possible to inform
the controller about vehicle arrivals at the intersection within the next 11 s. The authors assumed
as well that the cycle was divided into two periods ‘actually red’ and ‘actually green’ and that
vehicles left the line at the same intensity at which they joined it. Pappis and Mamdani developed
an approximate reasoning algorithm to control traffic at the intersection. This algorithm consists
of a large number of rules of the following type:

If T is very short and A is greater than none and Q is any
Then E is very short
where:

(a) T=Fuzzy variable that denotes the time that has elapsed since the last light change at the
intersection

(b) A=Fuzzy variable denoting the number of vehicles from the priority direction that have
passed through the green light during the considered time period

(¢) O=Fuzzy variable representing the number of vehicles in line on the one-way street that
does not have priority

(d) £=Fuzzy variable ‘extension’ which has values identical to fuzzy variable T representing
the extension given to the present state of the system.

Fuzzy variables T, A and Q are input variables whose values should determine the value of
output variable E. Fuzzy variables 4 and O could be assigned the value ‘many vehicles’, ‘more
than several vehicles’, ‘few vehicles’, etc. Variables 7" and E are assigned values ‘very short’,
‘short’, ‘medium’, etc. Bearing in mind the present state of the system, every 10 s a different set of
five control rules was applied with the purpose of determining the extension (in s). The fuzzy logic
model compared to ‘classical’ approaches used previously to solve this problem achieved better
results (from the viewpoint of average time loss per vehicle).

Chang and Shyu (1993) produced a fuzzy expert system to evaluate whether a traffic signal is
required in an intersection. They used 8-h volume, 4-h volume, peak-hour volume, progressive
movement, peak-hour delay, accident experience and traffic system, and school crossing as cri-
teria to help the decision maker when deciding whether a traffic signal is required in an intersec-
tion. The approximate reasoning algorithm developed by Chang and Shyu (1993) consists of rules
such as the following:

If Intersection is located in the city

and The number of lanes on major street is 1

and Peak hour traffic volume on major street (both directions) is very large
and The number of lanes on minor street is 1

and Peak hour traffic volume on minor street is very large

Then a signal is required.

The proposed approximate reasoning algorithm was illustrated on the town of Tainan, Taiwan.
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Sayers and Bell (1996) solved the traffic responsive signal control problem using fuzzy logic.
These authors were very successful in building fuzzy logic into a modular system executing traffic
control. The developed model enables both second-by-second and cycle-by-cycle decisions about
the apportionment of green time. From raw data for each signal group, Sayers and Bell (1996)
used fuzzy logic to calculate both the number of seconds of green time that the signal group will
require in the next cycle, and the ‘weight (a value between 0 and 1) as indicator of the urgency
with which the signal group requires green’.

3.8. Traffic control in the corridor

The model of Nakatsuyama et al. (1983) is based on the concept of the Fuzzy Logic Controller
proposed by Pappis and Mamdani (1977). They coordinated two consecutive intersections along
an arterial road. After the light changes (from red to green) at the first intersection at one time
point ¢, a green light appears at the other intersection at another time point ¢+ n. Elapsed time n
is the so-called offset whose value is determined using fuzzy control rules. Fuzzy control devel-
oped by Nakatsuyama et al. (1983) is based on traffic conditions. Nakatsuyama et al. (1983)
compared a fuzzy logic controller to a standard vehicle-actuated controller for different values of
traffic flow rates. When compared, they had considerably shorter average delay times using fuzzy
logic than using a standard vehicle-actuated controller.

Sasaki and Akiyama (1986, 1987, 1988) developed a fuzzy traffic control system on an urban
expressway. The authors showed that control of an urban expressway depends upon a skilled
operator’s judgment and decisions. The main goal of the Sasaki and Akiyama papers was to
describe the operator’s judgment process using fuzzy logic. A simple fuzzy reasoning model for
on-ramp control was presented in the papers. The developed model was tested on the Osaka—
Sakai route of the Hanshin expressway. Restricting the number of booths and closing the gates
carried out traffic control on the urban expressway. The main comclusion of the papers is that the
proposed fuzzy logic traffic controller system effectively describes the judgment process and takes
the place of human operators.

Chen et al. (1990) studied a fuzzy controller for freeway ramp metering. The developed model
was tested on the San Francisco—Oakland Bay Bridge. The fuzzy controller was based upon six
linguistic variables (inputs) and three linguistic variables (outputs). Chen et al. (1990) showed that
the fuzzy controller was very efficient in reducing efficiency losses due to incidents. The authors
showed savings of 148 passenger-h for a typical short incident. For longer incidents there were
savings of 328 passenger-h compared to the existing controller. The developed controller also
significantly reduced the min-miles of congestion.

3.9. Network control

Chiu (1992) developed adaptive traffic signal control at the intersection using fuzzy logic. This
approach provided for control of a small network of intersections. It is important to point out
that the signal timing parameters (cycle time, phase split and offset) adjusted as functions of the
local traffic condition and of the signal timing parameters at adjacent intersections. These para-
meters were adjusted independently. In other words, a fuzzy rule base was developed to make
adjustment for each of these parameters. Chiu (1992) says that ‘although independent adjustment



350 D. Teodorovic | Transportation Research Part A 33 (1999) 337-364

of these parameters may result in one parameter change working against another, no conflict was
evident in simulations under various traffic conditions’, also remarking that ‘since incremental
adjustments are made at every phase change, a conflicting adjustment will most likely be absor-
bed by the numerous successive adjustments’. While making the cycle time adjustment, the goal
was to maintain a good degree of saturation on the approach with highest saturation. The inputs
to the rules for cycle time adjustment were the highest degree of saturation on any approach and
the highest degree of saturation on its competing approaches. The output of the rule was ‘the
amount of adjustment to the current cycle time, expressed as a fraction of the current cycle time’.
One of the typical rules in this fuzzy rule base is:

If the highest degree of saturation on any approach is HIGH
and the highest degree of saturation on its competing approaches is NOT HIGH
Then the cycle change is POSITIVE SMALL.

Phase split is adjusted so as to maintain equal degrees of saturation on competing approaches.
While making the offset adjustment, the goal was to coordinate adjacent signals in order to
minimize the number of stops in the direction with the highest possible value of the traffic flow.
Among other numerical examples on which the model in question was tested, the author con-
sidered a small network of intersections formed by six streets. As a measure of quality of the
developed model, the author used the average waiting time per vehicle per s spent in the network.
During first 30 min of the simulation all intersection had fixed cycle times. From the 30th to 60th
min of simulation three intersections functioned on developed fuzzy rules, while the other inter-
sections had fixed cycle times. From the 60th to 90th min all the intersections worked on fuzzy
rules. Insignificant improvements were accomplished during the 30 to 60-minute period, while
significant betterment was achieved in the period from 60th to 90th min, when all the intersec-
tions were adaptive. It can be noted that the work of Chiu (1992) is a pioneer work in the area of
adaptive traffic signal control on the network using fuzzy logic. The results obtained by Chiu
(1992) can be of great importance for further research in this field.

