
International Journal of Computer Applications (0975 – 8887)
Volume 80 – No7, October 2013

35

Automatic Test Case Generation for Orchestration
Languages at Service Oriented Architecture

Ebrahim Shamsoddin-Motlagh
Computer Engineering Department, Faculty of Engineering, Science & Research Branch, Islamic

Azad University, Tehran, Iran

ABSTRACT
Service oriented architecture (SOA) is one of the latest
software architectures. This architecture is created in
direction of the business requirements and for removing the
gap between softwares and businesses. The software testing
is rising cost of activities in development software. SOA
has different specifications and features proportion of the
other software architectures. According to these features of
the system, we cannot apply all approaches and
methodologies of testing in the typical software systems for
testing in the SOA systems, and there are need to specific
procedures for testing the service oriented systems and/or
change in the testing approaches.

This document presents an approach for test cases
generation automatically at the SOA system. First, this
approach creates a control flow graph of BPEL file in the
system and services related of the main service, WSIG file
is used to create subgraphs of the related services. Then, the
test cases create randomly of the primary test for graph in
the generated system. Final, it tries to create test cases
require to cover of the system graph through randomly
generation and the genetic algorithms. This algorithm will
compare with standard genetic algorithm and we will show
the algorithm has performance better than the other
algorithm.

Keywords
Service Oriented Architecture, Software testing, automatic
test case generation, SOA Testing

1. INTRODUCTION
Arasanjani, Borges and Holley define SOA as follows [1]:
“SOA is the architectural style that supports loosely
coupled services to enable business flexibility in an
interoperable, technology-agnostic manner. SOA consists
of a composite set of business-aligned services that support
a flexible and dynamically re-configurable end-to-end
business processes realization using interface-based service
descriptions.” System services have features in the design
and implementation, these features include: service
reusability, standardized service contract, service loose
coupling, service abstraction, service composition, service
autonomy, service statelessness and service discoverability
capabilities.

The SOA system has different nature and the specific
characteristics than the traditional system of the test
system; it's harder and needs more time. The test facilitates

and abilities at the SOA system testing should be
recognized and solution(s) should be presented for testing
challenges. The key issues of testability limits of the SOA
systems include [2]: "dynamicity and adaptiveness, lack of
observability of the service code and structure, lack of
control, lack of trust, new aspects of testing, test cost,
different stakeholders".

This paper is structured as follows. Section 2 a review
related work of automatic test case generation in SOA
system. Section 3 discusses our approach for automatic test
case generation in the SOA system. Finally, Section 4
outline suggests future research steps.

2. Related work
SOA system testing should be performed of aspects
functional testing and non-functional testing, the functional
testing has different levels, the levels include unit testing in
individual services and the combined services, integration
testing and regression testing.

Numbers of investigations in the unit testing have been
active to test automation, in their attempted to automate
process or processes of testing. The researches [3, 4, 5, 6, 7,
8, 9, 10] performed unit testing on the WSDL file
automatically.

Numbers of existing researches [11, 12, 13, 14, 15]
performed BPEL-based testing in the system with graph
operations. In studies [16, 17] implemented test at
combining web services used to high level Petri net and
specifications BPEL. In the paper [18] presented an
approach to generate test cases from web service automata
(WSA) automatically [18]; WSA can be used to define the
operational logic in BPEL.

Numbers of test frameworks have been prepared for SOA
testing, than these are performed the SOA testing with the
best way [19, 20]. The DFTT4CWS tools automatically
find unusual data flow [21] and the test paths is generated
data flow testing with all of cover criteria types. In the
reference [22], the BPEL file is mapped DOM object tree
to the EMF activities tree. The WebMov is set of tools
modelling, evaluates and tests web services composition
[23]. One paper was expressed computational strategy for
the generation complete computational paths of BPEL
based on Tabu search and genetic algorithms to generate
test data [24]. The research [25] provided an approach to
design test cases based on functional properties of high-
level business process model. The study [26] proposed an
approach for reducing the costs to test such applications,

International Journal of Computer Applications (0975 – 8887)
Volume 80 – No7, October 2013

36

and how can semantic stubs enable the client test suite to be
partitioned into subsets, some of which don’t use to execute
remote services. Model driven approach is presented in
[27], this approach to generate executable test cases from
business processes. In the paper [28] provided a constraint
based testing approach in the SOA system.
Researches [29, 30] are proposed an approach to determine
the changes use to extensible BPEL flow graph (XBFG) of
control flow and to compare the paths in a new version of
service composition with the old version. Testing rules and
monitoring rules include: checking the functional
characteristics services, checking quality of service (QoS),
checking interoperability services and service evolution
[31]. Changing in SOA systems is big and need time, hence
the research [32] attempted to propose a road map to
regression testing in the SOA system.

