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Abstract: Replanning is a powerful mechanism for con-

trolling robot motion under hard constraints and un-

predictable disturbances, but it involves an inherent

tradeoff between the planner’s power (e.g., a planning

horizon or time cutoff) and its responsiveness to distur-

bances. This paper presents an adaptive time-stepping

architecture for real-time planning with several advan-

tageous properties. By dynamically adapting to the amount

of time needed for a sample-based motion planner to

make progress toward the goal, the technique is robust

to the typically high variance exhibited by replanning

queries. The technique is proven to be safe and asymp-

totically complete in a deterministic environment and

a static objective. For unpredictably moving obstacles,

the technique can be applied to keep the robot safe more

reliably than reactive obstacle avoidance or fixed time-

step replanning. It can also be applied in a contingency

planning algorithm that achieves simultaneous safety-

seeking and goal-seeking motion. These techniques gen-

erate responsive and safe motion in both simulated and

real robots across a range of difficulties, including ap-

plications to bounded-acceleration pursuit-evasion, in-

door navigation among moving obstacles, and aggres-

sive collision-free teleoperation of an industrial robot

arm.

1 Introduction

Robots must frequently adjust their motion in real-time

to respond to unmodeled disturbances. A common ap-

proach to deal with nonlinear dynamics and hard state

and control constraints is to reactively replan at each

time step.This basic approach has been studied under
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various nomenclature (model predictive control, reced-

ing horizon control, or real-time planning) and using

various underlying planners (numerical optimization,

forward search, or sample-based motion planners), and

is less susceptible to local minima than myopic poten-

tial field approaches. But replanning, in all its forms,

faces a fundamental tradeoff based on the choice of time

limit: too large, and the system loses responsiveness; too

short, and the planner may fail to solve difficult prob-

lems in the allotted time, which sacrifices global con-

vergence and safety. Empirical tuning by hand is the

usual approach. But the time needed to solve a plan-

ning query can vary by orders of magnitude not only

between problems, but also between different queries

in the same problem, and even on the same query (in

the case of randomized planners). Unless variability is

addressed, the safety and completeness of real-time re-

planning is in doubt.

The first contribution of this paper is to demon-

strate that a real-time replanning framework that adapts

the time steps devoted to planning can achieve higher

tolerance to variability in planning time than constant

time steps. Section 3 presents the adaptive time-stepping

with exponential backoff (ATS+EB) algorithm, which

uses a sample-based planner to build partial plans whose

endpoints monotonically improve an objective function

that is given as input. ATS+EB adaptively learns a

suitable time step on-the-fly by observing whether the

planner is able to make progress within the time limit.

In systems with deterministic dynamics it guarantees

safe motion by construction, and furthermore we prove

that the robot plans a path to a global optimimum of

the objective function in expected finite time for a large

class of systems (e.g., reversible systems). We apply it

to real-time obstacle avoidance for a 6DOF industrial

robot in a cluttered environment both in simulation
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Fig. 1: Assisted teleoperation demonstrations on the

Staubli TX90 robot. Top: a circular motion in free space

is followed closely. Bottom left: a commanded motion

through a box is halted within 1cm of hitting the box.

Bottom right: although the command passes through

the table top, the robot finds a motion around it.

and on a real robot (Figure 1). The same approach can

also be easily applied to variable network latency (jit-

ter) when the robot is controlled by a remote controller.

We inject artificial latency into our network to demon-

strate dynamically feasible, collision-free motion can be

controlled in the presence of arbitrary network delays.

The second contribution of this paper is to demon-

strate several advantages of adaptive time-stepping in

unpredictable dynamic environments. Here it is appar-

ent that there exist difficult scenarios in which safety

and completeness cannot be guaranteed under finite

computational resources. Yet adaptive time stepping

may be used to schedule resources in order to minimize

the risks of failure. A faster response may be needed

in a time-critical situation, while more powerful ad-

vanced resoning may be needed in a complex one. We

present two additional algorithms in Section 4 based on

this approach. The first algorithm is a minor variant of

ATS+EB applied to optimizing a safety objective. The

second is a new conservative contingency planning al-

gorithm that guarantees safety with a pessimistic plan

while also seeking an objective function, and we ap-

ply it to pursuit-evasion and indoor obstacle avoidance

problems.

Several simulations suggest that adaptive time step-

ping is more consistent than constant time stepping in

both deterministic and nondeterministic environments.

It can even outperform reactive approaches in obstacle

avoidance scenarios where reactive approaches are tra-

ditionally considered to work quite well. We conclude

with some discussions about the limitations of replan-

ning architectures and avenues for future work.

An earlier version of this work was presented in [9].

2 Related Work

Because planning can be computationally expensive,

planning before execution can lead to long delays in

movement. To address this problem, real-time planning

considers interleaving planning with execution, and hence

the agent may decide to compute only partial local

plans in order to avoid delays in the onset of move-

ment. Real-time planning systems differ in many re-

spects, such as the choice of which underlying plan-

ner to use, how much time to spend in each iteration,

how detailed to make each plan, how to choose between

candidate partial plans, and how to reuse computa-

tion between iterations. For any such system we must

ask whether the agent will always remain safe (correct-

ness), will always reach a goal (completeness), and how

long the agent will take to reach a goal (optimality).

Safety is trivially guaranteed in systems without drift,

whereas safety in systems with drift can be addressed

using slightly more sophisticated planning (see below).

As for completeness and optimality, few performance

bounds exist outside of relatively restrictive settings

(e.g., finite state spaces [24], linear systems with con-

vex constraints [15], or known, large terminal sets [1]).

The ATS+EB algorithm attains a general probabilistic

completeness condition for continuous, nonlinear sys-

tems and arbitrary objective functions over configura-

tion space. Consideration of path optimality is left for

future work.