3.10. Accident analysis and prevention

Fuzzy set theory techniques were also recently applied to the issues in the area of accident
analysis and prevention. Akiyama and Shao (1993) investigated the problem of constructing traffic
safety facilities on urban expressways. They pointed out that traffic safety projects consist of local
countermeasures whose cost and effectiveness are evaluated in monetary terms. In the general case, a
countermeasure is the construction of safety facilities at each heavy traffic point on the expressway.
In the planning phase consideration must be given to construction costs and benefits from reducing
the number of accidents. The basic problem studied by Akiyama and Shao (1993) was determining
the kind of countermeasure to be feasibly carried out within the budget. The authors noted that
safety costs cannot be defined deterministically, and the cost and benefit of alternatives cannot be
measured without fuzziness. In other words, when evaluating certain alternatives, factors such as
feeling of safety, driving comfort, etc., must be taken into account. The authors used incremental
cost—benefit analysis with fuzzy constraints and dynamic programming with fuzzy constraints to
solve this problem. The model developed was illustrated on the Hanshin Expressway in Japan.
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Incident detection and classification and the identification of accident-prone locations also
belong to the class of problems that can be solved by fuzzy set theory techniques. Sayed et al.
(1995) used fuzzy pattern recognition to identify accident-prone locations. These authors pointed
out that the identification of such locations is the first step towards highway safety improvement.
Sayed et al. (1995) stressed that accidents can be caused by road environment-related factors, by
driver-related factors, by vehicle-related factors or different combinations of these factors. For
the purposes of this paper, the authors considered ‘7000 accident records randomly selected
between the years 1989 and 1992°. Each accident was described with the following 14 variables:
degree of curvature, road grade, speed limit, surface condition, weather condition, lighting con-
dition, land use, accident time, accident location, accident type, severity, traffic control device, use
of a restraint device, volume/capacity ratio and vehicle type. The authors used the fuzzy K-NN
algorithm Keller et al. (1985) to determine the degree to which each accident was caused by dri-
ver-related, vehicle-related and road-related factors. The algorithm was tested on three sets of
data, each containing 300 accidents. As the authors noted, using this algorithm enabled the very
successful classification of accidents into a finite set of categories.

Busch et al. (1995) used fuzzy reasoning for traffic state estimation and incident detection on
motorways. Input variables in fuzzy logic were speed density difference between neighboring
cross-sections, trend factor for the last N intervals and traffic volume trend at the neighboring
cross-sections. The output was probability of a traffic situation obtained in a three-level process.
The authors made tests with both simulation studies and real data, attaining satisfactory results
in regards to reliability of state estimation and incident detection, and reaction time.

Schretter and Hollatz (1996) used fuzzy logic to determine the required period of waiting after
a traffic accident. The authors considered the case when nobody is present at the site of an acci-
dent (the driver causes an accident without involving any other driver). The authors indicated
that the duration of the required waiting time (until someone arrives who will take part in
establishing all relevant facts regarding the accident) is conditioned by the amount of damage, the
expectation level of someone’s arrival, the site of the accident, the time of the accident, and traffic
density. Two fuzzy rule bases were developed. One of the typical rules in one of the rule bases
reads:

If the damage is VERY SEVERE and the expectation level of someone’s arrival is
POSITIVE
Then the waiting period is VERY LONG

The results obtained based on the fuzzy expert system were compared to court decisions.
Satisfactory agreement was obtained between these two groups of results. The developed system
(prescribing the required waiting time after a traffic accident) can considerably facilitate the work
of the courts and insurance companies involved in determining responsibility and damage
appraisal.

3.11. Level of service

Chakroborthy and Kikuchi (1990) discussed the application of fuzzy set theory to the analysis
of highway capacity and level of service. They showed the limitations of the current procedure to
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determine highway capacity and service level. Chakroborthy and Kikuchi pointed out that fuzzy
numbers can be used to represent the values of input variables (ideal capacity, sight distance,
volume of traffic, headway between cars) and output variables (adjustment factors, actual capa-
city, level of service criteria) which are involved in calculating capacity and service level. The
authors showed that it is much better if the Level of Service Categories are defined as fuzzy sets.
It was also shown how fuzzy composition could be used to represent parametric relationships.
Highway and traffic characteristics are so complex that relationships between parameters can be
described only in approximate terms. The authors pointed out the possibilities of using fuzzy
relations and the max—min composition method when determining the relationship between
parameters. The authors illustrated how to use fuzzy relations and the max—min composition
method to determine the adjustment factor to ideal capacity when average lane width is around
10 feet instead of 12 feet (which is ideal). It was also shown that there are cases in which adjust-
ment factors depend directly on human perceptions and decision-making processes. The authors
considered the example of a driver’s acceptance gap (the critical gap is the minimum gap in a
traffic stream, which a driver wishing to cross will accept). Chakroborthy and Kikuchi (1990)
showed that a driver’s acceptance of a gap depends on his perception of the gap and the speed of
the oncoming traffic. They concluded that a driver’s decision to accept a gap is in fact based on an
approximate reasoning process and so they developed an approximate reasoning algorithm to
estimate the approximate critical gap which a driver would choose under given conditions.

Ndoh and Ashford (1994) developed a model to evaluate airport passenger services using fuzzy
set theory techniques. In their words, ‘The literature on transportation level of service evaluation
indicates a strong impetus to move away from a strictly capacity/volume or time/space based
measure to one that directly incorporates the perception of passengers’. Studying airport pas-
senger service, Ndoh and Ashford (1994) pointed out the hierarchical structure of the service
system and proposed that the service system level of service be decomposed into its component
service attributes (information, waiting time at processing activities, convenience at processing
activities in terms of physical efforts, availability of seats, etc.). Each component service attribute
can be assigned a linguistic variable name (high, medium, etc.). Ndoh and Ashford (1994) defined
the overall level of service Z as:

7= ; [W] * [L,-]/;[W,-]

where:

(a) n=the number of component service attributes
(b) W;=the fuzzy weight of component i (importance factor of component i)
(¢c) L;=the fuzzy quality of service component .

The obtained level of service Z must be ‘translated’ into a suitable linguistic term. Customary
linguistic terms that must be previously defined include ‘Good’, ‘Tolerable’ and ‘Bad’. Let us
denote by A the known fuzzy set representing ‘one of the natural language expressions used for
rating level of service’. Ndoh and Ashford proposed to calculate the Euclidean distances between
fuzzy set Z and individual fuzzy sets A, indicating that the best natural language is equivalent to
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the fuzzy set A corresponding to the shortest Euclidean distance from fuzzy set Z. The metho-
dology they presented was illustrated on the example of evaluating the Processing Activity Sub-
system for departures with the components: Check-in, Security and Passport Control. The
methodology proposed by Ndoh and Ashford (1994) is certainly quite compatible with the way
passengers perceive transport services (‘in terms of imprecise and vague linguistic values’).