Non-functional requirements include [33]: the needed data
to fulfill the monitoring goal is intercepted. Monitoring
mechanisms attempt the performance isn’t influenced of
unmonitored elements and performance is influenced of the
monitored elements remains to be minimal. The changes
responses are in the monitoring goal and environment
topology. Instrumentation must be transparent and
performed on demand. System security is one of the
characteristics non-functional SOA systems. The paper [34]
presented an approach towards an evaluation framework
for SOA security testing tools. A research proposes a
technique on how define reliability test of composite
service in BPEL from the view at business semantics, it
used to fault injection [6]. This paper focus on how the
reliability problems find relate with business process, the
called semantics as the problems are not pure coding error
but faults related to business process. In addition, the
behavior of composite services in BPEL is analyzed when
there are faults in the orchestrated services invoked.

Numbers of existing produced tools was created to test
SOA systems automatically. For example TASSA is a
framework for automatic testing in functional and non-
functional specifications of service-based applications [35].
It provides end-to-end testing of service layer, service
composition and coordination and business process.
Another tool is WSOTF presented for the automated testing
[36]. WSOTF is an automatic conformance testing tool
with timing constraints from a formal specification of web
services composition that is implemented by an online
testing algorithm. In the study [37] is expressed a test
approach in BPEL web service composition described. The
paper [38] is proposed to generate a testbed for SOA
systems that takes into account a mobility model of nodes
in the network which the accessed services are deployed.
The study [39] is a framework and its supporting tool for
automatically generating and executing web-service
requests and analyzing the subsequent request-response
pairs. The study [40] is proposed an approach to combine
the accessibility technologies in graphical applications
(GAPs) for a visualization mechanism enables
nonprogrammers to generate unit test cases in web services
by drag-and-drop operations on graphical user interface
(GUI). In the reference [41] is testing techniques to
generate a set of test cases for web services automatically.
The techniques presented here explore data perturbation of

web services messages upon data types, integrity and
consistency.

In the paper [42] is expressed a survey to explore cloud
services testing methods. The paper [43] is expressed a
review to identify SOA testing researches with dynamic
binding, that paper performed to search manually and
automatically in journals, conferences and etc. In the papers
[44, 2] are expressed a survey to SOA testing before 2012
year.

3. Proposed approach
As regards, the automated testing is one of the challenges
in SOA testing and software testing is costly one of the
development level, for automatic testing have been
attempts of the software testing. Hence this section of the
paper presents a proposed approach for automatic test cases
generation in the SOA system.

At the beginning of this section describes a proposed
approach and that implementation. Then how to
development a proposed approach and test program
delivers the test results.

3.1 Approach
Manually test cases generation and manually test
operations is a difficult and time consuming, and the
dynamic nature of SOA system causes the generated test
cases lose their usability after some time. To resolve this
problem needs to create a dynamic and automatic way to
generate test cases in orchestration of SOA. Which results
store a lot of cost and time in producing the system. To
resolve this problem in this part of an approach is offered
for automatic test cases generation of the WS-BPEL and
related services.

Activities in the proposed approach to generate test cases
automatically from the WS-BPEL file in the activity
diagram is shown in Figure 1; this diagram has the
following steps:

1) Graph Generator: WS-BPEL and WSDL files in the
main service at the test system, the main web service
and summons related services invoke graph files
(WSIG) from the main service system will analyze,
and the system control flow graph will provide.

2) Generate Initial test cases: If the initial test cases are
not available, the test system will generate initial test
cases randomly.

3) Run Batch-Optimistic (BO) algorithm [45]:
Algorithm will call the BO genetic algorithm for better
coverage of test cases.

4) Run Close-Up (CU) algorithm [45]: Algorithm will
call the CU algorithm for nodes not covered by the test
cases.

5) Remove repeat: Some generated test cases are similar
coverage, the test cases with similar coverage are
removing in the system, and only keeps one copy of
each.

