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ABSTRACT

A wide variety of visual recognition systems are developed
for precise tasks and types of objects. In this paper we would
like to emphasize ways to build a more generic recognition
system. Perception is one of these mechanisms that psycholo-
gists particularly pointed out as a fundamental one for actively
organizing and making sense of input sensory information.
Based on psychological assumptions, we propose to explore
the concept of perception, infer formalization in the dynami-
cal system framework and quantitatively analyze it on robotic
platforms using a unique simple neuronal architecture based
on the association of visual and motor information (move-
ments of the body or part of the body). This coupling of sen-
sory flows of information can be characterized by a sensori-
motor invariant, a dynamical attractor that we identify as a
perception function. For place, object or facial expression
recognition, we show how simple sensori-motor architecture
can be applied to accomplish each task in terms of behavioral
recognition. In each application, some pertinent visual in-
formation, based on classical focus point detection, are orga-
nized as local views and associated to an action or an internal
state corresponding to a set of actions, in order to reach a lo-
cation, an object or recognize a facial expression. The active
learning phase for different points of view or face expressions
allows the emergence of a stable perception linked to a sta-
ble sensori-motor attractor and allows the robot to performa
stable behavior in very different initial conditions. We will
show how the attractor/perception emerges during the learn-
ing phase and evaluate its spatial generalization properties.

Index Terms— Perception, Vision, Recognition, Sensori-
motor coupling, Attractor

1. INTRODUCTION

Inspiration from biological systems points out new ap-
proaches and new strategies to perform tasks that are difficult
to achieve on artificial systems. Modelisation and simula-
tions on robotic platform allow to stretch these solutions in
real conditions and see if or until which limits they are ef-
ficient. We will follow this approach to seek for new ways
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to handle the recognition problem as numerous systems seek
to more and more autonomously process the rich visual in-
formation in a non-friendly, changing environment, under
time constraints and objects and human interactions. In psy-
chology, perception is known to be one of the fundamental
mechanisms that organizes and makes sense of input sen-
sory information. It is different from classical recognition
as no labeling is performed. Moreover it can’t be confused
with the passive processing of visual inputs into an internal
model as it refers to an active process, emerging from the
agent interaction with the environment (enactive approach
[20]) and that can be slowly or quickly modified as the agent
keeps its interaction with the environment. One can observe
that human’s or animal’s perception is very stable for a wide
variety of environments, objects and tasks even in changing
conditions. Moreover variations in proximal sensory stimu-
lation from a same object that grandly affect the information
and limit the efficiently of direct processing of the visual flow
of information is well handled. The interactions between
environment and system are not all known in advance as the
environment is not supposed to be controlled by the system.
Hence it is a challenge to develop systems which support
perturbations, short term changes and long term modifica-
tions. In this paper, we will show how to endow artificial
system with a neuronal architecture allowing perceptual ca-
pacity to emerge. Different real cases will be investigated:
place perception in a homing task, object view perception in
an object reaching task and face expression perception in an
imitation task. But for all these cases we propose to use a
unique neuronal architecture to learn the sensori-motor cou-
pling. Finally consequences on the way to process the visual
information flow and properties of the behavioral recognition
will be discussed.

2. MODELISATION OF PERCEPTION

2.1. Insights from psychological studies

All of the psychological research carried out in the perception
genesis context clearly shows the necessity of an active user
to constitute the perception of objects or scenes. This is es-
pecially demonstrated in experiments using a system known
as sensory substitution technologies which transforms stimuli
suitable for a sensory system into stimuli for another sensory
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system. For example, the TVSS, Tactile Vision Substitution
System, used by Bach-y-Rita [1] makes it possible to convert
an image collected by a video camera into a tactile image, a
matrix of 20 x 20 tactors that is placed on the subject skin (on
the back, thorax,..) Equipped with the TVSS and only if ac-
tively handling the camera, the subjects (complying peopleor
blind persons) are quickly able to discriminate oriented lines
and to indicate the direction of the movement of moving tar-
gets. With a more significant active training, simple geomet-
rical patterns, and even usual objects placed in various orien-
tations can be recognized. One absolute essential observation
is that the capability of pattern recognition is accompanied
by the experience of the externalization of percepts. In fact,
at the beginning when the user is passive, he only feels suc-
cessive stimulations on his skin. But after a training session,
the user ends up forgetting these tactile feelings to remotely
perceive distal stable objects in front of him.