Pattnaik and Ramesh Kumar (1996) developed methodology to define level of service of urban
roads taking into account users’ perceptions. The authors assigned appropriate linguistic terms to
the categories of level of service A to F (which are defined by Highway Capacity Manual). Speed,
volume and standard deviation served as the evaluating criteria for the level of service. Based on
surveys they have done, and taking into consideration perceptions of the users, the authors
determined membership functions for different fuzzy sets, and importance factors assigned to
them. They also categorized surveyed people according to age, thus determining users’ percep-
tions more appropriately.

3.12. Vehicle and crew routing, scheduling and dispatching problems

Vehicle and crew routing, scheduling and dispatching problems appear in various transporta-
tion activities. Hundreds of papers have been published in world literature during the past three
decades treating different aspects of vehicle routing, scheduling and dispatching problems. Sig-
nificant reviews were given by Larson and Odoni (1981), Bodin et al. (1983), Solomon and Des-
rosiers (1988) and Golden and Assad (1988). Combinatorial optimization methods or different
heuristic algorithms with deterministic characteristics traditionally solve complex vehicle routing
problems. In the past several years papers have appeared in which attempts were made to use
fuzzy logic and other fuzzy set theory techniques to solve these very important vehicle and crew
routing, scheduling and dispatching problems.

Perincherry and Kikuchi (1990) studied the transshipment problem in a fuzzy environment.
The transshipment problem deals with the optimal allocation of goods and services between
supply locations and demand locations with an added dimension involving intermediate points
where goods can be stored to satisfy the demand at a later date. The input data are demands,
supplies, transportation cost and the costs of inventory at the transshipment points. In most real-
world problems, the data are given as estimates and are not likely to be precise. Perincherry and
Kikuchi (1990) introduced the principles of fuzzy linear programming to solve the transshipment
problem under the conditions of fuzziness in input data. They assumed fuzziness in the quantity
of supplies available and the quantities demanded. The travel time between the locations and the
costs are assumed to be available in the form of precise information. Perincherry and Kikuchi
(1990) mentioned that the goal in a fuzzy transshipment problem is not always to minimize the
cost, rather to schedule the shipments at a ‘reasonable cost’. This ‘reasonable cost’ is represented
by a fuzzy set. In order to illustrate the application of the model developed, a problem was pre-
sented involving the scheduling of empty freight cars by a large manufacturing concern having
many plants and distribution centers.

In most vehicle routing models, it is assumed that travel time, transport costs and the distance
between pairs of nodes in the network are constant values known in advance. On the other hand,
the travel time between two nodes in a network involves an uncertainty due to traffic conditions,
the type of driving, weather conditions, choice of streets, etc. Dispatchers-decision makers most
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often make a subjective estimate of travel time based on their experience and intuition, expressing
the estimated travel time as ‘short’, ‘long’, ‘about twenty minutes’, etc. When studying the ‘clas-
sical’ vehicle routing problem, Teodorovi¢ and Kikuchi (1991) treated travel time and transpor-
tation costs between two nodes in a network as fuzzy numbers. They modified the Clarke and
Wright (1964) algorithm when travel times in a network are treated as fuzzy numbers. Teodorovic
and Kikuchi (1991) expressed the level of uncertainty through parameter 8, where =0 corre-
sponds to the highest possible uncertainty, while B =1 corresponds to the situation in which the
exact travel time through the network is known with complete certainty. After generating all
travel times using the algorithm, a set of vehicle routes was obtained corresponding to a certain
parameter B. Different sets of vehicle routes can be generated for different values of parameter 3
depending on the level of uncertainty used to estimate travel times in the network.

Kikuchi (1992) solved the problem of scheduling demand-responsive transportation vehicles
using fuzzy arithmetic techniques. He developed ‘a vehicle routing and scheduling method for the
time-window based many-to-many, advanced reservation multi-vehicle dial-a-ride problem’.
Kikuchi was the first to introduce fuzziness to the dial-a-ride problem, treating the desired time of
vehicle arrival (‘I would like to be picked up about 9 a.m.”) and the travel time between nodes
(‘travel time is about 20 minutes’) as fuzzy numbers. Kikuchi’s approach is sequential (routes are
designed one by one), has two stages (first the initial route is developed, and then insertions are
made) and fuzzy (desired times of departures and travel times are treated as fuzzy numbers).

We often do not have precise data available regarding demand at certain nodes (the start-up
operations of a distributing system are just beginning, the records of demand at some nodes are
not up-to-date, etc.). The problem discussed by Teodorovi¢c and Pavkovic (1996) can be defined
as follows: For known locations of the depot and nodes to be served, known vehicle capacity, and
demand at the nodes which is only approximate (represented by triangular fuzzy numbers),
design a set of vehicle routes that minimizes costs. The algorithm developed by Teodorovi¢ and
Pavkovi¢ (1996) to route vehicles when demand at the nodes is uncertain is based on the heuristic
‘sweep’ algorithm and fuzzy logic.

Transportation companies receive a great number of requests every day from clients wanting to
send goods to different destinations. Each transportation request is characterized by a large
number of attributes, including the most important: type of freight, amount of freight (weight
and volume), loading and unloading sites, preferred time of loading and/or unloading and the
distance the freight is to be transported. Transportation companies usually have fleets of vehicles
consisting of several different vehicle types. In addition to the characteristics of the transportation
request, when assigning a specific type of vehicle to a specific transportation request, the dis-
patcher must also bear in mind the total number of available vehicles, the available number of
vehicles by vehicle type, the number of vehicles temporarily out of working order, and vehicles
undergoing technical examination or preventive maintenance work. Milosavljevi¢ et al. (1996)
considered the case when dispatching is carried out every day based on the principle ‘today for
tomorrow’. In other words, dispatchers have a set amount of time (1 day) to match available
vehicles to transportation requests, which are to begin the following day. Milosavljevic et al.
(1996) developed a heuristic algorithm to solve the vehicle assignment problem that included
several approximate reasoning algorithms. For every vehicle type, a corresponding approximate
reasoning algorithm was developed to determine the dispatcher’s preference strength in terms of
meeting a specific transportation request with the type of vehicle in question. The approximate



D. Teodorovi¢ | Transportation Research Part A 33 (1999) 337-364 355

reasoning algorithms for each type of vehicle differed from each other in terms of the number of
rules they contained and the shape of the membership functions of individual fuzzy sets. A typical
rule found in these algorithms is:

If suitability in terms of distance is HIGH and capacity utilization is HIGH
Then preference is VERY HIGH

The quality of the solution is measured on the basis of the total number of realized ton-km.
The results showed that using the developed model produced a greater number of ton-km than
when the dispatching process was carried out by experienced dispatchers.