6) Show test cases: Test program shows the final test
cases generated by node coverage.

International Journal of Computer Applications (0975 – 8887)
Volume 80 – No7, October 2013

37

Fig 1: UML activity diagram test system

Proposed approach presented in this paper has been produced
in GUTPEL program; this program has two main operations
analyzer and generator of automated test cases. The program
analyzer receives files and then generates the system control
flow graph with a summons related services invoke graph
files. Generator is generating test cases needed to cover the
graph with using the system running and analyzer
information.

3.1.1 Graph Generator
In this section is expressing how to generate control flow
graph of BPEL web service and invoke subgraphs of related
services. Graph generator uses BPEL analyzer, WSDL
analyzer and WSIG analyzer. Each analyzer receives the
needed files for analysis, and the results of the analysis graph
add to the system. This section output is a control flow graph
of the system.

BPEL analyzer receives as input BPEL main service file in
the system, and finds service elements, in their moves, and
provides service control flow graph. WSDL analyzer input is

WSDL file the main service in the system, and it analyzes and
finds the needed information to invoke web services. WSIG
analyzer input is WSIG related service file and finds the
service elements, in their moves, and adds that information to
the service control flow graph.

Activity diagram of Figure 2 shows the generate graph system
in the proposed approach. If BPEL analyzer found invoke
element, then that runs WSIG analyzer for production the
service invokes graph.

WSIG files are XML format such as service interfaces
(WSDL). In the WSIG file have been specified all nodes in
the subgraph, which can generated automatically this file with
specified access level by service partners. If the service
desired by using BPEL file is created, WSIG file can be
created by using that, but in the production with related
services using BPEL files is possible only if their files are
available from the source to destination or their called
directly.

Fig 2: UML activity diagram graph system

Figure 3 (a) shows the WSIG file sample. Nodes specify the
related services are WebService1 service in this file, this
relationship is in their directly or indirectly. In this Figure,

WebService1 and WebService2 and WebService3 are web
service, and WebService1 invokes WebService2 and
WebService3, and the WebService3 invokes WebService4.

International Journal of Computer Applications (0975 – 8887)
Volume 80 – No7, October 2013

38

In the Figure 3 (b) shows the invoke subgraphs made from
WebService1. This graph specifies each service will be
invoke which services in their code. In the figure, each the
invoke edge is send/receive. Because the requester invokes to
service and the service obtains result and it returns to the
requester.

In this implemented system, files WSIG contains only the
needed information for the invoke graph. But in this file puts
the specifications and other information in the future. These
information include the logic of each service is invoked, and
similar information, which their will help to improve the test.
In this approach taken WSIG file is like the WSDL file.

Fig 3: Example WSIG

3.1.2 Test case generator
The proposed approach of creating a service flow graph in the
original service at the process system, the required test cases
are prepared. Generator of automatic test data contains event
BPEL parser. BPEL event data parser gets service events in
run of the test, then analyses and gets the traveled path in data
analyzing of the graph. Service event parser and BPEL parser
are input of generator. Data analyzing use to test of the WSDL
file service is generated.

This approach calls test case generator after information
identified of the test. The generator specifies the maximum
number of test cases, and then the system generates initial test
cases randomly. After, BO algorithm will be executed on the
initial test cases. Finally, the algorithm CU will be executed
on the output of BO algorithm.

The initial test cases are obtained user-defined or pre-existed
or randomly. The number of test cases uses a modified
version of the McCabe’s Cyclomatic Complexity formula
[46]:

maxTC = CyclComp(G) + (2#simple_predicates + 1) – 2,

Where CyclComp(G) = #edges _ #vertices + 2, #edges and
#vertices are the number of edges and vertices of the control
flow graph respectively, and #simple_predicates is the number
of simple predicates in the program. McCabe’s Cyclomatic
Complexity formula, i.e. CyclComp (G) describes only the
total number of required test cases to satisfy the statement or
edge testing coverage criterion; further to that the proposed
formula can determine the additional number of test cases
required to achieve condition/edge coverage criterion. In
addition, maxTC defines the size of the chromosome, which
it's the maximum number of test cases required to achieve full
edge/decision coverage.

If the initial test cases are available, and their number is less
than the required number for the test, other test cases are
generating randomly. Otherwise, if their number is most of
the required number for the test, the required number is
selected. Test system can be improved the performance with
an optimized method for selection from the test cases.

