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CGHA for Principal Component Extraction
in the Complex Domain

Yanwu Zhang,Student Member, IEEE,and Yuanliang Ma

Abstract—Principal component extraction is an efficient statis-
tical tool which is applied to data compression, feature extraction,
signal processing, etc. Representative algorithms in the literature
can only handle real data. However, in many scenarios such as
sensor array signal processing, complex data are encountered. In
this paper, the complex domain generalized Hebbian algorithm
(CGHA) is presented for complex principal component extrac-
tion. It extends the real domain generalized Hebbian algorithm
(GHA) proposed by Sanger. Convergence of CGHA is analyzed.
Like GHA, CGHA can be implemented by a single-layer linear
neural network with simple computation. An example is given
where CGHA is utilized in direction-of-arrival (DOA) estimation
of multiple narrowband plane waves received by a sensor array.

Index Terms— Complex domain, convergence, direction-of-
arrival estimation, generalized Hebbian algorithm, neural
network, principal component, single layer.

I. INTRODUCTION

PRINCIPAL component extraction (or principal component
analysis) [1]–[3] is a useful statistical tool for linearly

reducing the dimensionality of a set of measurements while
retaining as much information as possible [4]. This is accom-
plished by a linear mapping from the input space to a lower
dimensional representation space [5].

Mathematically, principal component extraction carries out
a linear transform from an -dimensional zero-mean input
vector space

(1)

to an -dimensional ( ) output vector space

(2)

and is related to by

(3)

where is an matrix and its columns are the eigen-
vectors associated with the largest eigenvalues of the input
correlation matrix . denotes transpose and

denotes conjugate transpose. The eigenvectors associated
with the largest eigenvalues are called principal eigenvectors.
Elements of vector are called principal components.
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With , the dimensionality of the input vector space
is reduced. An -dimensional “data space” is compressed into
an -dimensional “feature space.” It can be proven [6] that
principal component extraction is the optimal linear transform
in the sense that it minimizes the least mean squared error
when reconstructing

(4)

Representative algorithms in the literature are for real data.
In many scenarios however, input data are complex. Therefore
it is necessary to extend the real domain algorithm to the
complex domain.

In this paper, the complex domain generalized Hebbian
algorithm (CGHA) is presented. It is an extension of the
real domain principal component extraction algorithm, namely,
generalized Hebbian algorithm (GHA) [1]. CGHA can be im-
plemented with a single-layer linear neural network. Analysis
of convergence of CGHA is given in the Appendix.

II. A B RIEF REVIEW OF GHA

The kernel of principal component extraction is to find
principal eigenvectors. In 1989, Sanger presented the GHA [1].
With this algorithm, the principal eigenvectors of the input cor-
relation matrix can be deduced iteratively with a single-layer
linear neural network. Unlike with batch eigendecomposition,
we need not compute the input correlation matrix in advance
because the eigenvectors can be derived directly from the input
data. Only local operations are called for and the neurons
learn simultaneously. These features are attractive for parallel
hardware realization. Successful applications in image coding
and texture segmentation were carried out [1].

The mechanism of GHA can be summarized in the follow-
ing.

The input column vector is

(5)

In the decreasing order of eigenvalues, the principal
eigenvectors of the input correlation matrix
are expressed as the following column vectors:

(6)

(7)

(8)

How to find is the crux of principal
component extraction algorithms. In GHA, the initial value of

1045–9227/97$10.00 1997 IEEE



1032 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 5, SEPTEMBER 1997

Fig. 1. Implementation network for GHA or CGHA.

can be randomly set [5]. The updating
rule for is

(9)

where is the iteration index and

(10)

and is the learning rate factor.
Sanger proved that converges to the th principal

eigenvector of .
GHA can be implemented by a single-layer linear neural

network, as shown in Fig. 1. Each block is a linear neuron.
Input vector is fed into linear

neurons, through an -dimensional weight vector
to the th neuron, . As

the input vector flows through each neuron, is subtracted
from it successively as shown in (9). The output of theth
neuron is .