3.13. Air transportation

Larkin (1985) made the first application of fuzzy logic in the field of Air Traffic Control. He
developed a model of an autopilot controller based on fuzzy logic. Most airports in the world are
equipped with the Instrumental Landing System (ILS) that guides approaching aircraft to the
runway. Larkin (1985) interviewed a large number of experienced pilots in order to develop a
fuzzy rule base consisting of 125 rules. All pilots were given the following objective: ‘to land the
aircraft while maintaining an airspeed of 75 mph, rate of descent of 350 fpm and glide-slope angle
of three degrees’. In order to derive fuzzy rules, questions were formulated and asked of the
pilots. All questions had the following format:

‘If the current rate of descent is around x fpm, the current airspeed is around y mph above/
below the desired airspeed and the glide slope is about z degrees above/below the desired
glide slope, by about how much would you change the engine speed and the elevator angle?

Larkin’s (1985) research indicated the exceptional possibilities provided by fuzzy logic in the
field of Air Traffic Control.

In recent years there has been considerable congestion in some elements of the air traffic con-
trol system. The most frequent congestion occurs at airports. Meteorological conditions (visibi-
lity, wind velocity, etc.) have a direct influence on airport capacity. Since meteorological
conditions cannot be precisely forecast over a longer period of time, the capacity of an airport
can only be approximately determined over the long run. In the same vein, some airports fre-
quently have time periods in which ‘demand’ is greater than the airport’s capacity. In such con-
ditions, the air traffic control service might not allow a certain number of aircraft to take off at
their planned departure times. In this way, aircraft delay (caused by congestion) takes place on
the ground instead of in the air. Airport congestion can appear during one time period (1 hour)
or over a greater number of time intervals. Air traffic flow management consists of undertaking
actions to minimize the negative consequences of congestion. In other words, there is a need to
determine which aircraft will not be served during a considered time period and to set their new
departure times.In the Teodorovi¢ and Babic (1993) air traffic flow management model based on
fuzzy logic, the authors considered a starlike network with several departure airports and one
landing airport. They developed heuristic algorithm to manage air traffic flows when landing
airport capacity is decreased. It is based on the tactic in which a certain number of aircraft are



356 D. Teodorovic | Transportation Research Part A 33 (1999) 337-364

‘sacrified’, so that the number of aircraft with delays is minimized. Teodorovi¢ and Babi¢ (1993)
assumed that the decision-maker has certain preferences towards servicing certain aircraft. This
preference must be dependent on aircraft size and delay. In other words, larger aircraft have
higher priority to be served. Taking into account the applied tactic in which a certain number of
aircraft are ‘sacrified’, lower priority was given to aircraft that could not be served during a
longer period of time (these aircraft have longer delays). The decision-maker has a subjective
feeling regarding aircraft size and delay times. The decision-maker feels that aircraft are ‘big’,
‘medium-sized’ or ‘little’. The decision-maker might also estimate delay time to be ‘big’, ‘medium’
or ‘little’. In other words, aircraft size and delay can be treated as fuzzy variables. The approx-
imate reasoning algorithm developed by Teodorovic and Babi¢ (1993) to establish preference
strength regarding aircraft to be served consists of nine rules of the following type:

If the aircraft is LITTLE and the delay is LITTLE
Then preference is MEDIUM.

The presented approximate reasoning algorithm enables the establishment of the preference
index value, or the strength of the decision maker’s preference regarding service to a specific air-
craft in the considered time interval.

The route choice problem in air transportation is similar to the route choice problem in city or
intercity road transportation. The differences in these problems are primarily found in the para-
meters that influence route choice. Teodorovi¢c and Kali¢c (1995) considered the simplest case
when a passenger in air transportation must choose between two possible routes going from his
origin to his destination. In their paper, they assume that passengers base their route choice on a
comparison of travel time and flight frequency on the alternate routes. We will denote respec-
tively by dT and dF the differences in travel time and flight frequency between one route and the
other. We will also denote by P the percentage of passengers who use the first considered route.
In order to determine the probability of the choice of the first route (the percentage of passengers
who use the first considered route), Teodorovi¢ and Kali¢ (1995) developed an approximate rea-
soning algorithm composed of rules of the following type:

If 0T =very big negative and 6F=any
Then P=very very big.

The approximate reasoning algorithm developed by Teodorovi¢ and Kali¢ (1995) was tested
using real data taken from the doctoral dissertation of Ghobrial (1983) (data on traffic in both
directions between 13 pairs of cities in the Atlanta, Georgia region, USA). Extremely good
agreement was obtained between the values calculated using the approximate reasoning algo-
rithm and real values (one can easily calculate and note very low values of the average relative
deviation and maximum relative deviation between the algorithm-obtained and real values.)

Teodorovic et al. (1994) used fuzzy logic and fuzzy mathematical programming in solving the
airline network design problem. Using Generalized Floyd’s algorithm, the initial set of route
candidates for air transportation was defined. The final set of the route candidates was determined
by applying fuzzy logic. Annual frequencies of flying along the certain routes were established by
fuzzy mathematical programming. This method was used to compensate for the incapacity to
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precisely calculate the yearly number of passengers travelling between certain O—D pairs, the
incapacity to figure operational costs, and the incapability of analysists (decision makers) to very
accurately define specific constraints inherent in the model.

3.14. River transportation

Studying the process of transporting bulk freight in river traffic, Vukadinovi¢ and Teodorovi¢
(1994) developed an approximate reasoning model to control the process of loading, transporting
and unloading gravel. The problem of transporting bulk freight in river traffic will be presented
using their example. Let the suction dredging machine be located downstream from the harbors
where the gravel is to be transported. A tugboat pushes compositions of two, three or at most
four barges. After loading gravel at the loading point, the tug pushes the barges upstream
towards the harbors where the gravel is to be delivered. When the barges and gravel reach the
unloading harbors, the dispatcher in charge of traffic decides on the number of barges that should
be left at each harbor. After leaving a certain number of barges in the harbor, the tugboat con-
tinues to navigate upstream until the entire composition (all the barges it has pushed) has been
left in harbors. Then the tugboat changes direction, heading downstream to pick up the empty
barges along the way. The dispatcher in charge of river traffic decides on the number of empty
barges that the tugboat should pick up at each harbor.A dispatcher manages the entire process of
loading, transporting and unloading in conditions of uncertainty, since the goals, constraints and
consequences of actions undertaken cannot be perceived with precision. Subjectively evaluating
the situation, the dispatcher makes certain decisions with very little time at his disposition.