Bounded Rationality in Real-Time Agents. Real-time

planning architectures have a long history of study in

artificial intelligence, control theory, and robotics, but

few have explicitly addressed the problem of “bounded

rationality”, where limited computational resources ham-

per an agent’s ability to produce timely, optimal plans.

A notable exception is the CIRCA real-time agent ar-

chitecture [17] that separates the agent’s control into

high-level planning and low-level reactive control tasks.

The high-level task conveys controller specifications to

the low-level task whenever planning is complete. The

disadvantage of this approach is that uncertainty in

computation time causes uncertainty in state even in

deterministic environments because the system moves

during planning. This leads to harder planning prob-

lems. By contrast our approach avoids state uncertainty

by ensuring, via a hard cutoff, that planning only af-

fects the portion of the trajectory to be executed after

the planning completion time, much like [5, 11,19].
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Replanning Applications and Implementations. Model

predictive control (MPC), aka receding horizon control,

is a form of replanning that at each time step formulates

a optimal control problem truncated at some horizon.

Such techniques have been successful in robot naviga-

tion [2,23]; for example the classic dynamic windowing

technique introduced for indoor mobile robot naviga-

tion is essentially MPC by another name [23]. In non-

linear systems, truncated optimal control problems are

often solved using numerical optimization or dynamic

programming [1, 15]. In discrete state spaces, efficient

implementations of replanning algorithms include the

D* and Anytime A* algorithms which are based on

classic heuristic search [14,24,25].

Sample-based motion planners such as randomly-

exploring random trees (RRTs) and expansive space

trees (ESTs) have been applied to real-time replanning

for dynamic continuous systems [4, 5, 11, 28]. RRT and

EST variants have been applied to 2D helicopter nav-

igation [5], free-floating 2D robots [11], and and car-

like vehicles [19] among moving obstacles, as well as

exploring an unknown environment [3] and distributed

communication in multi-robot systems [8]. Our algo-

rithms also use sample-based planners because they can

be practically applied to high-dimensional spaces, but

to our knowledge no prior technique addresses the prob-

lem of completeness in predictable environments.

Time Stepping in Replanning. Although many authors

have proposed frameworks that can handle nonuniform

time steps [3, 5, 19, 28], few actually exploit this capa-

bility to adapt to the power of the underlying planner.

We are aware of one paper in the model predictive con-

trol literature [20] that advances time exactly by the

amount of time taken for replanning. The weakness of

this approach is that if replanning is slow, the actions

taken after planning are based on outdated state esti-

mates, leading to major instability and constraint vio-

lations. Our work, like many others, avoids this prob-

lem by setting planner cutoffs and projecting state es-

timates forward in time at the start of planning. To

adapt the replanning cutoffs we follow the exponential

backoff strategy that has proven highly successful in

network switching algorithms [16]. The key insight is

to treat the uncertainty inherent in sample-based plan-

ning much like the uncertainty of an unreliable network.

Safety Mechanisms. Several mechanisms have been pro-

posed to address the safety of replanning agents in dy-

namic environments. Feron et al introduced the notion

of τ -safety, which indicates that a trajectory is safe for

at least time τ [5]. Such a certificate establishes a hard

deadline for replanning. Hsu et al introduced the notion

of an “escape trajectory” as a contingency plan that is

taken in case the planner fails to find a path that makes

progress toward the goal [11]. We use a contingency

planning technique for unpredictable environments that

is much like a conservative escape trajectory approach,

except that it always ensures the conservative path is

followed in case of a planning failure.

The notion of inevitable collision states (ICS) was

introduced by Petti and Fraichard to the problem of

real-time planning for a car-like vehicle among moving

obstacles [19]. An ICS is a state such that no possible

control can recover from a collision, and considering ICS

as virtual obstacles prevents unnecessary exploration of

the state space. In practice, testing for ICS can only be

done approximately, and the conservative test proposed

in [19] may prevent the robot from passing through

states that are actually safe. Our work provides sim-

ilar safety guarantees without explicit testing for ICS.

The basic approach is to extend a search tree by apply-

ing random controls as well as braking actions. Solution

paths are constrained to terminate at rest states.

Speeding up Replanning. Many approaches have sought

to improve responsiveness by simply reducing average

replanning time. Some common techniques are to reuse

information from previous plans [4], to use precomputed

coarse global plans to essentially reduce the depth of lo-

cal minima [2,12,23,26], or a combination [3,28]. These

approaches are mostly orthogonal to the choice of time

step and can be integrated with the adaptive time step-

ping approach proposed in this paper.

3 Replanning in Deterministic Environments

This section presents the adaptive time-stepping tech-

nique as applied to deterministic environments. We note

that deterministic environments may be not be static;

dynamic environments are also addressed here as long

as the environment’s motion is predictable. Theoretical

and simulation results are described, as well as an ap-

plication to real-time assisted teleoperation of a robot

manipulator.

3.1 Assumptions and Notation

The state of the robot x lies in a state space S, and its

motion must obey differential constraints ẋ ∈ U(x, t)

(note that this is simply a more compact way of writing

control constraints). We assume that the robot has a

possibly imperfect model of the environment and how

it evolves over time, and let F (t) ⊆ S denote the subset

of feasible states at time t. We say that a trajectory

y(t) is τ -safe if y(t) ∈ F (t) and ẏ(t) ∈ U(y(t), t) for all

0 ≤ t ≤ τ . If so, we say y(t) is an Fτ trajectory.
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Fτ trajectories are guaranteed to remain feasible un-

til time τ , and in the presence of planning time uncer-

tainty it is important to remain on trajectories with

high τ . This section will restrict the robot to F∞ tra-

jectories in order to ensure hard safety guarantees. (We

will relax this requirement in Section 4 because it is

unrealistic for unpredictable environments, but we will

lose safety guarantees.) F∞ feasibility can be achieved

by ensuring that each trajectory terminates at a feasi-

ble stationary state. For certain systems with dynamics,

such as cars and helicopters, a “braking” control can be

applied. This paper will not consider systems like air-

craft that cannot reach zero velocity, although terminal

cycles may be considered as a relatively straightforward

extension.