GHA is confined to the real domain. In many scenarios, we
meet complex data. For example, in sensor array processing,
input real data are usually transformed into complex data
through quadrature sampling [7], [8], in order to utilize the
narrowband phase-shift relationship between receptions of
different sensors. Therefore, the complex version of GHA is
of practical need.

III. COMPLEX DOMAIN GENERALIZED HEBBIAN ALGORITHM

Now we present the CGHA. It is very similar to GHA except
that complex notations are introduced. The updating rule for

is given by

(11)

where is the complex conjugate of

(12)

where denotes Hermitian transpose and is the learning
rate factor.

In the Appendix, we show that with any initial , it
converges to the th normalized eigenvector of

.
Comparing (11) and (12) of CGHA with (9) and (10) of

GHA, we find that GHA is a simplified version of CGHA.
The implementation network for CGHA is exactly the same

as that for GHA: a single-layer linear neural network as shown
in Fig. 1.

Like GHA, CGHA possesses the following features.

1) No need to compute the correlation matrix in
advance. The eigenvectors are derived (learned) directly
from the input vector. In sensor array processing, the
input vector is one “snapshot” of all sensor receptions
at one temporal sampling. When the number of sensors
is large, this advantage becomes significant because
computation of is time consuming.

2) Implementation with local operation. This feature is
favorable for parallel hardware. Equation (11) can be
rewritten as

(13)

where means the “net” input to theth neuron: at
the th iteration, the net input to no. 1 neuron is ;
that to no. 2 neuron is ; that to
no. neuron is

, i.e., subtracting
from progressively as it goes from no.neuron
to No. neuron. Considering “net” input to each
neuron, weight updating is local.

3) Good expandability. Updating of theth neuron is
affected only by those neurons with number less than.
Hence, if the first neurons have already converged,
i.e., the first principal eigenvectors have been ob-
tained, then the learning of the th neuron will
leave intact the preceding neuron weight vectors.

IV. A PPLICATION OF CGHA TO DOA ESTIMATION

Assume a uniform linear array composed of sensors
with identical directivity. narrowband signals impinge on
the array as plane waves from directions .
Suppose the received noise is spatially white with zero mean
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and variance . The received complex data vector can be
expressed as

(14)

where

(15)

is the steering vector of theth signal source with incident
angle .

is the th signal, is the wavelength of theth signal,
and is the noise received by theth sensor.

As long as are obtained, the
directions of impinging signals are found.

It can be proven [9] that for the input correlation ma-
trix , those eigenvectors associated with
eigenvalues greater than are linear combinations of ,
i.e.,

where

(16)

Therefore, the principal eigenvectors contain information of
source directions. With (15) plugged in (16), we have a clearer
observation of

(17)

If we deem column vector

as a sinusoid of frequency , then can be
deemed as a one-dimensional sequence composed of multiple

Fig. 2. Learning curves for the first and the second principal eigenvectors.

sinusoids. By finding the frequency components,
are obtained. With this approach [10], the orig-

inal problem with spatio-temporal coupling is reduced to an
easier problem of one-dimensional frequency analysis. More-
over, this direction estimation method works well whether or
not the signal sources are correlated.

The key step is to derive principal eigenvectors of the input
correlation matrix. The data are complex, so CGHA can be
employed.

The following is a simulation of DOA estimation using
CGHA. Two of the three signals are coherent since they are of
the same frequency. For some popular high-resolution DOA
estimators such as MUSIC, the two coherent signals cannot
be resolved unless spatial smoothing is conducted at the cost
of effective array aperture [11]. With the method described in
this section, however, all the three signals are resolved without
resorting to spatial smoothing.

Consider a 15-sensor uniform linear array. Two coherent
signals and one incoherent signal are received. Their param-
eters are as follows.

Normalized frequencies (relative to sampling frequency)
, . Incident angles ,

, . The sensor spacing is
where is the wavelength. SNR of signals are 20 dB for the
first and 14 dB for the second and third.

The simultaneous learning curves for the first and the
second eigenvectors are shown in Fig. 2. The relative error
is defined as CGHA for
the th principal eigenvector, where is the precise
eigenvector. CGHA is the eigenvector learned by CGHA.

denotes Euclidean norm. After 3000 iterations, the
relative errors are 4.6 and 2.1% for the first and the second
principal eigenvectors, respectively.