The approximate reasoning algorithms developed by Vukadinovi¢ and Teodorovi¢ (1994) were
applied in the case of two unloading harbors—Pancevo and Belgrade (Yugoslavia). The main
goal of this research was to show the possibilities of using approximate reasoning models to
control the process of transporting bulk freight in river traffic. Vukadinovi¢c and Teodorovi¢
(1994) developed two approximate reasoning algorithms. The first calculates the number of bar-
ges that the tugboat should leave in Pancevo and the second the number of empty barges it
should take in Belgrade.The algorithm that calculates the number of barges to be left in Pancevo
consists of rules of the following type:

If waiting time to unload in Pancevo is LARGE
and waiting time to unload in Belgrade is LARGE or AVERAGE
Then the number of barges left in Pancevo is AVERAGE.

The approximate reasoning algorithm to calculate the number of empty barges that are picked
up in Belgrade consists of rules of the following type:

If the number of empty barges in Belgrade is LARGE
and the number of empty barges in Pancevo is ANY
Then the number picked up in Belgrade is LARGE

Vukadinovi¢ and Teodorovi¢ (1994) tested these approximate reasoning algorithms on a large
number of numerical examples. Waiting times to unload varied from 0-12 h. The number of
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empty barges was from 0—4. In addition to calculating the number of barges that were left or
picked up for different input values, dispatchers were surveyed as well. Dispatchers were asked
the number of barges they would leave, or the number of empty barges they would pick up within
the framework of an offered scenario. In other words, the dispatchers were asked such questions
as ‘If you estimate that the waiting time to unload is 3 hours in Pancevo and 8 hours in Belgrade,
how many barges would you leave in Pancevo?” A comparison between model output results and
output results from the dispatcher survey indicates very good agreement between dispatcher
decisions and the results of the approximate reasoning algorithms. Computer testing showed that
the developed models are applicable in real time.

4. Validation of results obtained by applying fuzzy logic to modeling transportation phenomenon
and directions for future work

Up to now, there has been only one research in which the number of trips generated in a given
area was estimated using artificial neural networks, as well as by multiple linear regression and
fuzzy logic. After the testing, the fuzzy logic approach proved to give the closest estimate of the
actual number of trips generated in a given area. Certainly, the obtained results should be taken
tentatively, and further research in this area appreciated and carefully examined.

In addition, there has been only two other similar research studies: one pertaining to the
application of fuzzy logic to the trip distribution problem, and one regarding the modal split
problem. In both cases, very small relative deviations between the values calculated using the
approximate reasoning algorithms and the real values were obtained. However, these testings
were done on hypothetical, almost school examples, so it would be necessary to verify the sug-
gested approach by a real transport study of a given region.

In several papers, fuzzy logic was also applied to the problem of complex route choice model-
ing. Research in this area began by modeling a simple two-route choice problem, just to shortly
afterwards extend to modeling a multi-choice problem. It has also been attempted to put the
research in this area into the context of IVHS problems (in specific models, both real time traffic
information and perceived travel times were used). It would be of great importance to develop
fuzzy logic models, which would treat the relationship between the traffic information and dri-
vers’ behavior. In particular cases, fuzzy logic models gave considerably better results than those
obtained from the Logit model. The major drawback of these models is that they were tested on
hypothetical numerical examples. The exception to this is a study done in The Netherlands, which
encompassed revealed preference data of the choice between rail and car for intercity travel. The
model was calibrated using an error function that was the sum of the squares of the deviations
between the actual choice and calculated preference. Very promising results were obtained which
fact points out to the necessity of further applications of fuzzy logic to the problem of complex
route choice modeling. In future research, using fuzzy logic to solve choice problems (route
choice, modal split, choice of carrier, choice of the passenger class in the aircraft, etc.) will pri-
marily need to entail the generation of appropriate fuzzy rules from available numerical data.

Traffic control is the oldest field to which fuzzy logic has been applied in traffic and transpor-
tation. In this area, the attempts have been made to use fuzzy logic to perform traffic control at
the intersection, as well as corridor and network controls. The very first research in the area of
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traffic control as related to the isolated intersection showed that better results (from the viewpoint
of average time loss per vehicle) could be achieved using fuzzy logic than by ‘classical’ approaches
used previously to solve this problem. Existing research in the area of traffic control also revealed
that the fuzzy logic traffic controller system could effectively describe the judgment process and
take place of the human operators. The obtained results also point out that the fuzzy controller
could be very efficient in reducing lost passenger hours, as well as minute miles of congestion in
the case of traffic incidents. In the area of traffic control, it would be very significant to attempt to
develop approximate reasoning algorithms related to parts of the network with a greater number
of signalized intersections.

Current experience in trying to solve the problem of congestion in the Air Traffic Control sys-
tem indicates that further application of fuzzy logic in this field could eventually lead to the suc-
cessful resolution of very urgent problems.

Vehicle and crew routing and scheduling problems are another important field of research for
fuzzy set theory applications. Fuzziness related to travel times between different pairs of nodes,
fuzziness related to the moment required service should begin, as well as fuzziness related to
quantities that need to be picked up and/or delivered to certain nodes require the development of
appropriate models based on fuzzy set theory. Limited experience to date in this field has shown
that fuzzy logic could prove to be a very good technique to solve various routing and scheduling
problems in real time.

It can be noted that a considerable number of fuzzy logic approaches to solve diverse traffic
and transportation problems have been developed. These theoretical attempts must be supported
by more practical applications of different ideas from the fuzzy set theory. In some other fields of
human activity a notably greater agreement between theoretical results and practical applications
has been achieved. As already known, there exists a great many number of commercial products
that operate on the principles of fuzzy logic (vacuum cleaners, washing machines, microwave
ovens, cameras, etc.). On the other hand, there are still no practical fuzzy logic applications in the
fields of traffic control or vehicle routing and scheduling. The assessment of the benefits of fuzzy
logic will be more readily performed with the increase in number of successful practical applica-
tions of the fuzzy logic in traffic control and transportation planning. It is most definite, however,
that the attempts of applying fuzzy logic to the fields of transportation engineering will present a
great challenge for the theoreticians and practitioners in the period to come.

5. Conclusion

Many problems encountered when studying complex transportation systems are highly non-
linear. As already noted, a fuzzy logic system is a nonlinear system that maps a crisp input vector
into a crisp scalar output. When solving a large number of different traffic and transportation
problems, this is what we actually do: map a crisp input vector into a crisp scalar output.

Fuzzy logic could be used successfully to model situations in which people make decisions in an
environment that is so complex that it is very hard to develop a mathematical model. Such
situations for example often occur in the field of traffic and transportation when studying the work of
dispatchers or modeling choice problems. Present experience shows that there is room for the devel-
opment of different approximate reasoning algorithms when solving complex problems of this type.
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Until a few years ago the ‘trial and error’ procedure was the customary method used to develop
fuzzy logic systems, and so researchers designed fuzzy logic systems independently of numerical
training data. Wang and Mendel, 1992a,b; Jang (1992) and Horikawa et al. (1992) proposed
separately from each other to tune fuzzy logic system parameters using numerical training data.
This idea was accepted by a great many researcher and in the past two or three years a large
number of papers have appeared in which the fuzzy rule base and/or shape of the membership
function are determined using numerical training data. Designing fuzzy logic systems using
numerical training data is certainly one of the very important tasks in the area of fuzzy logic
systems for transportation engineering as well.