We address the problem of reaching a global mini-

mum of a continuous time-invariant potential function

V (x) via an F∞ trajectory y(t) starting from the initial

state x0. Assume the global minimum is known and is

attained, without loss of generality, at V (x) = 0. We

say any trajectory that reaches V (x) = 0 is a solution

trajectory. We do not consider path cost, and define

the cost functional C(y) that simply returns the value

of V (x) at the terminal state of the trajectory y. It is

important to note that when we refer to an optimal so-

lution in this paper, we are referring to the optimality

of the terminal point, not the trajectory taken to reach

it.

3.2 Real-Time Replanning Architecture

In real-time replanning the robot interleaves threads of

replanning and execution, in which the robot executes

a partial trajectory (possibly using a high rate feed-

back controller) that is intermittently updated by the

replanning thread (at a lower rate) without interrupting

execution.

The communication between the execution and re-

planning thread is subject to the real-time constraint

that no portion of the current trajectory that is being

executed can be modified. So, if a replan is instanti-

ated at time t and is allowed to run for time ∆, then

no portion of the current trajectory before time t + ∆

may be modified. Thus when the architecture chooses

a time cutoff ∆, the planner starts from a state prop-

agated in the future by time ∆. The prediction step is

important because otherwise the new plan may start at

an out-of-date state estimate, leading to a loss of safety

or convergence.

We assume that the underlying planner has the fol-

lowing “any-time” characteristics:

ATS+EB. Replanning with an Adaptive Time-Step
Initialization:
0a. y(t) is set to an F∞ initial trajectory starting from
t = 0.
0b. ∆1 is set to a positive constant.

Repeat for k = 1, . . .:
1. Measure the current time tk
2. Initialize a plan starting from y(tk +∆k), and plan for
∆k time
3. If C(ŷ) ≤ C(y)− ε for the best trajectory ŷ(t) generated
so far, then
4. Replace the section of the path after tk +∆k with ŷ
5. Set ∆k+1 = 2/3∆k

6. Otherwise,
7. Set ∆k+1 = 2∆k

Fig. 2: Pseudocode for the replanning algorithm.

1. The planner iteratively generates F∞ trajectories

starting from an initial state and time y(t0) given

as input.

2. Planning can be terminated at any time, at which

point it returns the trajectory that attains the least

value of the cost functional C(y) found so far.

3. If the planner is given no time limit on any query

that admits a solution trajectory, then the planner

finds a solution in expected finite time.

A variety of underlying planning techniques (e.g., tra-

jectory optimization, forward search, and sample-based

motion planning) can be implemented in this fashion.

All simulations and experiments in this paper are con-

ducted with minor variants of the sampling-based plan-

ners RRT [13] and SBL [21], which grow trees using for-

ward integration of randomly-sampled control inputs.

Adaptive time-stepping is particulary important for sample-

based planners because their running time is variable

across runs on a single query, and can vary by orders

of magnitude with the width of narrow passages in the

feasible space.

3.3 Adaptive Time-Stepping With Exponential

Backoff

Here we describe our adaptive-time step replanning al-

gorithm and a simple but effective exponential back-

off strategy for adapting to an appropriate time step.

Pseudocode is listed as ATS+EB in Figure 2. The re-

planning thread takes time steps ∆1, ∆2, . . .. In each

time step, the planner is initialized from the state on

the current trajectory at time tk + ∆k, and plans un-

til ∆k time has elapsed (Line 2). If the planner finds a

trajectory with lower cost than the current trajectory

(Line 3) then the new trajectory is spliced into current

trajectory at the junction tk +∆k (Line 4). Otherwise,
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Current time

Time step

y(t)

... succeeds

... or fails

Replanning...

∆2

t1 t2

∆2

t1 t2

t1t0

∆1

tt1t0

Fig. 3: Each replanning iteration chooses a time step

(left), initiates a plan starting from the predicted fu-

ture state (center), and either succeeds or fails. Upon

success, the robot progresses on the new plan and the

time step is contracted. Upon failure, the robot retains

the original plan and the time step is increased.

the current trajectory is left unaltered and replanning

repeats.

Note that the condition in Line 3 requires a decrease
in C by some small amount ε > 0. This simplifies later

analysis by preventing the theoretical occurrence of an

infinite number of infinitesimal cost improvements.

Lines 5 and 7 implement a simple exponential back-

off strategy for choosing the time cutoff. This permits

recovery from a local minimum of V (x) in case sev-

eral planning failures are encountered in sequence. Such

strategies are widely used in protocols for handling net-

work congestion [16], and there is a rough analogy be-

tween uncertainty in planning time and uncertainty in

message delivery over an unreliable network. The idea

is simple: if the planner fails, double the time step (Line

7). If it succeeds, contract the time step (Line 5). The

constant 2/3 that we use in the contraction strategy

does not need to be chosen particularly carefully, al-

though if it is near 1 the system will be slow to adapt

to easier planning subproblems. In practice, resetting

∆k+1 to a small value works well too. Figure 3 illus-

trates one iteration of the protocol.

3.4 Safety, Completeness, and Competitiveness

Analysis

Here we will prove the straightforward result that ATS+EB

keeps the robot in a feasible state. We will also prove

that ATS+EB is probabilistically complete for static

goals as long as the robot never reaches a state where

the goal becomes unreachable.