The test system generates number and Boolean values
randomly, which their generate limitations of numbers and
Boolean generator to improve of the test system. The string
values based on some test systems are under control and
create a random string of predefined arrays, it can be in order
to improve random test generation.

The test approach will be monitored of all messages
exchanged between services and observer using orchestration
engine, and with a specified input gets output system and test
path, and generates test case.

3.1.3 Genetic Algorithms
The test program tries to complete covering the generated
graph use to genetic algorithms, this means to produce the
required test cases cover all nodes in the graph. BO algorithm
tries to generate an optimize test set of test cases based on
node coverage criteria of graph. BO algorithm input is the
initial test cases, which those are generated in the previous
step. In the figure 4 shows activity diagram BO algorithm.

Genes are included input values and covered nodes in the test
program. Each input system (input value) is identified with
the type's string for the name, type and value at input is in the
system. If a gene will be valid if it covers in a node or more
nodes, otherwise will be not valid. Chromosome is made the
number of genes to cover the graph, number of needed genes
for the construction chromosome of the McCabe's formula is
specified.

International Journal of Computer Applications (0975 – 8887)
Volume 80 – No7, October 2013

39

The evaluation function acts with covering the chromosome
nodes in the algorithm graph. The evaluation function returns
the number of nodes not covered, and the output value of the
specified chromosome is lower and closer to zero would be

better the covered nodes in the graph covering. If this
function returns zero, the generated chromosome covers all
nodes in the graph.

Fig 4: BO algorithm activity diagram

Test cases generated before stage test (run algorithm BO) are
input CU algorithm. Figure 5 shows CU algorithm activity
diagram. This algorithm is focused on not covered paths, to
generate test cases for those paths. That finds the uncover

node and in the paths finds the closest covered statement
nodes to cover the uncover node. That is trying to change test
cases in the passing of statement nodes, and to generate new
test cases pass through the uncover node.

Fig 5: CU algorithm activity diagram

It is possible, generated test cases don’t cover all graph paths
by the algorithms, random algorithm and BO algorithm and
CU algorithm. The number of test cases are repeated of
coverage in the system, the test cases repeated will be delete.

To delete test cases repeated: in the first, test cases are
scanned, and the repeated test cases are identified, and one of
them will keep and others will delete. The proposed approach,
the first test case is held in the repeated test cases, and others
test cases are deleted. To better test at the algorithm can be
used to select appropriate tests and test cases covering the
repetitions would repeat deleted.

3.1.4 Show Test Cases
Simple Object Access Protocol (SOAP) is a protocol, and the
combination of XML and HTML, this protocol shows how to
put messages on the web and data transfer between the service
provider and service consumer. In the GUTPEL program after
to generate test cases, generated test cases will show on the
SOAP protocol based.

3.2 Case Study
This section describes in the two categories of experiments
carried out with the testing tools on a Intel Core Dou 2.0
MHZ with 2 GB Ram and JDK 1.6.0_19 running in the
Windows 7 operating system and JBoss-5.1.0.GA server.

International Journal of Computer Applications (0975 – 8887)
Volume 80 – No7, October 2013

40

In this paper is used in the example of RiftSaw tool.
BPEL_BluePrint3 prototype system is selected, this example
shows a sample purchase order system. This system has two
BPEL file, those are InventoryService.bpel and
POService.bpel.

Generated graph shows in Figure 6 for the BPEL_BluePrint3
system. The control flow graph displays in POService service

and related web services with InventoryService service, to
determine the related web service is used with a different
color than the other nodes in the graph. As shown in the
figure, the edges of the nodes are bidirectional in related web
service, because this is a send-receive node.

Fig 6: Graph BPEL_BluePrint3

Another system is a reservation system used to testing. The
system services invoke graph shows in Figure 7. This system
has two subsystem a hotel reservation system and an airline

reservation system (the reservation has two airline
reservation).

Fig 7: Invoke subgraph ReservationSystem system

3.2.1 Results
In the purchase order system, graph generated has 15 nodes
and 17 edges, and number of simple propositions is two, also
there is a related web service and it is put two of nodes to
send-receive. According to the McCabe's formula number of
test cases is required 5 of test cases. In the samples run on the
system, generated test cases shown in Figure 8.

This approach was performed 10 times on the systems, its
performing results for each system as shown in Table 1 and 2.
Part of the run algorithms, all graph system is covered, and
the algorithm is completed.