In the past several years, significant theoretical results have been achieved in the field of fuzzy
logic systems. Wang and Mendel (1992¢) and Kosko (1992a) showed that fuzzy logic systems are
universal approximators, which means that a fuzzy logic system ‘can uniformly approximate any
real continuous nonlinear function to an arbitrary degree of accuracy’ (Mendel, 1995). This
existence theorem shows us above all the possibilities offered by fuzzy logic, but does not indicate
the manner in which to create fuzzy logic systems. In other words, the number of inputs, the
number of fuzzy sets used to describe fuzzy variables, and the number of rules essentially influ-
ence the quality of the solution generated by a fuzzy logic system. It should be emphasized that
feedforward neural networks and fuzzy logic systems are techniques that can be used to solve the
same class of problems. Since fuzzy logic system parameters can be initialized using expert
knowledge, while weights in feedforward neural networks are most often initialized randomly,
fuzzy logic systems are tuned much more quickly than the tuning of feedforward neural networks.
Fuzzy logic systems provide two other very important advantages. They can use existing linguistic
knowledge very successfully, and they treat uncertainty in an appropriate manner.

The basic goal of this paper was to classify and analyze results in the application of fuzzy logic
when modeling complex traffic and transportation processes. The results obtained show that
fuzzy set theory and fuzzy logic present a promising mathematical approach to model complex
traffic and transportation processes that are characterized by subjectivity, ambiguity, uncertainty
and imprecision. As already noted, the benefits from the fuzzy logic will be more accurately
assessed as the number of successful practical applications of the fuzzy logic in traffic control and
transportation planning increases.

References

Akiyama, T., Shao, C.-F., 1993. Fuzzy mathematical programming for traffic safety planning on an urban expressway.
Transportation Planning and Technology 17, 179-190.

Akiyama, T., Tsuboi, H., 1996. Description of route choice behaviour by multi-stage fuzzy reasoning. Paper presented
at the Highways to the Next Century Conference, Hong Kong.

Akiyama, T., Yamanishi, H., 1993. Travel time information service device based on fuzzy sets theory. In: Ayyub, B.M.
(Ed.), Proceedings of ISUMA ’93, The Second International Symposium on Uncertainty Modeling and Analysis.
IEEE Computer Press, College Park, Maryland, pp. 238-245.

Akiyama, T., Nakamura, K., Sasaki, T., 1993. Traffic diversion model on urban expressway by fuzzy reasoning.
Selected Proceedings of the Sixth World Conference of Transport Research, Lyon 92, pp. 1011-1022.

Akiyama, T., Shao, C-F., Sasaki, T., 1994. Traffic flow on urban networks with fuzzy information. Memorial Faculty
of Engineering, Kyoto University 56, 1-22.

Bezdek, J.C., 1993. Fuzzy models—what are they and why? IEEE Transactions on Fuzzy Systems 1, 1-6.



D. Teodorovi¢ | Transportation Research Part A 33 (1999) 337-364 361

Bezdek, J.C., 1994. The thirsty traveler visits gamont: a rejoinder to ‘comments on fuzzy sets—What are they and
why? IEEE Transactions on Fuzzy Systems 2, 43-45.

Bezdek, J.C., Pal, S.K., 1992. Fuzzy Models for Pattern Recognition. IEEE Press, New York.

Bodin, L., Golden, B., Assad, A., Ball, M., 1983. Routing and scheduling of vehicles and crews—the state of the art.
Computers and Operations Research 10, 63-211.

Busch, F., Cremer, M., Ghio, A., Henninger, T., 1995. A Muti-model approach with fuzzy reasoning for traffic state
estimation and incident detection on motorways. In: ERTICO (Ed.), Proceedings of the First World Congress on
Applications of Transport Telematics and Intelligent Vehicle-Highway Systems. Towards an Intelligent Transport
Systems. Artech House, Boston and London, pp. 145-1252.

Chakroborthy, P., 1990. Application of fuzzy set theory to the analysis of capacity and level of service of highways.
MSc. thesis, University of Delaware, Newark, DE.

Chakroborthy, P., Kikuchi, S., 1990. Application of fuzzy set theory to the analysis of capacity and level of service of
highways. In: Ayyub, B.M. (Ed.), Proceedings of ISUMA ’90, The First International Symposium on Uncertainty
Modeling and Analysis. IEEE Computer Press, College Park, Maryland, pp. 146-150.

Chan, Y., Regan, E.J., Pan, W.M., 1986. Inferring an origin—destination matrix directly from network flow sampling.
Transportation Planning and Technology 11, 27-46.

Chanas, S., Delgado, M., Verdegay, J.L., Vila, M.A., 1993. Interval and fuzzy extensions of classical transportation
problems. Transportation Planning and Technology 17, 203-218.

Chang, Y.-H., Shyu, T.-H., 1993. Traffic signal installation by the expert system using fuzzy set theory for inexact
reasoning. Transportation Planning and Technology 17, 191-202.

Chen, L., May, A., Auslander, D., 1990. Freeway ramp control using fuzzy set theory for inexact reasoning. Trans-
portation Research 24A, 15-25.

Chiu, S., 1992. Adaptive traffic signal control using fuzzy logic. Proceedings of the Intelligent Vehicles Symposium ’92,
Detroit, MI, pp. 98-107.

Clarke, G., Wright, J., 1964. Scheduling of vehicles from a central depot to a number of delivery points. Operations
Research 12, 568-581.

Deb, S.K., 1993. Fuzzy set approach in mass transit mode choice. In: Ayyub, B.M. (Ed.), Proceedings of ISUMA ’93,
The Second International Symposium on Uncertainty Modeling and Analysis. IEEE Computer Press, College Park,
Maryland, pp. 262-268.

Dubois, D., Prade, H., 1988. Possibility theory. Plenum, New York.

Florian, M., (Ed.), 1976. Traffic equilibrium methods, lecture notes in economics and mathematical systems. Springer—
Verlag, Heidelberg.

Ghobrial, A.A., 1983. Analysis of the air network structure: The hubbing phenomenon. Ph.D. thesis, University of
California, Berkeley, CA.

Golden, B., Assad, A. (Eds.), 1988. Vehicle routing: methods and studies. North-Holland, Amsterdam.

Horikawa, S., Furahashi, T., Uchikawa, Y., 1992. On fuzzy modeling using fuzzy neural networks with back-propa-
gation algorithm. IEEE Transactions on Neural Networks 3, 801-806.