This type of experiments clearly shows that with train-
ing, a subject can constitute a new perceptive capability once
he actively handles the artificial sensor collecting the external
information and forgets the sensation as if he does not have to
decode them anymore. Thus the perception reaches a particu-
lar status in regard to the sensation. Perception cannot emerge
from only the sensations (tactile in the TVSS case). There is
no perception without action. Perception is constituted bythe
sensorimotor loop which binds action and multimodal reaf-
ferent signals. The sensory feedback does not deliver directly
and completely the form but forces or guides the coupling
and support motor-sensory or gestural invariants. The subject
must control his activity and through this activity can access
his agency, his gesture and the effects of his gesture.

2.2. Formalization in the dynamical system framework

Inspired by the TVSS experiments and studies on perceptive
exploratory strategies [18, 17], aiming at the modeling of per-
ceptual mechanisms, we propose to pursue a formalism of the
perception in a sensorimotor context. The work in [13, 14]
already assumes the emergence of perception from sensori-
motor contingencies laws and more precisely considers per-
ception as the cognitive access to the co-variation laws ruling
sensations and actions.

Since the perception emerges from a dynamical coupling
between the sensations and the actions, and more globally be-
tween an agent and its environment, the framework of dynam-
ical systems seems to be appropriate to derive a definition of
perception. It highlights the tight coupling between an agent
and its environment via the sensorimotor loop: according to
agent actions, its sensations are modified. This coupling be-
tween the agent and the environment was already developed
by Gibson [7] in its ecological view of perception and Varela
[20] in the concept of enaction. More precisely, Gibson sug-
gested that the perception comes from the occurrence of sen-
sorimotor invariants that the agent has to capture in its envi-

ronment. Thus being active allows the animal (agent) to find
these invariants Thus we suggest that perception should be
tightly linked to the presence of an attractor generated by sen-
sorimotor invariants. In addition as the interaction between
the agent and its environment is maintained, a specific per-
ception emulated by some current sensations, will maintain
the agent in an efficient behavior and thus will control the ac-
tions of the agent.

Based on these considerations, we propose to define the
perception of a cognitive system as an emergent functionPer

of a sensori-motor invariant and such as the action vectorAc

of the cognitive system is the result of a gradient operator over
the scalar functionPer according to the sensorial information
Sen (vector ofn components) and the hidden internal states

of the cognitive system:

Ac(t) = −M∇Per(Sen(t), s(t)) (1)

with ∇ (the nabla symbol) denoting the vector differential op-
erator (defining a vector field) andM a transformation matrix
allowing a selection of the sensations in regard of the possible
actions of an agent (taking into account the agent body char-
acteristics, etc...). In consequence, consideringAc as a vector
field, its inverse gradientPer is defined as the scalar func-
tion which brings the cognitive system in a minimum energy
state. In the framework of dynamical systems and motor con-
trol, [10, 15] already proposed to consider the action as the
derivate of such a potential function.Per can be seen as the
integral over the sensation along the whole sensation space:

Per(Sen) =

∫
Ω

Ac(Sen)dSen (2)

with Per only determined up to a constant which can be cho-
sen arbitrary.

The minimum of the Perception function is associated
with an attractor. As the notion of stable behaviors is re-
lated to the presence of stable attractors, one wants to know
whether the solution is stable or not. If one looks at a fixed
point attractor, one way to assure the existence of a stable one
is to prove the existence of a function, namely a Lyapounov
function, which decreases along all possible trajectoriesat
least on a subspace of the sensorimotor system space. The
convergence of the system to a stable state is seen as the de-
cease of energy in the system during its evolution. It can also
be seen as a ball rolling down a hill constituted by a potential
function, namely the Perception function (fig. 1) [2]. From
this potential function a potential field can be defined. Finally,
to assure the stability of the system, thePer function results
of the learned sensorimotor invariant patterns and the action
of the system is derived from thePer function. A stable
perception can emerge and consequently a coherent behavior
of the agent in its environment is observable. The learning
capabilities of the system allow to improve its behavior due
to its generalization properties as we will see in the following
section.
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A

Perception2D state space
(sensori−motor)

Fig. 1. Trajectories converging towards a fixed-point attractor
A and the corresponding potential function (in 1D only)