In the reservation system, graph generated has 12 nodes and
15 edges, and there are four related services. According to the
McCabe's formula number of test cases is 4.

In the nature of ReservationSystem system can be found a test
case to cover all the nodes, Reasons expressed in run
randomized algorithm gives the most complete coverage.

As can be seen in the tables, when run the algorithm CU, The
number of test cases is higher than other times. Because this
algorithm generates new test cases are needed with the
available test cases for the covers, and adds them to the test
cases.

4. Conclusions and future work
The first part of this paper expressed the related work of SOA
testing. Then proposed approach presented to solve the
number of SOA testing challenges.

The proposed approach in part 3 of this paper was to generate
test cases for BPEL language automatically. Then the
prototype system established for the test approach on the
coverage criteria.

This approach generates test cases automatically, and the
work tester reduces. This approach can be used to the system
under consideration uses all services of the system properly
perform its operations, or change in a service, the system have
the necessary reliability. The generated test cases can be used

International Journal of Computer Applications (0975 – 8887)
Volume 80 – No7, October 2013

41

in the regression testing, and impact of the change a service
identified in the systems. As regards, SOA has expanded in
the wide range of industries and organizations and it is still

expanding, the stakeholders are organizations, companies and
industries.

Fig 8: Generated test cases for BPEL_BluePrint3 system

Table 1. Run algorithms in BPEL_BluePrint3 system

Number run
Random Generator

node cover
BO Algorithm CU Algorithm Number Test cases

1 14 15 Not run 5

2 12 15 Not run 5

3 15 Not run Not run 5

4 12 15 Not run 5

5 14 15 Not run 5

6 14 15 Not run 5

7 13 15 Not run 5

8 10 15 Not run 5

9 6 14 15 6

10 13 15 Not run 5

Invokes graph generator needs to generate invokes graph from
the services were invoked directly. By combining these
graphs, the desired service invoke graph will generated. This
approach is generator to generate test cases in test integration
services by using BPEL, but this approach can be used to test
at the unit service.

The test program was created in the graph of a large system
by different services; the generated graph will be very large,
and display it on the screen and stored in the memory is one
of the challenges. Another the challenge is different
stakeholders, consequently, all of the partners don’t allowed

to monitor services to test the system, if they are allowed
under certain conditions that are predefined.

Another challenge with this approach, the SOA system is
distributed system, and that have been established on the
systems with different hardware and different software
platforms. It is therefore necessary to test the system with a
variety of platforms to support. That sometimes the new
implementation of system is easier than the complete system
testing in the bad implementation of system.

It is possible, change in the service changes on the service
invoke; as a result the invoke graph web service is changed.

International Journal of Computer Applications (0975 – 8887)
Volume 80 – No7, October 2013

42

The optimal approach is needed use to these approaches, the
changed of a service to the services used this service will be

optimize, also the generated invoke graph will be optimize.

Table 2. Run algorithms in ReservationSystem system

Number run Random Generator BO Algorithm CU Algorithm Number Test cases

1 12 Not run Not run 4

2 12 Not run Not run 4

3 12 Not run Not run 4

4 12 Not run Not run 4

5 11 12 Not run 4

6 12 Not run Not run 4

7 12 Not run Not run 4

8 11 12 Not run 4

9 12 Not run Not run 4

10 12 Not run Not run 4

The GUTPEL test tool were covered graph nodes in the
benchmark, which the test can be performed with the edges
covering, paths covering and other measures of the graph
covering. SOA testing will create on the logic based. In the
test program needs to generate and efficient approach for test
cases generation in the parallel nodes. And inaccessible paths
will be delete automatically to improve the test graph.

The optimized genetic algorithms used to create test systems.
In future work, several approaches and combine them to
create an optimized platform for the test. Initial test cases
obtained from other methods such as logic system. The
optimized algorithm in the target test will generate on specific
parts of the system.

5. ACKNOWLEDGMENTS
The author would like to thank specially Dr. Seyed Hasan
Mirian Hossienabadi who has extended his support for
successful completion of this paper.