Hsiao, C.-H., Lin, C.-T., Cassidy, M., 1994. Application of fuzzy logic and neural networks to automatically detect
freeway traffic incidents. Journal of Transportation Engineering 120, 753-772.

Jang, J.-S.R., 1992. Self-learning fuzzy controllers based on temporal back-propagation. IEEE Transactions on Neural
Networks 3, 714-723.

Kali¢, M., Teodorovi¢, D., 1996. Solving the trip distribution problem by fuzzy rules generated by learning from examples.
Proceedings of the XXIII Yugoslav Symposium on Operations Research, Zlatibor, Yugoslavia, pp. 777-780 (in Serbian).

Kalie, M., Teodorovi¢, D., 1997a. Trip distribution modeling using soft computing techniques. Paper presented at the
EURO XV/INFORMS XXXIV (Book of abstracts, p. 74), Barcelona.

Kali¢, M., Teodorovi¢, D., 1997b. A soft computing approach to trip generation modeling. Paper presented at the 9th
Mini EURO Conference Fuzzy sets in traffic and transport systems, Budva, Yugoslavia.

Kaufmann, A., Gupta, M., 1985. Introduction to fuzzy arithmetic. Van Nostrand Reinhold, New York.

Keller, J.M., Gray, M.R., Givens, J.A., 1985. A fuzzy K-nearest neighbor algorithm. IEEE Transactions on Systems.
Man and Cybernetics 15, 580-585.

Kickert, W.J.M., van Nauta Lemke, H.R., 1976. Application of a fuzzy controller in a warm water plant. Automatica
12, 301-308.



362 D. Teodorovi¢ | Transportation Research Part A 33 (1999) 337-364

Kikuchi, S., 1992. Scheduling demand-responsive transportation vehicles using fuzzy-set theory. Journal of Transpor-
tation Engineering 118, 391-409.

Kikuchi, S., Vukadinovi¢, N., Easa, S., 1991. Characteristics of the fuzzy LP transportation problem for civil engi-
neering applications. Civil Engineering Systems 8§, 134-144.

Kikuchi, S., Perincherry, V., Chakroborthy, P., Takahashi, H., 1993. Modeling of driver anxiety during signal change
intervals. Transportation Research Record 1399, 27-35.

Klir, G., Folger, T., 1988. Fuzzy sets, uncertainty and information. Prentice Hall, Englewood Cliffs, NJ.

Kosko, B., 1992a. Fuzzy Systems as universal approximators. Proceedings of 1st IEEE International Conference on
Fuzzy Systems, pp. 1153-1162.

Kosko, B., 1992b. Neural networks and fuzzy systems. Prentice Hall, Englewood Cliffs, NJ.

Kosko, B., 1993. Fuzzy thinking. Hyperion, New York.

Kosko, B., 1994. The probability monopoly. IEEE Transactions on fuzzy systems 2, 32-33.

Kruse, R., Meyer, K., 1987. Statistics with vague data. D. Reidel, Dordrecht, The Netherlands.

Larkin, L., 1985. A fuzzy logic controller for aircraft flight control. In: Sugeno, M. (Ed.), Industrial applications of
fuzzy control. Elsevier Science (North-Holland), New York, pp. 87-103.

Larson, R., Odoni, A., 1981. Urban operations research. Prentice-Hall, Englewood Cliffs, NJ.

Lin, C.-T., Lee, C.S.G., 1991. Neural-network-based fuzzy logic control and decision system. IEEE Transactions on
Computers 40, 1320-1336.

Lindley, D.V., 1994. Comments on ‘The efficacy of fuzzy representations of uncertainty’. IEEE Transactions on Fuzzy
Systems 2, 37.

Lotan, T., Koutsopoulos, H., 1993. Route choice in the presence of information using concepts from fuzzy control and
approximate reasoning. Transportation Planning and Technology 17, 113-126.

Lotan, T., Koutsopoulos, H., 1993. Models for route choice behaviour in the presence of information using concepts
from fuzzy set theory and approximate reasoning. Transportation 20, 129-155.

Mamdani, E., 1974. Application of fuzzy algorithms for control of simple dynamic plant. Proceedings IEE 212, 1585~
1588.

Mamdani, E., Assilian, S., 1975. An experiment in linguistic synthesis with a fuzzy logic controller. International
Journal of Man-Machine Studies. 7, 1-13.

Mendel, J., 1995. Fuzzy logic systems for engineering: a tutorial. Proceedings of the IEEE 83, 345-377.

Milosavljevi¢, N., Teodorovi¢, D., Papi¢, V., Pavkovic, G., 1996. A fuzzy approach to the vehicle assignment problem.
Transportation Planning and Technology 20, 33-47.

Nakatsuyama, M., Nagahashi, N., Nishizuka, N., 1983. Fuzzy logic phase controller for traffic functions in the one-
way arterial road. Proceedings IFAC 9th Triennial World Congress. Pergamon Press, Oxford, pp. 2865-2870.

Nanda, R., Kikuchi, S., 1993. Estimation of trip O-D matrix when input and output are fuzzy. In: Ayyub, B.M. (Ed.),
Proceedings of ISUMA 93, The Second International Symposium on Uncertainty Modeling and Analysis. IEEE
Computer Press, College Park, Maryland, pp. 104-111.

Ndoh, N.N., Ashford, N.J., 1994. Evaluation of transportation level of service using fuzzy sets. Paper presented at the
73rd Annual Meeting, Transportation Research Board, Washington, DC.

Ostergard, J.J., 1976. Fuzzy logic control of a heat exchanger process. Internal Report 7601, Electric Power Engi-
neering Department, Technical University of Denmark, Lyngby.

Pappis, C., Mamdani, E., 1977. A fuzzy controller for a traffic junction. IEEE Transactions on Systems, Man and
Cybernetics SMC-7, 707-717.

Pattnaik, S.B., Ramesh Kumar, K., 1996. Level of service of urban roads based on users’ perception. Civil Engineering
Systems 14, 87-110.

Pawlak, Z., 1991. Rough sets. Kluwer Academic Publishers, Boston, MA.

Perincherry, V., 1990. Application of fuzzy set theory to linear programming. MSc. thesis, University of Delaware,
Newark, DE.

Perincherry, V., Kikuchi, S., 1990. A fuzzy approach to the transshipment problem. In: Ayyub, B.M. (Ed.), Proceed-
ings of ISUMA 90, The First International Symposium on Uncertainty Modeling and Analysis. IEEE Computer
Press, College Park, Maryland, pp. 330-335.

Perkinson, D., 1994. Using automated vehicle location data to monitor congestion: Fuzzy set theory. ITE Journal
February, 35-40.



D. Teodorovi¢ | Transportation Research Part A 33 (1999) 337-364 363

Quadrado, J.C., Quadrado, A.F., 1996. Fuzzy modeling of accessibility: Case study—Lisbon metropolitan area. Proceed-
ings of the Fourth European Congress on Intelligent Techniques and Soft Computing, Aachen, Germany, pp. 1307-1311.