2.3. A neuronal sensori-motor architecture

The goal is to sum up in a generic architecture the neces-
sary mechanisms for the emergence of a percept in an agent
in interaction with its environment. We propose to investi-
gate a simple neuronal architecture named PerAc which was
proposed to solve a wide variety of control problems requir-
ing learning capabilities. Previously developed in [6], itwas
studied with a special formalism used to describe robotic ar-
chitectures [4]. To fully use the sensori-motor loop, the out-
put architecture is an actionAc which, when performed by
the agent, affects the sensation inputs (fig. 2). We consider
two different sensation vectorsSr andSg. Sr represents a
coarse feedback information from the execution of the mo-
tor command, namely proprioceptive information, or can be
an external signal in a supervised case.Sg represents a more
global and rich information (as visual one) about the environ-
ment. To be useful, this information needs to be organized.
A robust distance measure on local visual features extracted
from the visual flow, namely exteroceptive features, is com-
puted and learned by a competitive group with output activity
R categorizing the local features. The operatorc1 represents
a soft competitive structure WTA (Winner Takes All) able to
self-organize according to one sensory data flow. Hence, af-
ter the competition, the activity ofR reflects the categoriza-
tion level. Finally the two inputs path are merged at the motor
level allowing the learning of some sensori-motor coupling
laws. More precisely, the ”one to one” connections (one in-
put is definitely connected to one and only one output) be-
tween the sensationsSr and the motor commandAc gener-
ates a reflex behavior. It can be considered as a regulatory
pathway linking a proprioceptive sensor to the motor com-
mand. Before any learning happened, this path is the one
controlling the action. At the motor level the operatorc2, an-
other soft competitive structure, allows to condition the rich
input data flowSg, via the categorization groupR, according
to the unconditional flow coming fromSr. Finally we can
remark that no direct visual recognition is performed (onlya
local categorization). The system behavior does not directly
depend on the absolute level of categorization of the learned
exteroceptive features. The decision is delayed until the final
competition. Recognition in such a system must be under-
stood according to the global temporal dynamic of the system.
This especially allows the system to have good generalization

one to all links

S R

A
1 A

2

AcS

I

r

g

1
c

c2

one to one links
A

I

Fig. 2. A neuronal sensorimotor architecture PerAc from [6]).
Sr, Sg, R, Ac are neurons vector representing the 2 sensation
inputs, the learned categories and the possible output actions.
A1, A2, I are connection weights matrixes andc1, c2 repre-
sent operators associated to group of neurons.
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Fig. 3. Left TheoreticalR level in two different locations.
CenterTheoretical actionsAc (speed vector of the system
with the sign being the direction) after learning 2 sensa-
tion/action associations and their competition accordingto the
system position.Right Theoretical perception computed by
integration of the Theoretical action.

properties. The proprioception pathway allows to structure
the learning and the organization of the exteroceptive infor-
mation, while the pathway with the exteroceptive information
as input allows the spatial generalization of the learned be-
havior. This generalization not only depends on the visual
features and their learning but also on the competition mech-
anism between actions at the motor level. In fact this com-
petitive mechanism has great importance for the definition of
a robust perception as only the rank of a competition pro-
cess matters. While classical systems fail when the noise or
perturbation oversteps an absolute recognition threshold, the
behavior of such a sensorimotor system is robust until some
perturbation affects the rank in the competition mechanisms.
An illustration of a very basic sensorimotor associations and

the resulting perception functionPer are shown on fig. 3. It
results from an object centering behavior in the agent visual
field and hence the percept of the position of the object rela-
tive to the agent is studied. If the object doesn’t move in the
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environment, after each action of the agent, the agent stateis
characterized by its position relative to the object learned: the
sensation vector is reduced to this position. In a one dimen-
sional space, at two different positions (place1 and place2)
on each side of the center position (goal) are first associated
two antagonist actions, ”go left” (negativeAc) and ”go right”
(positiveAc) in order to reach the center. The further away
the agent is from one of the place where it has learned a cou-
ple sensation/action, the less activated are the neurons ofR

and consequently the neurons ofAc. In order to compute the
Per function, let us consider the evolution of a dynamical
system ruled by the generic equation:dx

dt
= f(x). In the

simplified case of fig. 3, we considerdx
dt

= Ac, with Ac the
actions performed by the robot to go from an x-coordinate to
another one and allowing going from one sensori-motor state
to another one. Also as we earlier admitted the action derives
from thePer function, in a one dimensional space, we can
write Per(x) = −

∫
Ω

Ac(u)du and we can easily verify that
the functionPer is a Lyapunov function. In consequence, by
integrating the actions over the visual spaceΩ, we have a way
to compute and to plot the perception of the agent. Fig. 3-
Rightshows the computed perception functionPer resulting
from the numerical integration of the curve showed on fig. 3-
Centerrepresenting the actions to be performed in order to
reach the center position. It presents a basin curve with a
single minimum guiding the system towards the central goal
location The perception allows the system to have a coher-
ent behavior (going towards the center) whatever position it
initially has.