6. REFERENCES
[1] Torry Harris Business Solutions (THBS) Company

(2007). SOA Test Methodology [White paper]. Retrieved
from www.thbs.com/pdfs/SOA_Test_Methodology.pdf

[2] Shamsoddin-Motlagh, E. (2012). A SURVEY OF
SERVICE ORIENTED ARCHITECTURE SYSTEMS
TESTING. International Journal of Software Engineering
& Applications (IJSEA), Vol.3, No.6, November 2012.
19-27. DOI : 10.5121/ijsea.2012.3602

[3] Wang, Y., Ishikawa, F., Honiden, S. (2010). Business
Semantics Centric Reliability Testing for Web Services
in BPEL. IEEE 6th World Congress on Services, 237-
244. Doi: 10.1109/SERVICES.2010.88

[4] Magedanz, T., Schreiner, F., Wahle, S. (2009). Service-
Oriented Testbed Infrastructures and Cross-Domain
Federation for Future Internet Research. 2009 IFIP/IEEE
Intl. Symposium on Integrated Network Management –
Workshops, 101-106. Doi:
10.1109/INMW.2009.5195944

[5] Bai, X., Dong, W., Tsai, W. T., Chen, Y. (2005). WSDL-
Based Automatic Test Case Generation for Web Services
Testing. 2005 IEEE International Workshop on Service-
Oriented System Engineering (SOSE’05), 1-6. Doi:
10.1109/SOSE.2005.43

[6] Jiang, Y., Li, Y. N., Hou, S. S., Zhang, L. (2009). Test-
Data Generation for Web Services Based on Contract
Mutation. 2009 Third IEEE International Conference on
Secure Software Integration and Reliability Improvement
SSIRI 2009 Short Paper, 281-286. Doi:
10.1109/SSIRI.2009.49

[7] Ma, C., Du, C., Zhang, T., Hu, F., Cai, X. (2008).
WSDL-Based Automated Test Data Generation for Web
Service. International Conference on Computer Science
and Software Engineering, 731-737. Doi:
10.1109/CSSE.2008.790

[8] Dong, W. (2009). Testing WSDL_based Web Service
Automatically. World Congress on Software
Engineering, 521-525. Doi: 10.1109/WCSE.2009.133

[9] Bartolini, C., Bertolino, A., Marchetti, E. (2009). WS-
TAXI: a WSDL-based testing tool for Web Services.
International Conference on Software Testing
Verification and Validation, 326-335. Doi:
10.1109/ICST.2009.28

[10] Noikajana, S., & Suwannasart, T. (2009). An Improved
Test Case Generation Method for Web Service Testing

International Journal of Computer Applications (0975 – 8887)
Volume 80 – No7, October 2013

43

from WSDL-S and OCL with Pair-wise Testing
Technique. 33rd Annual IEEE International Computer
Software and Applications Conference, 115-123. Doi:
10.1109/COMPSAC.2009.25

[11] Mei, L., Chan, W.K., Tse, T.H. (2008, May 10-18). Data
Flow Testing of Service-Oriented Workflow
Applications, ICSE ’08, Leipzig, Germany, 371-380.
Doi: 10.1145/1368088.1368139

[12] Lertphumpanya, T., & Senivongse, T. (2008, May).
Basis Path Test Suite and Testing Process for WS-BPEL.
WSEAS TRANSACTIONS on COMPUTERS. ISSN:
1109-2750, Issue 5, Volume 7, 483-496. Retrieved from
www.wseas.us/e-library/transactions/computers/2008/26-
156.pdf

[13] Yuan, Y., Li, Z., Sun, W. (2006). A Graph-search Based
Approach to BPEL4WS Test Generation. Proceedings of
the International Conference on Software Engineering
Advances (ICSEA'06). Doi:
10.1109/ICSEA.2006.261270

[14] Bartolini, C., Bertolino, A., Elbaum, S., Marchetti, E.
(2011). Bringing white-box testing to Service Oriented
Architectures through a Service Oriented Approach. The
Journal of Systems and Software, 84, 655–668.
Doi:10.1016/j.jss.2010.10.024

[15] Ma, C., Wu, J., Zhang, T., Zhang, Y., Cai, X. (2008).
Testing BPEL with Stream X-machine. International
Symposium on Information Science and Engieering,
578-582. Doi: 10.1109/ISISE.2008.201

[16] Dong, W.L., YU, H., Zhang, Y.B. (2006). Testing
BPEL-based Web Service Composition Using High-level
Petri Nets. Proceedings of the 10th IEEE International
Enterprise Distributed Object Computing Conference
(EDOC'06), 441 – 444. Doi: 10.1109/EDOC.2006.59