Theorem 1 ATS+EB will never drive the robot to an

infeasible state.

Proof By construction, the robot is driven only along

F∞ trajectories. Since F∞ never leaves the feasible set

for any t, the theorem holds. A corollary is that the

robot is never driven into an inevitable collision state

(ICS) as defined in [19]. �

Theorem 2 If the environment is deterministic and

perfectly modeled, and the goal is reachable from any

state that is reachable from the start, then ATS+EB

will find a solution trajectory in finite expected time.

Proof Let R be the set of states reachable from the

start, and let Px(t) denote a function describing the

probability that the planner finds a solution trajectory

within time t starting from state x ∈ R. It must hold

that Px(t) is nondecreasing with Px(0) = 0. Integrat-

ing by parts, the expected running time of the planner

E[T (x)] starting from x is therefore

E[T (x)] =

∫ ∞
t=0

tP ′x(t)dt =

∫ ∞
t=0

(1− Px(t))dt. (1)

Because expected running time was assumed finite in

Section 3.1, we have limt→∞ Px(t) = 1 for all x. Now

define P (t) as the minimum value of Px(t) over all x ∈
R. We then define a bound Tmax on expected running

time using the equation:

Tmax =

∫ ∞
t=0

(1− P (t))dt. (2)

First we will show that the time until a successful

plan update has a finite expected value. The planning

cutoff on the k’th unsuccessful iteration is 2k−1∆1 and

so the probabilty of updating the plan by the k’th iter-

ation is at least P (∆k) where ∆k = 2k−1∆1. If the al-

gorithm succeeds on the k’th iteration, then (2k−1)∆1

time will have elapsed. Now define the partial sums

SN = ∆1P (∆1)+

N∑
k=2

(2k−1)∆1(P (∆k)−P (∆k−1)) (3)

so that S∞ is an upper bound on the expected time

before ATS+EB finds a successful plan update. With
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some rearranging of sums we can show that

SN ≤
N−1∑
k=1

2k∆1(P (∆N )− P (∆k)). (4)

We have that P (∆N ) ≤ 1 and P (∆k) ≥ P (t) for t ∈
[∆k−1, ∆k], so that

(P (∆N+1)− P (∆k)) ≤ 1

∆k−1

∫ ∆k

t=∆k−1

(1− P (t))dt (5)

Substituting this into (4), we have

SN ≤
N∑
k=1

4

∫ ∆k

t=∆k−1

(1− P (t))dt

= 4

∫ ∆N

t=0

(1− P (t))dt

(6)

As N goes to ∞ we find that S∞ ≤ 4Tmax, which is

finite.

The number N of plan updates needed to reach a

global minimum is finite since the initial trajectory has

finite cost, and each plan update reduces cost by a sig-

nificant amount. So, the total expected running time of

ATS+EB is bounded by 4NTmax, which is finite. �

We remark that the bound 4NTmax is extremely

loose, and seemingly poor compared to the performance

bound Tmax of simply planning from the initial state

until a solution is found. In practice, replanning itera-

tions are comprised primarily of small, greedy advances

in C(y) that are planned quickly, along with a few plan-

ning queries of high difficulty corresponding to escaping

deep local minima of C. The running time of ATS+EB

will tend to be dominated by the few difficult queries.

3.5 Failure Cases

In systems that violates the assumptions of Theorem

2, ATS+EB may not converge to the global objective.

We will distinguish between Type I and Type II errors,

which can be thought of, respectively, as errors of local

and global foresight:

1. Type I. Time-varying goals. For example, if the global

minima of V might alternate quickly between two

locally easy but globally difficult problems, then the

algorithm will forever just make local progress and

will thereby keep the time step short.

2. Type II. The robot is inadvertently driven into a

dead end from which it cannot escape — a condition

we call an inevitable failure state. This is a violation

of the assumption of Theorem 2 that the goal can

be reached by all states in R.
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Fig. 4: (a) A 2D benchmark problem. Passage width,

and hence, difficulty, is parameterized by w. (b) The

time to reach the goal is sensitive to passage width,

and short cutoffs (0.05 and 0.2) fail completely on diffi-

cult problems. The adaptive exponential backoff strat-

egy (E.B.) is more consistent across problem variations.

The execution time of the optimal path is shown for
comparison. (c) The average time for adaptive time

stepping compared to the theoretical bound (Bound)

of Theorem 2. Offline planning time (Plan Only) and

offline planning + execution (Plan+Exec) time are plot-

ted for comparison.

We note that Type II errors do not exist in reversible

systems, and that neither type of failures cause safety

violations.

3.6 Completeness and Sensitivity Experiments

We evaluated the performance of the adaptive strategy

against constant time stepping strategies on a static

2D benchmark across varying problem difficulties. Con-

sider a unit square state space S where the state is sub-

ject to velocity constraints ||ẋ|| ≤ 1. Obstacles partition

the feasible space F (t) into two “rooms” with opposite-
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facing doorways, which are connected by hallways (see

Figure 4). The state must travel from (0.3, 0.5) to (0.6, 0.5),

and the potential function V (x) simply measures the

distance to the goal. For replanning we use a unidirec-

tional RRT planner [13], which, like other sample-based

planners, is sensitive to the presence of narrow passages

in the feasible space. We control the difficulty of escap-

ing local minima by varying a parameter w, and set the

hallway widths to w and the doorway widths to 2w.

We measure performance as the overall time taken

by the robot to reach the goal, averaged over 100 runs

with different random seeds. If it cannot reach the goal

after 120 s, we terminate the run and record 120 s as the

running time. Experiments compared performance over

varying w for constant cutoffs 0.05, 0.2, 1, and 5 s and

the exponential backoff algorithm starting with ∆1 =

0.1 (performance was relatively insensitive to choice of

∆1).