3. PLACE PERCEPTION IN A HOMING TASK

The neuronal architecturePerAcwas initially used for a hom-
ing situation where a robot returns to a place without being
able to statically recognize it [5]. The details of the neuronal
architecture used in inside and outside experiments are de-

Vigilance

V
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ua
l i

np
ut Local view

Elevation

Azimuth

Place code

Place cells

Movement direction

Landmarks

Target direction

Increasingly active neuron
Unmodifiable link from one to one
Mofifiable link from one to all
Neuromodulation

Fig. 4. PerAc architecture for a homing task. TheTarget
directionandMovement directionare competitive groups.

scribed on the fig. 4. It shows the merge of the two sensorial
paths at the level of theMovement directiongroup of neu-
rons, initiated by the reflex path using theTarget direction
information. TheSg-R path seen on fig. 2 results here in a
learnedPlace cellgroup of neurons. In order to generate a ro-
bust behavior a specific model of visual place cells, inspired
from what and wherefunctional theory of the cortical path-
way downstream the hippocampus [19, 9] was developed. A
place is defined by a spatial constellation of online learned
visual features corresponding to a set of tripletslandmark-
azimuth-elevation. The different process to learn the activ-
ities of thePlace cellsare illustrated on the fig. 4. From
a panoramic image the visual system autonomously extract
landmarks by computing the gradient from the CCD input.
This gradient image is then convolved with a DoG (Differ-
ence of Gaussian) filter to detect robust focus feature points
at low resolution. A competition between the feature points
enables the system to primarily focus on the most activated
focus points (activity based on a contrast and edge curvature
criterion). A small image, named local view, of a given circu-
lar area around each focus point is extracted and transformed
in log-polar coordinates to enhance the pattern recognition
when small rotations and scale variations occur [16]. Dur-
ing the learning of a place, each local view in log-polar co-
ordinates is considered as a landmark prototype for the sys-
tem. Otherwise eachlandmark neuronactivity expresses how
close is the current local view from the learned prototype.
They provide the ”what” information that models the tem-
poral pathway. The elevation or absolute angular position of

Fig. 5. Top view of an indoor environment with superposed
theoretical place fields and homing trajectories for four initial
robot positions. 8 places (black circles) were first learnedat 1
m from the goal.

the landmarks provides the ”where” information relative toa
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vestibular information or a visual compass [8] that models the
parietal pathway. The azimuth or absolute direction is usually
obtained with a magnetic compass, even if it is not strictly
necessary and a local reference (such as the bearing of a dis-
tant landmark) was shown to be a sufficient estimation of the
robot orientation to infer correct place recognition. Eachaz-
imuthandelevation neuronhas a favorite firing direction and
expresses how near is the current extracted local view from
its favorite direction. The merging of thiswhatandwherein-
formation is performed in a product space (i.e. a third-order
tensor compressed into a vector of product neurons. The mul-
tiplicative merging realizes an analogical ”AND” operation.
The recruited merging neurons characterize a point (or a re-
gion) in the landmark-azimuth-elevationspace. At the end
of a visual exploration, the set of activated merging neurons
defines a place-code which can be learnt as an invariant repre-
sentation of the location on a new place-cell (PC). The whole
architecture is bootstrapped by a vigilance signals which al-
lows the one shot learning of all the extracted landmarks in
the current location (except the ones already encoded), the
building of the corresponding constellation and the recruit-
ment of a new place-cell. At the merging level, each PC is
associated with a movement to trigger when being recognized
(purely reactive behavior). If the PCs and the actions are de-
fined in the frame of a competitive structure, a minimum of
three place-action associations around a goal creates an at-
traction basin, enabling the robot to return to the goal from
each place in the attraction area (fig. 5). The robot is seen asa
dynamical system in which the learning modifies the parame-
ters. Learning is equivalent to shape this basin [12]. Step after
step, the robot reacts according to the learned sensory-motor
dynamics, as a ball rolling deeper and deeper in a valley. Nei-
ther Cartesian nor topological map building is required. The
system builds its own metrics based on the parallax and the
recognition of the landmarks. Hence, the dimensionality of
the internal representation is not given by the metric size of
the explored area but rather by its visual regularity. Finally the
place-action associations built by the competitive architecture
allow a homing behavior with a relatively good precision. We
show in [9] that to improve the robustness of the place recog-
nition algorithm the use of a soft competition allowing several
interpretations of an extracted local view was essential. Fig. 6
shows how soft competition can enlarge place fields and al-
lows them to overlap. As the final decision is delayed at the
motor level, this multitude of interpretations is possibleand
even is favored to assure good generalization capabilities