[17] Dong, W. (2009). Test Case Generation Method for
BPEL-based Testing. 2009 International Conference on
Computational Intelligence and Natural Computing, 467-
470. Doi: 10.1109/CINC.2009.229

[18] Zheng, Y., Zhou, J., Krause, P. (2007, September). An
Automatic Test Case Generation Framework for Web
Services. JOURNAL OF SOFTWARE, VOL. 2, NO. 3,
64-77. Retrieved from
http://epubs.surrey.ac.uk/1975/1/fulltext.pdf

[19] Lee, Y. (2009). 2-Layered SOA Test Framework Based
on BPA1-Simulated Event. Fifth International Joint
Conference on INC, IMS and IDC, 1058-1063. Doi:
10.1109/NCM.2009.337

[20] Mei, L. (2009, May 16-24). A Context-Aware
Orchestrating and Choreographic Test Framework for
Service-Oriented Applications. ICSE’09, Vancouver,
Canada, 371-374. Doi: 10.1109/ICSE-
COMPANION.2009.5071024

[21] Hou, J., & Xu, L. (2009). DFTT4CWS: A Testing Tool
for Composite Web Services Based on Data-Flow. Sixth
Web Information Systems and Applications Conference,
62-67. Doi: 10.1109/WISA.2009.19

[22] Huang, J, & Gong, Y. (2010). An EMF Activity Tree
Based BPEL Defect Pattern Testing Method. 2nd
International Conference on Computer Engineering and
Technology, 7, 468-471. Doi:
10.1109/ICCET.2010.5485536

[23] Cavalli, A., Cao, T.D., Mallouli, W., Martins, E.,
Sadovykh, A., Salva, S., Za¨ıdi, F. (2010).WebMov A
dedicated framework for the modelling and testing of
Web Services composition. IEEE International
Conference on Web Services, 377-384. Doi:
10.1109/ICWS.2010.24

[24] Bo, Y., Ye-mei, Q., Ge, Y., Chang, G. (2009). Tabu
Search and Genetic Algorithm to Generate Test Data for
BPEL Program. Computational Intelligence and
Software Engineering (CiSE), 1-6. Doi:
10.1109/CISE.2009.5363674

[25] Bakota, T., Beszédes, Á., Gergely, T., Gyalai, M. I.,
Gyimóthy, T., Füleki, D. (2008). Semi-Automatic Test
Case Generation from Business Process Models. This
research was supported in part by the Hungarian national
grants RET-07/2005, OTKA K-73688 and TECH_08-
A2/2-2008-0089 SZOMIN08. Retrieved from
http://www.inf.u-
szeged.hu/~beszedes/research/bakota09_semiautomatic.p
df

[26] Mani, S., Sinha, V. S., Sinha S. Dhoolia, P. Mukherjee,
D. Chakraborty, S. (2009). Efficient Testing of Service-
Oriented Applications Using Semantic Service Stubs.
IEEE International Conference on Web Services, 197-
204. Doi: 10.1109/ICWS.2009.40

[27] Yuan, Q., Wu, J., Liu, C., Zhang, L. (2008). A Model
Driven Approach Toward Business Process Test Case
Generation. 10th International Symposium on Web Site
Evolution (WSE), 41-44. Doi:
10.1109/WSE.2008.4655394

[28] Jehan, S., Pill I., Wotawa, F. (2013). Functional SOA
Testing Based on Constraints. AST 2013, San Francisco,
CA, USA. 33-39. 978-1-4673-6161-3/13 IEEE.

[29] Li, B., Qiu, D., Ji, S., Wang, D. (2010). Automatic Test
Case Selection and Generation for Regression Testing of
Composite Service Based on Extensible BPEL Flow
Graph. 26th IEEE International Conference on Software
Maintenance in TimiSoara, Romania, 1-10. Doi:
10.1109/ICSM.2010.5609541

[30] Li, B., Qiu, D., Leung, H., Wang, D. (2012). Automatic
test case selection for regression testing of composite
service based on extensible BPEL flow graph. The
Journal of Systems and Software Volume 85, Issue 6,
1300–1324. Doi:10.1016/j.jss.2012.01.036

[31] Canfora, G., & Penta, M. D. (2006). SOA Testing and
Self-Checking. International Workshop on Web Services
Modeling and Testing (WS-MaTe 2006), 3-12. Retrieved
from http://www.selab.isti.cnr.it/ws-mate/Canfora_WS-
MaTe.pdf