Ross, T.M., 1995. Fuzzy logic with engineering applications. McGraw—Hill, New York.

Sasaki, T., Akiyama, T., 1986. Development of fuzzy traffic control system on urban expressway. Preprints 5th IFAC/
IFIP/IFORS International Conference in Transportation Systems, pp. 333-338.

Sasaki, T., Akiyama, T., 1987. Fuzzy on-ramp control model on urban expressway and its extension. In: Gartner,
N.H., Wilson, N.H.M. (Eds.), Transportation and traffic theory. Elsevier Science, New York, pp. 377-395.

Sasaki, T., Akiyama, T., 1988. Traffic control process of expressway by fuzzy logic. Fuzzy Sets and Systems 26, 165—
178.

Sayed, T., Abdelwahab, W., Navin, F., 1995. Identifying accident-prone locations using fuzzy pattern recognition.
Journal of Transportation Engineering 121, 352-358.

Sayers, T., Bell, M.H.G., 1996. Traflic responsive signal control using fuzzy logic—a practical modular approach. Pro-
ceedings of the Fourth European Congress on Intelligent Techniques and Soft Computing, Aachen, Germany, pp.
2159-2163.

Schretter, N., Hollatz, J., 1996. A fuzzy logic expert system for determining the required waiting period after traffic
accidents. Proceedings of the Fourth European Congress on Intelligent Techniques and Soft Computing, Aachen,
Germany, pp. 2164-2170.

Self, K., 1990. Designing with fuzzy logic. IEEE Spectrum 105, 42—44.

Shafer, G., 1976. A mathematical theory of evidence. Princeton University Press, Princeton, NJ.

Sheffi, Y., 1985. Urban transportation networks. Prentice Hall, Englewood Cliffs, NJ.

Smith, P.N., 1993. Fuzzy evaluation of potential suburban railway station locations. Journal of Advanced Transpor-
tation 27, 153-179.

Solomon, M., Desrosiers, J., 1988. Time window constrained routing and scheduling problems. Transportation Science
22, 1-13.

Sugeno, M., Nishida, M., 1985. Fuzzy control of model car. Fuzzy Sets and Systems 16, 103—113.

Teodorovic, D., 1994. Invited review: fuzzy sets theory applications in traffic and transportation. European Journal of
Operational Research 74, 379-390.

Teodorovi¢, D., Babi¢, O., 1993. Fuzzy inference approach to the flow management problem in air traffic control.
Transportation Planning and Technology 17, 165-178.

Teodorovi¢, D., Kali¢, M., 1995. A fuzzy route choice model for air transportation networks. Transportation Planning
and Technology 19, 109-119.

Teodorovic, D., Kali¢, M., 1996. Solving the modal split problem by fuzzy rules generated by learning from examples.
Proceedings Information Technologies, Zabljak, Yugoslavia, pp. 48—54 (in Serbian).

Teodorovic, D., Kikuchi, S., 1990. Transportation route choice model using fuzzy inference technique. In: Ayyub,
B.M. (Ed.), Proceedings of ISUMA ’90, The First International Symposium on Uncertainty Modeling and Analysis.
IEEE Computer Press, College Park, Maryland, pp. 140-145.

Teodorovi¢, D., Kikuchi, S., 1991. Application of fuzzy sets theory to the saving based vehicle routing algorithm. Civil
Engineering Systems 8, 87-93.

Teodorovi¢, D., Pavkovic, G., 1996. The fuzzy set theory approach to the vehicle routing problem when demand at
nodes is uncertain. Fuzzy Sets and Systems 82, 307-317.

Teodorovic, D., Kalic, M., Pavkovi¢, G., 1994. The potential for using fuzzy set theory in airline network design.
Transportation Research 28B, 103-121.

Tong, R.M., 1976. Analysis of fuzzy control algorithms using the relation matrix. International Journal of Man-
machine Studies 8, 679-686.

Tong, R.M., 1977. A control enginering review of fuzzy systems. Automatica 13, 559—569.

Tyler, N., 1993. Uncertainty and imprecision: a fuzzy model. In: Ayyub, B.M. (Ed.), Proceedings of ISUMA ’93, The
Second International Symposium on Uncertainty Modeling and Analysis. IEEE Computer Press, College Park,
Maryland, pp. 200-207.

Tzeng, G.H., Teng, J.-Y., 1993. Transportation investment project selection with fuzzy multi-objectives. Transporta-
tion Planning and Technology 17, 91-112.

Tzeng, G.-H., Teodorovi¢, D., Hwang, M-J., 1996. Fuzzy bicriteria multi-index transportation problems for coal
allocation planning of Taipower. European Journal of Operational Research 95, 62-72.



364 D. Teodorovi¢ | Transportation Research Part A 33 (1999) 337-364

Vukadinovi¢, K., Teodorovic, D., 1994. A fuzzy approach to the vessel dispatching problem. European Journal of
Operational Research 76, 155-164.

Vythoulkas, P.C., Koutsopoulos, H.N., 1994. Modeling discrete choice behaviour using concepts from fuzzy set the-
ory, approximate reasoning and neural networks. Research Report TSU 817, ESRC Transport Studies Unit, Uni-
versity of Oxford, Oxford.

Waley, P., 1991. Statistical reasoning with imprecise probabilities. Chapman and Hall, London.

Wang, Z., Klir, G., 1992. Fuzzy measure theory. Plenum, New York.

Wang, L-X., Mendel, J., 1992. Generating fuzzy rules by learning from examples. IEEE Transactions on systems, Man
and Cybernetics 22, 1414-1427.

Wang, L-X., Mendel, J., 1992b. Back-propagation of fuzzy systems as nonlinear dynamic system identifiers. Proceed-
ings IEEE International Conference on Fuzzy Systems, San Diego, CA, pp. 807-813.

Wang, L.-X., Mendel, J., 1992. Fuzzy basis functions, universal approximation, and orthogonal least squares learning.
IEEE Transactions on Neural Networks 3, 807-813.

Xu, W., Chan, Y., 1993. Estimating an origin—destination matrix with fuzzy weights. Part 1: Methodology. Transpor-
tation Planning and Technology 17, 127-144.

Xu, W., Chan, Y., 1993. Estimating an origin-destination matrix with fuzzy weights Part 2: Case studies. Transporta-
tion Planning and Technology 17, 145-164.

Zadeh, L., 1965. Fuzzy sets. Information and Control 8, 338-353.

Zadeh, L., 1996. Fuzzy logic =computing with words. IEEE Transactions on Fuzzy Systems 4, 103—111.

Zadeh, L., 1973. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans-
actions on Systems, Man and Cybernetics SMC-3, 28—44.

Zimmermann, H-J., 1991. Fuzzy set theory and its applications. Kluwer Academic, Boston. MA.