4. OBJECT PERCEPTION IN A REACHING TASK

In the homing case, the invariants and the resulting percep-
tion were commonplace since the sensations are constant at a
given place and a unique action per place is provided. In order
to apprehend the object perception case, we propose to study
it in a simplified version where still few dimensions are used
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Fig. 6. Place cells activity computed every 2 cm over a line of
4.8 m long and induced by a strict (a) or a soft (b) competition.

for the sensations and actions spaces but where more complex
sensorimotor laws are introduced. The task of the robot is to
reach an object whose sensorimotor coupling laws have been
learned during a training phase. In particular the obtained
behavior has to be completely independent of the object loca-
tion in the room. Only the sensorimotor laws directly related
to the object have to be learned by the robot. Returning to a
given object will be interpreted as the fact that the robot “per-
ceives” the object. The robotic experiment use a Koala robot
equipped with a CCD camera with no explicit static recog-
nition of the object. The global architecture of the robot is
presented on fig. 7. In order to provide useful but simple sen-
sorimotor associations, the visual features extracted from the
visual flow must be robust enough regarding the robot task.
As the robot moves towards an object in unknown environ-
mental conditions, it has to face large non-linear transforma-
tions of the images (scale, perspectives, etc.). To partially
achieve scale, contrast and luminance invariance, key points
are extracted on the input images (fig. 7) by a multi-scale al-
gorithm inspired by Lowe’s work [11].

Following is a mechanism supplying a coarse local fea-
ture at each key point at the scale where the key point is ex-
tracted. For each key point only the two first moments of the
orientation of the four neighborhoods relatively to the main
orientation are kept. Finally, the association is performed by
a conditioning mechanism based on the classical LMS (Least
Mean Square) algorithm. In this group of neurons the weights
associated with stable sensation/action couples are reinforced.
Thus if the target object is placed on different backgrounds,
only the visual features related to the object are stable. The
weights associated with these features grow up sufficientlyto
generate a motor action. The final decision of the performed
action is given by a competitive neural network WTA (Win-
ner takes All). After only two headings “left” and “right” re-
peated on two different backgrounds, the robot is able to reach
the learned object. In addition the perception functionPer of
the robot is a posteriori computed. The state of the robot is
defined by its spatial location in the environment and by its
body and CCD camera orientation relative to the learned ob-
ject. According to our definition of perception, we propose
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multi−scale
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Motor input
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Fig. 7. top: The sensori-motor architecture.bottom: Trajec-
tory of a robot performing an object reaching task. The object
enters the robots visual field only at the black cross position.

to visualize thePer function by experimentally computing
the integral of the actions performed by the robot over the
2D space. This allows to visualize thePer function for each
position and so for each sensation/action couple. In addition
by computing thePer function at different training steps, the
role of the learning phase, shaping deeper and deeper the at-
traction basin, is essential in the perception genesis.

Thus the learning can be considered as the emergence of
a potential function allowing the robot to create a sensorimo-
tor attractor. The learning allows to “dig” the potential func-
tion and consequently the robot behavior is more stable in the
presence of distractors in its visual field. The learning also
allows enlarging the sensorimotor attraction basin. Thus the
robot behavior is less dependent on the initial spatial position
of the robot in the room since at all the position in the attrac-
tion basin created during the training the robot can reach the
object (experimentally the attraction basin measures 4x5 me-
ters).
In the case of fig. 9 two similar objects are set closely to
each other, but only the circled one was previously learned.
We surprisingly observed that the robot has a stable behavior
successfully reaching the learned object independently ofits
starting spatial location and even if the neurons activities cod-
ing the robot’s actions (“right” or “left” headings) can be quite
similar. As the coarse features didn’t allowed a good discrim-