[32] MOHANTY, R. K., PATTANAYAK, B. K., PUTHAL,
B., MOHAPATRA, D. P., (February 2012). A ROAD
MAP TO REGRESSION TESTING OF
SERVICEORIENTED ARCHITECTURE (SOA)
BASED APPLICATIONS. Journal of Theoretical and
Applied Information Technology. 60-65. 15 February
2012. Vol. 36 No.1

[33] Zmudaa, D., Psiuk, M., Zielinski, K. (2010). Dynamic
monitoring framework for the SOA execution
environment. International Conference on Computational
Science (ICCS 2010), 1, 125-133.
Doi:10.1016/j.procs.2010.04.015

International Journal of Computer Applications (0975 – 8887)
Volume 80 – No7, October 2013

44

[34] Kabbani, N., Tilley, S., Pearson, L. (2010, April 5–10).
Towards an Evaluation Framework for SOA Security
Testing Tools. SysCon 2010 – IEEE International
Systems Conference San Diego, CA, 438-443. Doi:
10.1109/SYSTEMS.2010.5482322

[35] Ilieva, S., Pavlov, V., Manova, I. (2010). A Composable
Framework for Test Automation of Service-Based
Applications. 2010 Seventh International Conference on
the Quality of Information and Communications
Technology, 286-291. Doi: 10.1109/QUATIC.2010.54

[36] Cao, T.D., Felix, P., Castanet, R. (2010). WSOTF An
Automatic Testing Tool for Web Services Composition.
Fifth International Conference on Internet and Web
Applications and Services, 7-12. Doi:
10.1109/ICIW.2010.9

[37] Lallali, M., Zaidi, F., Cavalli, A., Hwang, I. (2008).
Automatic Timed Test Case Generation for Web
Services Composition. Sixth European Conference on
Web Services, 53-62. Doi: 10.1109/ECOWS.2008.14

[38] Bertolino, A., Angelis, G.D., Lonetti, F., Sabetta, A.
(2008). Automated Testbed Generation for Service-
oriented Mobile Applications. 34th Euromicro
Conference Software Engineering and Advanced
Applications, 321-328. Doi: 10.1109/SEAA.2008.33

[39] Martin, E., Basu, S., Xie, T. (2007). Automated Testing
and Response Analysis of Web Services. IEEE
International Conference on Web Services (ICWS), 647-
654. Doi: 10.1109/ICWS.2007.49

[40] Conroy, K. M., Grechanik, M., Hellige, M., Liongosari,
E. S., Xie, Q. (2007). Automatic Test Generation From

GUI Applications For Testing Web Services. Software
Maintenance, IEEE International Conference on ICSM,
345-354. Doi: 10.1109/ICSM.2007.4362647

[41] Melo A. C.V. d., & Silveira, P. (2011). Improving data
perturbation testing techniques for Web services.
Information Sciences 181, 600–619.
Doi:10.1016/j.ins.2010.09.030

[42] Mohammad, A. F., & Mcheick, H. (2011). Cloud
Services Testing An Understanding. The 2nd
International Conference on Ambient Systems, Networks
and Technologies, Procedia Computer Science, 5, 513–
520. Doi:10.1016/j.procs.2011.07.066

[43] Palacios, M., Garcio-Fanjul, J., Tuya, J. (2011). Testing
in Service Oriented Architectures with dynamic binding:
A mapping study. Information and Software Technology,
53, 171–189. Doi:10.1016/j.infsof.2010.11.014

[44] Kalamegam, P., Godandapani, Z. (October, 2012). A
Survey on Testing SOA Built using Web Services.
International Journal of Software Engineering and Its
Applications. 91-104, Vol. 6, No. 4.

[45] Sofokleous, A. A., Andreou, A. S. (2008). Automatic,
evolutionary test data generation for dynamic software
testing. The Journal of Systems and Software, 81, 1883–
1898. Doi:10.1016/j.jss.2007.12.809

[46] Sofokleous, A. A., Andreou, A. S. (2008). Automatic,
evolutionary test data generation for dynamic software
testing. The Journal of Systems and Software, 81, 1883–
1898. Doi:10.1016/j.jss.2007.12.809

IJCATM : www.ijcaonline.org