Figure 4 plots the performance of several strategies.

It can be seen that shorter cutoffs are unreliable on

hard problems because the planner is unable to con-

struct paths that escape the local minimum of the ini-

tial room. On the other hand, longer cutoffs waste time

on easier problems. The adaptive strategy outperforms

constant cutoffs on most problems except the narrowest

passage, in which it was 45% slower than the best con-

stant cutoff. This extra time is consumed while it learns

an appropriately large time step while stuck in the local

minimum of the first room. Running times are also con-

sistent with the theoretical bounds in Theorem 2, and

are only slightly slower than planning before execution.

3.7 Assisted Teleoperation Experiments on a 6DOF

Manipulator

Replanning interleaves planning and execution, so mo-

tion appears more fluid than a pre-planning approach.

This is advantageous in human-robot interaction and

assisted teleoperation applications where delays in the

onset of motion may be viewed as unnatural. We imple-

mented a teleoperation system for a dynamically simu-

lated 6DOF Staübli TX90L manipulator that uses ATS+EB

for real-time obstacle avoidance in assisted control. The

robot is able to reject infeasible commands, follow com-

mands closely while near obstacles, and does not get

stuck in local minima like potential field approaches.

We have also applied it to the real robot as well, using

the adaptive time-stepping approach to handle variable

network latency between the planner and the robot.

In this system, an operator controls a 3D target

point (for example, using a mouse, joystick, or a laser

pointer), and the robot is instructed to reach the point

using its end effector. The robot’s state space consists

of configuration × velocity. Its configuration is subject

to joint limit and collision constraints, and acceleration

and velocity are bounded. The objective function for

the planner is an unpredictably time-varying function

V (x, t) which measures the distance from the end ef-

fector to the target point. It should be noted that the

robot is not trying to follow the trajectory and speed

of the target point, but rather just the position. Nev-

ertheless in this scheme the robot follows the speed of

the trajectory quite closely in unconstrained regions. If

user moves the target too quickly or through an obsta-

cle, then the system will deviate to obey constraints.

Our underlying planner is a unidirectional variant

of the SBL motion planner [21] that is adapted to pro-

duce dynamically feasible paths. We made the following

adjustments to the basic algorithm:

– We extend the search tree by sampling extensions to

stationary configurations sampled at random. The

local planner constructs dynamically feasible tra-

jectories that are optimal in obstacle free environ-

ments (a similar strategy was used in [5]). To do so,

we use analytically computed trajectories that are

time-optimal under the assumption of box-bounds

on velocity and acceleration [10].

– For every randomly generated sample, we generate

a second configuration using an inverse kinematics

solver in order to get closer to the target.

– SBL uses a lazy collision checking mechanism that

improves planning time by delaying edge feasibility

checks, usually until a path to the goal is found. We

delay edge checks until the planner finds a path that

improves C(y).

– To improve the fluidity of motion, we devote 20%

of each time step to trajectory smoothing. We used

the shortcutting heuristic described in [10] that re-

peatedly picks two random states on the trajectory,

constructs a time-optimal segment between them,

and replaces the intermediate portion of the trajec-

tory if the segment is collision free.

The simulation environment is based on the Open

Dynamics Engine rigid-body simulation package, where

the robot is modeled as a series of rigid links controlled

by a PID controller with feedforward gravity compen-

sation and torque limits. The simulation does perform

collision detection, but in our tests the simulated robot

did not collide with the environment.

We simulated a user commanding a target to follow

a circular trajectory that passes through the robot and

obstacles (Figure 5). The circle has radius 0.8 m and

a period of 20 s. The upper semicircle is relatively un-

constrained and can be followed exactly. Targets along

the lower semicircle are significantly harder to reach; at

several points they pass through obstacles, and at other
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Fig. 5: A simulated Staübli TX90L manipulator is commanded in real time to move its end effector in a clockwise

circle in a cluttered environment. The robot responds reactively to the target’s motion. Along the upper semicircle,

rapid replanning with a short time step allows the target to be followed closely. When obstacles are encountered

on the lower semicircle, planning becomes more difficult. Adaptive time stepping gives the planner sufficient time

to enter and escape deep narrow passages. The current plan is drawn in orange, and its destination configuration

is drawn transparently.

points they require the robot to execute contorted ma-

neuvers through narrow passages in the feasible space.

Experiments show that ATS+EB can reach a large por-

tion of the lower semicircle while tracking the upper

semicircle nearly perfectly (Figure 6). Examining the

mean squared error between the target and the actual

end effector positions, we find that ATS+EB attains far

lower error than long constant time steps and slightly

lower error than short ones. We also compare mean

squared objective function values for the robot’s cur-

rent path. This value can be viewed as the resulting

MSE if the target stopped to let the robot catch up.

We find that ATS+EB and longer time steps attain far

better objective function values than shorter time steps.

The scheme is quite usable. In recent work we have

studied how novice users perform reaching tasks using

a variety of assisted teleoperation schemes [27]. Com-

pared to several other schemes, the real-time planner

enabled users to solve reaching tasks in cluttered envi-

ronments twice as fast as other techniques while avoid-

ing collision. Furthermore, it incurred no significant neg-

ative impressions of “loss of control” relative to reactive

control.