0

50

100

150

0

2

4

6

8
−12

−10

−8

−6

−4

−2

0

2

4

Per

Distance

Distance

Objet appris

Fig. 8. left: Top view of 2 robot positions and associated
actions during learning phase.right: Final Perception function

Fig. 9. The perception function (on the right) is dependent
on the position of the robot but also on its orientation (on the
right)

ination of the two objects, we observed a change in the robot
orientation relative to the target that could explain the global
behavior of the system. The display of the Per function pro-
cessed over the 2D space for two different orientations of the
robot confirmed our intuition. On fig. 9 top-right, we can see
that the Per function has two local minima although for an-
other body orientation only one deeper minimum is visible
(bottom-right). This change of orientation was enough to dis-
ambiguate the visual flow. Unfortunately the 4 dimensional
basin cannot be easily display and each of thePer function
plot in this paper is drawn relatively to one orientation of the
robot. This experiment clearly shows how essential it is to
consider all the dimensions of the context in order to capture
the sensorimotor invariant.

ha
l-0

05
22

77
6,

 v
er

si
on

 1
 - 

1 
O

ct
 2

01
0



Fig. 10. Global architecture of facial expression perception.

5. FACE EXPRESSION PERCEPTION IN AN
IMITATION TASK

In a special paradigm of communication and imitation (see [3]
for details) between a robot head and a human, a face expres-
sion recognition system is developed with the sensori-motor
approach. In a first phase of interaction, as the robot pro-
duces a random facial expression (sadness, happy, anger, sur-
prised), the human subject facing the robot is asked to mimic
the robotic head expression, allowing its neuronal system to
learn the sensori-motor associations between its visual sen-
sations, the images of the human face, and its internal state,
referring to its current proprioception as it is performinga fa-
cial expression. After this first phase, the robot must be able
to mimic the facial expression of the human partner showing
by this behavior the success of the human expression recog-
nition. Based on the PerAc architecture, the computational
architecture on fig. 10 allows to recognize facial expressions
and imitate them. Each group of neuronIS, ISP , STM

andFE contains 5 neurons corresponding to the 4 facial ex-
pressions plus the neutral face. In particular we recognize
the two sensorial paths merging in theInternal State Predic-
tion groupISP . This group learns, via a simple condition-
ing mechanism using the Least Mean Square (LMS) rule,
the association between theInternal State groupIS showing
the emotional state and theVisual Features groupV F that
learned the local views. In fact the visual system is based on
a sequential exploration of the image key points that result
from a DOG filter convolved with the gradient of the input
image. This process allows the system to focus more on the
corners and end of lines in the image (eyebrows, corners of
the lips, etc). One after the other, the most active focus points
of the same image are used to compute local views: either
a log polar transform centered on the focus point or a fea-
tures extraction from a Gabor decomposition is performed to
obtain an image more robust to small rotations and distance
variations. This collection of local views is learned by there-
cruitment of new neurons in theV F group using a k-means
variant allowing online learning (both one shot learning and
long term averaging) and real time. After the learning phase,

Fig. 11. Joy expressions on unknown faces and at different
distances are successfully imitated by the robot head.

the associations between theV F group andISP group are
strong enough to bypass the low level reflex activity coming
from the IS group. In this case, the activity of theFacial
Expression groupFE will result from the temporal integra-
tion (Short Term Memory groupSTM ) of the emotional state
associated to the different visual features analyzed by thesys-
tem. Each focus points vote for the recognition of a given
facial expression as each facial expression is mainly charac-
terized by a specific set of focal points corresponding to local
areas on the face which are relevant for the recognition of that
expression. It follows that the robot head can imitate the hu-
man’s facial expression as in fig. 11. As there is no constraint
on the selection of the local views (no framing mechanism),
numerous distracters can be present either in the background
or on inexpressive parts of the head and can be learned on the
V F group. Nevertheless, the architecture will tend to learn
and reinforce only the expressive features of the face. In our
face to face situation, the distracters are present for all the fa-
cial expressions so their correlation with an emotional state
tends toward zero. Moreover the system shows interesting
properties as shown on fig. 11. The robot successfully imi-
tates the facial expressions when facing unknown faces and
even when the interaction distance is important. So even with
no framing, we can see that the system had learned to discrim-
inate background information from relevant visual features of
the face. Indeed this sensori-motor face expression recogni-
tion system is a good candidate to bootstrap a sensori-motor
face recognition system, see [3] for a detail analysis.

