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CGHA for Principal Component Extraction
In the Complex Domain

Yanwu Zhang,Student Member, IEEEand Yuanliang Ma

Abstract—Principal component extraction is an efficient statis- With M < N, the dimensionality of the input vector space
tical tool which is applied to data compression, feature extraction, s reduced. AnV-dimensional “data space” is compressed into
signal processing, etc. Representative algorithms in the literature an M-dimensional “feature space.” It can be proven [6] that

can only handle real data. However, in many scenarios such as rincipal component extraction is th timal linear transform
sensor array signal processing, complex data are encountered. In Principal component extraction Is the optimal linéar transto

this paper, the complex domain generalized Hebbian algorithm iN the sense that it minimizes the least mean squared error
(CGHA) is presented for complex principal component extrac- when reconstructing\’

tion. It extends the real domain generalized Hebbian algorithm

(GHA) proposed by Sanger. Convergence of CGHA is analyzed. X =WY. (4)

Like GHA, CGHA can be implemented by a single-layer linear . . . .
neural network with simple computation. An example is given Representative algorithms in the literature are for real data.

where CGHA is utilized in direction-of-arrival (DOA) estimation [N many scenarios however, input data are complex. Therefore
of multiple narrowband plane waves received by a sensor array. it is necessary to extend the real domain algorithm to the
Index Terms— Complex domain, convergence, direction-of- COMplex domain.
arrival estimation, generalized Hebbian algorithm, neural In this paper, the complex domain generalized Hebbian
network, principal component, single layer. algorithm (CGHA) is presented. It is an extension of the
real domain principal component extraction algorithm, namely,
generalized Hebbian algorithm (GHA) [1]. CGHA can be im-
plemented with a single-layer linear neural network. Analysis

PRINC'PAL Component eXtI’aCtion (Or pl’inCipa| Componenéf Convergence of CGHA iS given in the Appendix_
analysis) [1]-[3] is a useful statistical tool for linearly

reducing the dimensionality of a set of measurements while II. A BRIEF REVIEW OF GHA

retaining as much information as possible [4]. This is accom- .. L .
plished by a linear mapping from the input space to a Iower_Th? ker_nel of principal component extraction is to find
dimensional representation space [5]. principal eigenvectors. In 1989, Sanger presented the GHA [1].

Mathematically, principal component extraction carries OLWith this algorithm, the principal eigenvectors of the input cor-
a linear transform from anV-dimensional zero-mean inputrelation matrix can be deduced iteratively with a single-layer
vector space linear neural network. Unlike with batch eigendecomposition,

we need not compute the input correlation matrix in advance

I. INTRODUCTION

X=[z1 22 - zpn ]T (1) because the eigenvectors can be derived directly from the input
_ _ data. Only local operations are called for and the neurons
to an M-dimensional {/ < NN) output vector space learn simultaneously. These features are attractive for parallel
v T 2 hardware realization. Successful applications in image coding
=lnyz - yml (2)  and texture segmentation were carried out [1].
andY is related toX by ingThe mechanism of GHA can be summarized in the follow-
Y=wHX (3) The input column vector is

— PR - T
whereW is anN x M matrix and its columns are the eigen- X =lry 2y -an] ()
vectors associated with the largedt eigenvalues of the input  |n the decreasing order of eigenvalues, the principal
correlation matrixy x = E[X X*']. T denotes transpose andeigenvectors of the input correlation matfi x = E[X X 7]

H denotes conjugate transpose. The eigenvectors associgiedexpressed as the following column vectors:
with the largest eigenvalues are called principal eigenvectors.

- . f— ... T T
Elements of vecto” are called principal components. Wi =[wiy wiz -+ win] (6)
T
. . . . . Wa = w21 w2 -+ wan] (7)
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Fig. 1. Implementation network for GHA or CGHA.

W;(j =1,2,---, M) can be randomly set [5]. The updatingvhereH denotes Hermitian transpose amgh) is the learning

rule for W; is

Wy(n + 1) = Wj(n) + pu(n)y; (n)

X(n) = yi(m)Wi(n) = >~ yi(n)Wi(n)

i<y
9)
wheren is the iteration index and
yi(n) = Wi(n)X(n) (10)

and p(n) is the learning rate factor.
Sanger proved tha#¥; converges to thejth principal
eigenvector ofRxx.