We implemented the scheme on the real Staubli

TX90L as well (Figure 1). In these figures a CAD model

of the environment was constructed by hand and pro-

vided to the planner. In future work we hope to use a

model captured from a laser scanner. The planner re-

sides on an offboard PC and communicates with the

robot’s real-time controller via Ethernet. The network

imposes a latency that typically varies between 10–

20 ms. To handle latency both the controller and plan-

ner store a representation of the robot’s trajectory on

a global clock. The planner replans the trajectory from

a predicted state along the trajectory as usual, adding

the estimated latency to the allocated time step. The

new trajectory segment is transmitted over Ethernet

and the controller returns an “accept” or “reject” sig-

nal depending on whether it arrived completely before

the beginning of the segment. If accepted, both the con-

troller and planner update their trajectories. Otherwise,
the new trajectory is rejected and the planner adjusts

the estimated latency. We have tested the scheme with

synthetic latencies of up to 1 s without incurring colli-

sions or loss of dynamic feasibility.

4 Replanning in Unpredictable Environments

In contrast to the prior section, no safety guarantees

are possible in general unpredictable environments. For

example, there is nothing from stopping a determined

adversary from crashing into cars on a highway. So the

safety and completeness arguments of the prior section

do not apply. Nevertheless replanning is highly prac-

tical and has proven successful in practice. We show

that adaptive time stepping is very useful in this set-

ting, because planning time can be reduced to produce

urgent responses to imminent threats and increased to

allow long-term exploration once the robot reaches a

safer location.
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Fig. 6: Top: Traces of the end effector’s desired posi-

tion (Desired), the position at the current plan’s desti-

nation configuration (Destination), and actual position

as executed by the robot (Actual) for the simulation in

Figure 5. Bottom: Comparison of mean squared errors

for a variety of constant cutoffs and exponential backoff

over five consecutive circles. The second column indi-

cates the mean-squared objective function value for the

robot’s planned trajectories.

We first illustrate the principle on a variant of ATS+EB,

called ATS+S, that optimizes a safety measure given

bounded uncertainty, and allows for a high probability

of replanning within a certain time limit — the time to

potential failure, or TTPF — in which safety is guar-

anteed. To address the more practical task of achieving

a goal while priortizing safety, we present a algorithm,

ATS+C, that performs contingency planning of both

optimistic and pessimistic trajectories. Experiments

in simulated multi-agent scenarios demonstrate advan-

tages of adaptive time stepping for both algorithms.

4.1 Conservative Safety-Seeking Algorithm

We assume that the robot has access to conservative

bounds on the uncertainty of the environment, and let

Ek denote the environment model estimated by the

robot’s sensors at k’th time step. Let F (t;Ek) denote

the feasible set with the current model, and let F̃ (t;Ek)

denote the set of states that is guaranteed to be feasible

at time t under the conservative uncertainty bounds.

For example, if obstacle velocities are bounded, then

one can consider a conservative space-time “cone” of

possible obstacle positions that grows as time increases.

Definition. A trajectory y(t) has time to potential

failure (TTPF) T if it is safe for some duration T un-

der conservative bounds on uncertainty. That is, y(t) ∈
F̃ (t;Ek) for all t ∈ [tk, tk + T ].

ATS+S implements a purely safety-seeking robot by

adapting ATS+EB to use the TTPF as an optimization

criterion. The robot will remain safe as long as planning

can increase the TTPF faster than it is consumed. On

iteration k, ATS+S performs the following steps:

1. Sense the current environment Ek and compute the

TTPF T of the current trajectory.

2. Set ∆k ← max(∆k, T/2).

3. Plan a path ŷ that is F∞ in F̃ (t;Ek) and that achieves

a TTPF greater than T .

4. Reduce the time step if the new TTPF is at least

T +∆k; otherwise increase it.

The only significant changes to ATS+EB are in Steps

2 and 4. Step 2 picks a time step such that planning is

completed before the TTPF. If the constraint is active

it induces a sort of “panic mode” in which the robot

tries repeatedly to increase TTPF with shorter time

steps in the hopes that planning will succeed or that

a potential hazard goes away. The factor of 1/2 here

increases the chance of finding a feasible path, because

it places the initial state of the planning problem away

from the boundary of F̃ (t + ∆k, Ek). It also improves

the chances of exploiting non-worst-case behavior of the

environment. Step 4 requires that a significant increase

in the TTPF induces a reduction in the time step,

which ensures that time steps will be reduced only if

the TTPF can be improved at a roughly constant rate.

If the TTPF cannot be improved, then the time step

increases. Although this might seem counterintuitive, it

increases the chance of finding a large improvement via
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Fig. 7: Safety-seeking in a problem with 63 mov-

ing obstacles with unpredictable, randomized behav-

ior but bounded velocity. Robot has bounded acceler-

ation. Here the collision rate of adaptive time-stepping

is slightly lower than the best constant time-stepping

strategy, and is lower than the reactive potential field

(PF) and velocity obstacle (VO) approaches [6,7]. Data

was gathered over 100 s of execution.

a deep search. If no such improvement exists eventually

the time step will be restricted by the constraint in Step

2 and the behavior becomes more myopic and reactive.

We tested ATS+S in a challenging obstacle avoid-

ance simulation with dozens of circular obstacles in

the unit square. The robot has maximum speed 1 and

maximum acceleration 10. Obstacles have an unpre-

dictable, nonadversarial “wandering” behavior, bounce

elastically, and have a known maximum speed of 0.5. It

should be noted that despite the robot’s speed advan-

tage, multiple obstacles may surround the robot and

cause an unavoidable collision. Figure 7 compares col-

lision rates between a reactive potential field (PF) of

Ge and Cui (2002) [7], the Velocity Obstacles (VO)

formulation of Fiorini and Shiller (1998) [6], ATS+S

with adaptive time-step, and ATS+S with various con-

stant time-steps. Results over 100 seconds of simula-

tion demonstrate that adaptive time-stepping performs

equally well as the best constant-time step and far bet-

ter than PF and VO. We suspect this is the case because

it is conservative, unlike VO, and it is not myopic, like

PF.

t=1t=2t=3

Junction time tj Optimistic path

Pessimistic path

Case 1: ∆j < tj

Case 2: ∆j ≥ tj

Fig. 8: Above, an illustration of the contingency plan

data structure. Level sets (dotted lines) for the time-to-

potential-failure function for a bounded-velocity obsta-

cle (gray) are drawn. Below, the two main cases of the

contingency planning algorithm are illustrated. In the

first case a new plan is branched from the optimistic

path. In the second case a new plan is branched from

the pessimitic path.