6. CONCLUSION

Providing to our robots sensori-motor architecture to control
their movements, we demonstrate for three different cases
how action is central to efficiently perform a recognition task.
It not only provides another point of view but allows the
organization of the complex visual flow of information, and
the selection of relevant information in function of the task.
The agent learns to decide on its own what to react to, what
is relevant, what to learn. Stable and adaptable behaviors of
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the agent that learns from its own perspective in interactions
with complex environment leads to a behavioral recognition
of the context and not a symbolic recognition. In fact using
the term perception is more appropriate as the agent will not
perceive the same way (not the same attractor) if a different
task had to be performed facing the same target (as turning
away of an object instead of reaching it). We favor minimal
robotic set-up and coarse visual features as it is interesting to
test which are the really important features for the recognition
task. Fortunately only the rank of the key points matter not the
recognition level allowing our systems to adequately behave
in their environment. But in fact more complex visual pro-
cesses could be used in order to increase the stability of key
points and of the local view features for different scale, ori-
entation, texture conditions. In addition an attentional system
would be a useful complementary mechanism to increase the
level of interest of some part of the image or features. Finally
an internal measure of perception is not easily grabbed, but
from our modelisation an internal signal could be processed.
A code, representing the whole invariants information, could
be built from the pertinent local views information and their
associated action specified by the task. This code could be
then categorized to give access to an internal percept.

7. REFERENCES

[1] P. Bach-y Rita.Brain mechanisms in sensory substitu-
tion. New York, Academic Press, 192.

[2] A.M. Bloch, P. Crouch, J. Baillieul, and J. Marsden.
Nonholonomic mechanics and control. Interdiscplinary
Applied Mathematics. Springer-Verlag, 2003.

[3] S. Boucenna, P. Gaussier, P. Andry, and L. Hafemeister.
Imitation as a communication tool for online expression
learning and recognition. IROS, 2010.

[4] P. Gaussier. Toward a cognitive system algebra: A per-
ception/action perspective. InEuropean Workshop on
Learning Robots (EWLR), pages 88–100, 2001.

[5] P. Gaussier, C. Joulain, J.P. Banquet, S. Leprêtre, and
A. Revel. The visual homing problem: an example of
robotics/biology cross fertilization.Robotics and Au-
tonomous Systems, 30:155–180, 2000.

[6] P. Gaussier and S. Zrehen. Perac: A neural architecture
to control artificial animals.Robotics and Autonomous
System, 16(2-4):291–320, December 1995.

[7] J. Gibson. The Ecological Approach to Visual Percep-
tion. Houghton Mifflin, Boston, 1979.

[8] C. Giovannangeli and Ph. Gaussier. Orientation system
in robots: Merging allothetic and idiothetic estimations.

In Proc of the 13th Int. Conf. on Advanced Robotics,
pages 349–354, Jeju, South Korea, 2007.

[9] C. Giovannangeli, Ph. Gaussier, and J.-P. Banquet. Ro-
bustness of visual place cells in dynamic indoor and out-
door environment.International Journal of Advanced
Robotic Systems, 3(2):115–124, jun 2006.

[10] J.A.S. Kelso. Dynamic patterns: the self-organization
of brain and behavior. MIT Press, 1995.

[11] D.G. Lowe. Distinctive image features from scale-
invariant keypoints.International Journal of Computer
Vision, 2(60):91–110, 2004.

[12] M. Maillard, O. Gapenne, Ph. Gaussier, and L. Hafe-
meister. Perception as a dynamical sensori-motor at-
traction basin. In Capcarrere et al., editor,Advances in
Artificial Life (8th European Conference, ECAL), vol-
ume LNAI 3630, pages 37–46. Springer, 2005.

[13] J.K. O’Regan and A. Noe. A sensorimotor account of
vision and visual consciousness.Behavioral and Brain
Sciences, 24(5):939–1031, 2001.

[14] David Philipona, J. Kevin O’Regan, and Jean-Pierre
Nadal. Is there something out there ? inferring space
from sensorimotor dependencies.Neural Computation,
15(9):2029–2049, 2003.
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