GHA can be implemented by a single-layer linear neural
network, as shown in Fig. 1. Each block is a linear neuron.

Input vectorX = [z1 z2 --- xn]? is fed into M linear
neurons, through anv-dimensional weight vectoit; =
[wj1 wy2 ---w;n]? to thejth neuron,j = 1,2, ---, M. As
the input vector flows through each neurgpi’; is subtracted
from it successively as shown in (9). The output of thk
neuron isy; = W} X.

rate factor.

In the Appendix, we show that with any initidl’;, it
converges to thejth normalized eigenvector oRxx =
E[XXxH].

Comparing (11) and (12) of CGHA with (9) and (10) of
GHA, we find that GHA is a simplified version of CGHA.

The implementation network for CGHA is exactly the same
as that for GHA: a single-layer linear neural network as shown
in Fig. 1.

Like GHA, CGHA possesses the following features.

1) No need to compute the correlation matd¥yx in
advance. The eigenvectors are derived (learned) directly
from the input vector. In sensor array processing, the
input vector is one “snapshot” of all sensor receptions
at one temporal sampling. When the number of sensors
is large, this advantage becomes significant because
computation ofRx x is time consuming.

2) Implementation with local operation. This feature is
favorable for parallel hardware. Equation (11) can be
rewritten as

AW; = peonj (y;)[X; = y;Wj] (13)

GHA is confined to the real domain. In many scenarios, we
meet complex data. For example, in sensor array processing, where X; means the “net” input to thgth neuron: at
input real data are usually transformed into complex data thenth iteration, the net input to no. 1 neuronign),
through quadrature sampling [7], [8], in order to utilize the  that to no. 2 neuron iX(n)— y1(n)Wyi(n); --- that to
narrowband phase-shift relationship between receptions of no.M neuron isX(n)— y1(n)Wi(n) — y2(n)Wa(n) —
different sensors. Therefore, the complex version of GHA is -+ — yp—1(n)Wa—1(n), i.e., subtracting,(n) Wi (n)

of practical need.

I1l. CoMPLEX DOMAIN GENERALIZED HEBBIAN ALGORITHM

Now we present the CGHA. Itis very similar to GHA except
that complex notations are introduced. The updating rule for

W; is given by
W;(n +1) =W;(n) + p(n)conj [y; (n)]
X(n) =y (mW;(n) =Y~ yi(n)Wi(n)

i<y

whereconj[y;(n)] is the complex conjugate of

y;i(n) = W]H(n)X(n) (12)

from X (n) progressively as it goes from né.neuron
to No. (k + 1) neuron. Considering “net” input to each
neuron, weight updating is local.

3) Good expandability. Updating of thgth neuron is
affected only by those neurons with number less than
Hence, if the firstM neurons have already converged,
i.e., the firstM principal eigenvectors have been ob-
tained, then the learning of thel/ + 1)th neuron will
leave intact the precediniy/ neuron weight vectors.

IV. APPLICATION OF CGHA TO DOA ESTIMATION

Assume a uniform linear array composed &f sensors
with identical directivity. D narrowband signals impinge on
the array as plane waves from directiofis, 65, - -, 0p.
Suppose the received noise is spatially white with zero mean
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and variances2. The received complex data vector can be 8

expressed as

1
xX=|"
TN
By n1
F
=[a(61) a(2) -~ a(p)] | 2 |+ ||
FD nn
where
1
ei2m (d sin 8;/A;)
a(ez): L:17277D
Gj?ﬂ(]\‘r—l)(d sin 0{/)\{)
(15)

is the steering vector of théh signal source with incident

angle 4;.

F; is theth signal, ); is the wavelength of théth signal,

andn; is the noise received by thigh sensor.

As long asalf](: = 1,2,---, D) are obtained, the

directions of impinging signals are found.