4.2 A Contingency Replanning Algorithm

If the robot must also seek to optimize an objective

V (x), it must sacrifice some degree of safety in order to

do so. Below we describe a contingency planning frame-

work where the robot’s path has a similarly high prob-

ability of safety as the above scheme, but the planner

seeks to simultaneously increase the TTPF and makes

progress towards reducing V (x).

In our contingency planning algorithm ATS+C, the

robot maintains both an optimistic and a pessimistic

trajectory that share a common prefix (Figure 8). The

role of the pessimistic trajectory is to optimize the TTPF,

while the role of the optimistic trajectory is to encour-

age consistent progress toward the goal.

Pseudocode is listed in Figure 9. The pessimistic

trajectory y(t) is maintained and followed by default.
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ATS+C. Contingency Replanning with Adaptive Time
Steps
Initialization:
0a. y(t)← an initial trajectory starting from t = 0.
0b. yo(t)← nil.
0c. Junction time tj ← 0

Repeat for k = 1, . . .:
1. Measure the current time tk.
2. Pick a pessimistic and optimistic time limit ∆p

k and
∆o

k. Let ∆k = ∆p
k +∆o

k
3. If tj > tk +∆k (branch the new plan from the optimistic
path)
4. Plan an improved optimistic path starting from
yo(tj).
5. Plan a pessimistic path ŷ starting from yo(tj +∆k).
6. If Line 5 is successful, then
7. Set y(t) ← yo(t) for t ≤ tj + ∆k, and y(t) ← ŷ(t)
for t ≥ tj +∆k.
8. Set tj ← tj +∆k.
9. End
10. Otherwise, (branch the new plan from the pessimistic
path)
11. Plan an optimistic path starting from y(tk +∆k).
12. If successful, then
13. Plan a pessimistic path ŷ starting from
yo(tk + 2∆k).
14. If successful, then
15. Set y(t) ← yo(t) for tk + ∆k ≤ t ≤ tk + 2∆k,
and y(t)← ŷ(t) for t ≥ tk + 2∆k.
16. Set tj ← tk + 2∆k.
17. End
18. Otherwise,
19. Plan a pessimistic path ŷ starting from y(tk+∆k).
20. If successful, set y(t)← ŷ(t) for t ≥ tk +∆k.

Fig. 9: Pseudocode for the contingency replanning al-

gorithm.

The optimistic trajectory yo(t), if it exists, is identical

to y(t) until the “junction” time tj . Each iteration of

the replanning loop begins by establishing time limits

for the optimistic and the pessimistic planners, with

sum ∆k (Line 2). Then a top-level decision is made

whether to initiate the new plan from the optimistic or

the pessimistic trajectory:

– From the optimistic trajectory (Lines 4–9). To con-

tinue progress along yo after time tj , the robot must

generate a pessimistic trajectory that branches out

of yo at some time after tj . An improvement to the

optimistic plan is attempted as well.

– From the pessimistic trajectory (Lines 11–20). To

progress toward the target, the planner will attempt

to branch a new pessimistic and optimistic pair out

of the current pessimistic trajectory at time tk+∆k.

The new junction time will be tk+2∆k. If this fails,

the planner attempts an extension to the pessimistic

path.

To improve the optimistic path, the planner con-

structs a path in the optimistic feasible space F (t; tc)

based on the current environment model. A query is

deemed successful if, after time limit ∆o
k, C(yo) is im-

proved over the current optimistic path if it exists, or

otherwise over the current pessimistic path. If the query

fails, yo is left untouched. Pessimistic queries are han-

dled exactly as in the prior section.

To choose planning times, we again use an adap-

tive time stepping scheme using the exponential backoff

strategy of Section 3.3. Pessimistic and optimistic plan-

ning times are learned independently. We also make

adjustments in case the candidate time step exceeds

the finite TTPF of our paths. First, if we find that

∆k exceeds the TTPF T of the pessimistic path, that

is, failure may occur before planning is complete, we

set ∆p
k = T/2 and ∆o

k = 0. Second, if we are at-

tempting a modification to the optimistic trajectory,

and the TTPF of the optimistic trajectory T o is less

than tj + ∆k, then we scale ∆p
k and ∆o

k to attempt a

replan before T o (otherwise, the pessimistic replan is

guaranteed to fail).

4.3 Failure Cases

For unpredictable environments in general, there are

no guarantees on safety. there are again two types of

failure that may lead to violations of safety (as well as

completeness).

1. Type I. States for which escaping failure is difficult

for the planner. Consider a state on the verge of be-

coming an inevitable failure state. Without enough

time to successfully plan an escaping path, there

is no escape. Moreover some escape plans may re-

quire an intractably large number of contingencies

for possible future events.

2. Type II. Inevitable failure states.

In general, addressing Type I errors may be a simple

matter of increasing computational power or tuning re-

planning techniques, while Type II errors seem to re-

quire larger architectural changes to the algorithms to

incorporate global knowledge of the problem structure.

A major benefit of sample-based replanning is that a

factor n increase in computational power results in a

sharp reduction in Type I failure rate simply because if

n independent planning processes have individual fail-

ure probability p, the probability that they all fail si-

multaneously is pn. Such an approach would be quite

powerful should it be able to exploit parallel computing

in the underlying planner, for example in recent work

in sample-based planning on graphics hardware [18].
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Fig. 11: (a) A pursuit-evasion problem. Narrow pas-

sages, and hence, difficulty, are parameterized by w.

The evader (green) must try to reach the target (red)

within 10 s while avoiding the pursuer (blue), with cap-

ture radius 0.05. Success rates for (b) nonadversarial

and (c) adversarial pursuer behaviors. In the nonadver-

sarial case the pursuer is allowed to pass through obsta-

cles. A shorter time step (Cutoff 0.2) performs well in

the nonadversarial case, but a longer time step (Cutoff

0.5) performs better in the adversarial case. The adap-

tive strategy works well in both cases.

Increases in computational power are also likely to de-

crease the rate of Type II errors, but here the analysis

is much more complex. So, practical methods for de-

tecting and avoiding inevitable failure states would be

extremely valuable as a subject of future work.

4.4 Pursuit-Evasion Simulation Experiments

Figure 10 depicts how ATS+C builds contingency plans

in a planar pursuit-evasion scenario in the unit square

in which the evader and pursuers move at maximum

speeds 1 and 0.5, respectively, and the evader’s maxi-

mum acceleration is 10. The evader’s goal is to reach a

target while being chased by the pursuers. The evader

is able to make progress on the optimistic plan only by

building up a large distance between itself and the pur-

suers. In experiments we also observe that this can be

accomplished for high-speed, low-acceleration pursuers.

Experiments were also conducted to evaluate how

the time stepping affects the evader’s performance in an

environment in which the evader must traverse a nar-

row passage to reach its target (Figure 11). The evader

treats the pursuer as an unpredictable obstacle with

bounded velocity and uses ATS+C. The evader’s con-

servative model of F̃ (t, Ek) does not consider walls to be

impediments to the pursuer’s possible movement. Mere

survival is not challenging (in all experiments survival

over 10s was over 90%), but reaching the target requires

the evader to choose a different hallway than the pur-

suer. We tested a nonadversarial pursuer behavior in

which it “wanders” with velocity varying according to

a random walk, and is allowed to pass through walls.

Figure 11(b) shows that in this case, the success rate

is highly dependent on problem difficulty, and no con-

stant cutoff performs uniformly well across all width

variations. Similar variations were found using an ad-

versarial pursuer, in which the pursuer treats the evader

as an unpredictably moving target and uses ATS+EB

to reach it. (Figure 11(c)). The adaptive strategy per-

formed nearly as well as the best constant cutoff across

both problem variations.

4.5 Avoiding Unpredictable Obstacles in Indoor

Navigation

Finally we apply ATS+C to a more complex indoor

navigation problem where the robot has a coarse model

of worst-case obstacle behavior. Coarse models are im-

portant in multi-agent settings because the behavior

and intentions of pedestrians or other robots can be

complex and difficult to predict.

Figure 12 depicts a run of our simulation with 10

agents in a map of Intel Research Lab taken from the

OpenSLAM dataset [22]. The map is scaled to the unit

square. The agents traverse a roadmap of the environ-

ment by choosing a goal node at random, and moving

along the shortest path toward the goal. Their accel-

erations are also perturbed by Gaussian noise. Agents

dwell at their goals for a randomly chosen period of

time.

Rather than have the robot model this process, the

robot only knows the agents’ velocity and acceleration

bounds (0.5 s−1 and 10 s−2, respectively). The robot is

taken to have the same acceleration and velocity bounds

as before, and it senses all obstacle positions and veloc-

ities within a radius of 0.3.
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Fig. 10: Snapshots taken at half-second intervals from a pursuit-evasion simulation in the unit square. Three

pursuers (grey circles) seek the evader (green) greedily at half the speed of the evader. The evader knows the

pursuers’ velocity bound but not their behavior. The evader replans a pessimistic path (green) to avoid the

pursuers in the worst case, and replans an optimistic path (cyan) in order to reach the target (red). Both paths

share a common prefix.

As Figure 12 depicts, the robot takes conservative

motions (e.g., moving into rooms) when necessary to

avoid obstacles. While this behavior might be exces-

sively conservative in the presence of pedestrians that

themselves avoid the robot, it may be perfectly reason-

able for avoiding rushing crowds or unintelligent robots.

One of the strengths of the ATS+C framework is that

sample-based planners can easily incorporate better pre-

dictive models of agent-agent interactions as they be-

come available.

5 Conclusion

Real-time replanning architectures have been slow to

catch on in large part by the responsiveness/completeness

dilemma that is posed in the presence of runtime vari-

ance and unpredictable environments. This paper intro-

duces an adaptive time-stepping approach to addresses

this dilemma by tolerating and exploiting run-time vari-

ance by estimating an appropriate time step on-the-fly.

Safety and completeness can be guaranteed in deter-

ministic dynamic environments, and simulation results

demonstrate a low failure rate in challenging unpre-

dictable environments. Experiments on shared control

for an industrial robot arm and on simulated pursuit-

evasion examples suggest that replanning may be a vi-

able mechanism for real-time navigation and obstacle

avoidance in dynamic environments. Additional videos

of simulations and experiments can be found on the web

at http://www.iu.edu/∼motion/realtime.html.

An important question for future work is the prob-

lem of path optimality, which introduces a third per-

formance criterion in addition to responsiveness and

completeness. The impact of tradeoffs between replan-

ning suboptimal paths quickly or optimal plans slowly

is poorly understood. Another important question is

detecting and avoiding inevitable failure states in non-

reversible systems, which is needed to preserve hard

guarantees on safety in unpredictable scenarios.
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