It can be proven [9] that for the input correlation m
trix Rxx = E[XX!], those eigenvectors associated wit

eigenvalues greater thar? are linear combinations of(4;),
ie.,

D
Wk = Z Oékza(ez) k= ]_7 27 e M whereM S D.
i=1

(16)

a_
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Fig. 2. Learning curves for the first and the second principal eigenvectors.

sinusoids. By finding the frequency componenfis(i =
1,2, ---, D) are obtained. With this approach [10], the orig-
inal problem with spatio-temporal coupling is reduced to an
easier problem of one-dimensional frequency analysis. More-
over, this direction estimation method works well whether or
not the signal sources are correlated.

The key step is to derive principal eigenvectors of the input
|;,}orrelation matrix. The data are complex, so CGHA can be
employed.

The following is a simulation of DOA estimation using
CGHA. Two of the three signals are coherent since they are of
the same frequency. For some popular high-resolution DOA
estimators such as MUSIC, the two coherent signals cannot
be resolved unless spatial smoothing is conducted at the cost
of effective array aperture [11]. With the method described in

Therefore, the principal eigenvectors contain information dlfiis section, however, all the three signals are resolved without
source directions. With (15) plugged in (16), we have a clearg@sorting to spatial smoothing.

observation ofiWy

1
ej?ﬂ'(d sin 61 /A1)
Wi = aua

Gj?ﬂ(]\‘r—l)(d sin 01/)\1)

1
ej27r(d sin 82/A2)

+ ax2
GjQﬂ—(N_l)(d sin 62 /A2)
1
ej?ﬂ'(d sin 6p /A2)
+ -+ agp a7

6j27r(]\’—1)(d sin 6p/A2)

If we deem column vector

1
ej27r(d sin 6; /\;)

GjQﬂ—(N_l)(d sin 6; / ;)

Consider a 15-sensor uniform linear array. Two coherent
signals and one incoherent signal are received. Their param-
eters are as follows.

Normalized frequencies (relative to sampling frequency)
fi = fo = 0.2, f3 = 0.15. Incident angled; = 10°, 6, =
40°, 63 = 35°. The sensor spacingis= 5 A1 = 3 X = 2 )3
where,; is the wavelength. SNR of signals are 20 dB for the
first and 14 dB for the second and third.

The simultaneous learning curves for the first and the
second eigenvectors are shown in Fig. 2. The relative error
is defined aq|Wk,precise - k7CGHAHQ/HWk,preciseHQ for
the kth principal eigenvector, wher@y, ,,.c.isc iS the precise
eigenvectorW, cgHa is the eigenvector learned by CGHA.
| - || denotes Euclidean norm. After 3000 iterations, the
relative errors are 4.6 and 2.1% for the first and the second
principal eigenvectors, respectively.

Using AR modeling to analyze the principal eigenvectors
obtained with CGHA, we can get high-resolution spectrum
showing source directions. The spectrum of the second prin-
cipal eigenvector is shown in Fig. 3. The three peaks lie at
¢1 = 27 - 0.085, P2 = 27 - 0.329, ¢ = 27 - 0.215. With
formulag; = 27(d sin 6;/A;) we get the estimations of DOA:

as a sinusoid of frequendr(d sin 6;/X;), thenW;, can be 6; = 9.8°, 6, = 41.1°, 5 = 35.0° which are very close to
deemed as a one-dimensional sequence composed of multipie values.
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0 In the following, we analyze the convergence in two steps.
1) W1 converges to the eigenvector associated with the
-10} largest eigenvalue.
) W1 is the first column of matri¥?’. According to (A.3), its
jg/—zo— evolution is governed by
3
5 L Wi(t) = Rxx (01 (0)
g~ - WO Ry x(OW1(®)]. (A4)
g -50r AssumeRx x is positive definite withV distinct eigenval-
» ol uesi; > Ao > --- Ax Which are associated with correspond-
ing orthonormalized eigenvectors, ¢s, ---, ey. (Cases of
70 : : . - repeated or zero eigenvalues are straightforward generaliza-
01 0.2 0.3 0.4 0.5 tions.) Note that sinc&x x is Hermitian, all of its eigenvalues
Spatial frequency
are real.
Fig. 3. AR spectrum of the second principal eigenvector. Expand W7 in terms of the entire orthonormal set of

eigenvectors as
V. CONCLUSION N
CGHA is presented in this paper and its convergence is Wi=> e (A.5)
analyzed. This complex domain algorithm can be realized k=1

by a single-layer linear neural network. It possesses featuigsere ¢, — eHW,. Plugging (A.5) together withRx x ¢ =
attractive for practical implementation: no need to compute the., into (A.4) gives

input correlation matrix, local operation, good expandability,

etc. When eigendecomposition, data compression, or feature al dex, o — zf\: e
extraction for complex data is needed, CGHA can play an £t k= 2 1o Ak Che
efficient role. = — N N
An application of CGHA to sensor array signal processing is B 2y A6
demonstrated. Converged principal eigenvectors are obtained ; lea" A ; Kk (A-6)

and directions of signal sources are well estimated. )
where| - | denotes norm of a complex variable.

APPENDIX Premultiplyef? to both sides of (A.6), and the orthonormal-
CONVERGENCE ANALYSIS OF CGHA ity of {e;} leads to
The convergence analysis of CGHA extends Sanger’s anal- dey, N
i i i —=al| =Y lal*X (A.7)
ysis on GHA [1] to the complex domain. We rewrite CGHA dt
algorithm in matrix form to include allM/ principal eigenvec- =1
tors 1.1) Fork > 1.
W(n+1) =W(n) Definer;, = cx/c1 (@ssumer; # 0), and then we have
+ () {X ()X ()W (n) dry _ (1\(doy _ day Ag
it~ \e)\at ~ Mat A8
—~W(UTY ()Y {n})]}  (A2) !
where W = [Wy W, ... Wy is an N x M matrix Using (A.7), we have
composed of column vectofd’;, j =1,2,---, M. Y(n) = dry, 1 N )
WH ()X (n).UT[] sets all elements below the diagonal of the T =\ )| M= lal®A
square matrix to zero, thereby producing an upper triangular =1
(UT) matrix. N )
Taking expectation on both sides of (A.1) and noticing that —rrcr| AL — Z |ea" A (A.9)
Rxx(n) = E[X(n)XH(n)], we have =1
W(n +1) = W(n) which is simplified to
+ () { R x (n)W (n) Bk O = o). (A.10)

dt

— W(OUTWH(n)Rxx(n)W(n)]}. (A2
(muTl (M Rxx(m)Wml}. (A-2) The solution to the above differential equation is
The convergence property for the above difference equation

is the same as that for the following differential equation: ri(t) = 71(0) exp[(Ax — Av)t]. (A.11)
d However, A\, < XAy for any & > 1. Therefore,r(¢)
— t) = 4 t - . . '
dt W(t) = Bxx (W () exponentially decays to zero with any(0), i.e., 7, — 0

- WHUTWHORxx(OW ()] (A3) for k > 1.
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1.2) Fork =1 Plugging this expansion together witiy x e;. = Axex into
N (A.18) gives
de
et =C1 )\1 - |Cl|2)\1 - |Cl|2 Z |7’1|2)\1 . (A12) N N
dt =2 der e ——Z Z et A | exe
- - . dt k — { { kCk
Assumet is large, sor; for [ > 1 is negligible. Hence we k=1 ’“<J =1
drop the last term, and (A.12) becomes N
J + Z Ap — Z |Cl|2)\1 crex. (A19)
C — —
d_tl = (= laPA). (A.13) k=i =t

Premultiplyinge to both sides of (A.19), and utilizing the

To show thatc; (¢) converges, we define another function orthonormality of{c}, we have

V=_(al*-1)2% (A.14) p
Ck .
Utilizing (A.13), we have T Z e fork <J (A.20)
Y len P (Jer | = 1)3 (A.15) dck
pr e (e . : =cn| M _Z et A fork >j. (A.21)

So we see thadV/dt < 0. ThusV is a Lyapunov function
and takes its minimum ale;| = 1. Therefore,|ci(t)] — 1 2.1) Fork < j
with any ¢ (0). The solution to the differential equation is
In 1.1) it is shown that;, — 0 for & > 1.In 1.2) |t is shown
that |c;| — 1. We know thatW; = cje; + ¢ TRCk- 2
Ther|ef(lre the last term decays to zero. For gﬁ; initial value o (t) = ex (0) exp [ <Z et Al) ] (A.22)
W1(0), Wi(t) — ey with a complex factor of norm one.
2) Forj > 1, W; converges to the eigenvector associated Ry y is positive definite, so \; > 0. Thus
with the jth largest eigenvalue. —(Zf\;l lei|?A) < 0. ¢i(t) exponentially decays to zero
We use induction to show that if the firgtl columns of with any cx(0), i.e., cx(t) — 0 for k& < j.
matrix W converge to the firstj-1 principal eigenvectors, 2.2) Fork > j
then thejth columnW; will converge to thejth principal Definery = cx/c; (assume; # 0), and then we have
eigenvector.

The evolution ofi¥; is governed by dry _ (1\(deax _ de A 23
; ! dt at K (A-23)
dt Wit) :RXX(t)Wj(t) Using (A.21), we have

- Z Wi (t () Rxx()W;(t)]. (A.16)
k<j N
di _ 1 2
At time ¢, we can expres$V;, as 7 <a) [c’“ <)"“ - ; il Al)
Wi(t) = ex +er(t) fi(t) (A.17) al
—TkCj )\j - Z |Cl|2)\1 (A.24)
whereey, is the kth normalized eigenvector dRx x; fi IS a =1
time-varying unit-length vector;, is a scalar.
Based on the premise of the induction, we know that forhICh is simplified to
k < Jl Ek(t) - 0 di
Combining (A.16) and (A.17) gives 0 k(A = Ag)- (A.25)
= W,(t) = Rxx (£)W;(t) The solution to the above differential equation is
— WO (8) R x (8 W (1) ri(t) = 11 (0) exp [\ — Ay, (A.26)
—Z ex[ek! Rx x (£)W;(t)] However, A\, < X; for any k& > j. Therefore,r(t)
k<j exponentially decays to zero with amy(0), i.e., rx(t) — 0
+ O(g) + O(le]?) (A.18) for k > j.
2.3) Fork = j
wheree indicates a term converging to zero at least as fast as
the slowest decaying;, for k < j. des
Assuming time is large, we neglect tei@(e) andO([¢|?). d—tj =ci | A=l PA = | Z |re* A — Z lea* A |
Expand W; in terms of the entire orthonormal set of >j 1<j

eigenvectors ad¥; = fo:l crex, Where ¢, = el W;. (A.27)
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Assumet is large. It has been shown in 2.1) that— 0  [9] J. A. Cadzow, “A high resolution direction-of-arrival algorithm for
for l < j andr; — 0 for [ > j. Hence we drop the last two narrow-band coherent and incoherent sourcéSEE Trans. Acoust.,

Speech, Signal Processingnl. ASSP-36, pp. 965-979, July 1988.

terms, and the equation becomes [10] Y. Zhang and Y. Ma, “Estimating direction of arrival’ with one-
des dimensional spectral analysis?toc. MTS/IEEE Oceans’ 9%an Diego,
J 2 CA, Oct. 1995 . 845-848.
— =c;(X; — |ci|7A;). A.28 . » PP
dt i = lePy) ( ) [11] T. Shan, M. Wax, and T. Kailath, “On spatial smoothing for direction-

of-arrival estimation of coherent signaldPEE Trans. Acoust., Speech,

To show thatc;(¢) converges, we define another function Signal Processingyol. ASSP-33, pp. 806-811, 1985.

P=(|¢;]* - 1)2 (A.29)

Utilizing (A.28), we have

So we see thadP/dt < 0. Thus P is a Lyapunov function
and takes its minimum df;| = 1. Therefore,|c;(¢)] — 1
with any ¢;(0).

In 2.1) it is shown that;, — 0 for k < j. In 2.2) it is shown
thatry, — 0for k£ > j.in 2.3) it is shown thajc; (t)] — 1. We
know thatW; = cje;+3 5 ; ckertc; Doy, Trer. Therefore
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