Using AR modeling to analyze the principal eigenvectors
obtained with CGHA, we can get high-resolution spectrum
showing source directions. The spectrum of the second prin-
cipal eigenvector is shown in Fig. 3. The three peaks lie at

, , . With
formula we get the estimations of DOA:

, , which are very close to
true values.
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Fig. 3. AR spectrum of the second principal eigenvector.

V. CONCLUSION

CGHA is presented in this paper and its convergence is
analyzed. This complex domain algorithm can be realized
by a single-layer linear neural network. It possesses features
attractive for practical implementation: no need to compute the
input correlation matrix, local operation, good expandability,
etc. When eigendecomposition, data compression, or feature
extraction for complex data is needed, CGHA can play an
efficient role.

An application of CGHA to sensor array signal processing is
demonstrated. Converged principal eigenvectors are obtained
and directions of signal sources are well estimated.

APPENDIX

CONVERGENCE ANALYSIS OF CGHA

The convergence analysis of CGHA extends Sanger’s anal-
ysis on GHA [1] to the complex domain. We rewrite CGHA
algorithm in matrix form to include all principal eigenvec-
tors

(A.1)

where is an matrix
composed of column vectors , .

UT sets all elements below the diagonal of the
square matrix to zero, thereby producing an upper triangular
(UT) matrix.

Taking expectation on both sides of (A.1) and noticing that
, we have

UT (A.2)

The convergence property for the above difference equation
is the same as that for the following differential equation:

UT (A.3)

In the following, we analyze the convergence in two steps.
1) converges to the eigenvector associated with the

largest eigenvalue.
is the first column of matrix . According to (A.3), its

evolution is governed by

(A.4)

Assume is positive definite with distinct eigenval-
ues which are associated with correspond-
ing orthonormalized eigenvectors . (Cases of
repeated or zero eigenvalues are straightforward generaliza-
tions.) Note that since is Hermitian, all of its eigenvalues
are real.

Expand in terms of the entire orthonormal set of
eigenvectors as

(A.5)

where . Plugging (A.5) together with
into (A.4) gives

(A.6)

where denotes norm of a complex variable.
Premultiply to both sides of (A.6), and the orthonormal-

ity of leads to

(A.7)

1.1) For .
Define (assume ), and then we have

(A.8)

Using (A.7), we have

(A.9)

which is simplified to

(A.10)

The solution to the above differential equation is

(A.11)

However, for any . Therefore,
exponentially decays to zero with any , i.e.,
for .
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1.2) For

(A.12)

Assume is large, so for is negligible. Hence we
drop the last term, and (A.12) becomes

(A.13)

To show that converges, we define another function

(A.14)

Utilizing (A.13), we have

(A.15)

So we see that . Thus is a Lyapunov function
and takes its minimum at . Therefore,
with any .

In 1.1) it is shown that for . In 1.2) it is shown
that . We know that .
Therefore the last term decays to zero. For any initial value

, with a complex factor of norm one.
2) For , converges to the eigenvector associated

with the th largest eigenvalue.
We use induction to show that if the first-1 columns of

matrix converge to the first -1 principal eigenvectors,
then the th column will converge to the th principal
eigenvector.

The evolution of is governed by

(A.16)

At time , we can express as

(A.17)

where is the th normalized eigenvector of is a
time-varying unit-length vector; is a scalar.

Based on the premise of the induction, we know that for
, .

Combining (A.16) and (A.17) gives

(A.18)

where indicates a term converging to zero at least as fast as
the slowest decaying for .

Assuming time is large, we neglect term and .
Expand in terms of the entire orthonormal set of

eigenvectors as , where .

Plugging this expansion together with into
(A.18) gives

(A.19)

Premultiplying to both sides of (A.19), and utilizing the
orthonormality of , we have

for (A.20)

for (A.21)

2.1) For
The solution to the differential equation is

(A.22)

is positive definite, so . Thus
. exponentially decays to zero

with any , i.e., for .
2.2) For
Define (assume ), and then we have

(A.23)

Using (A.21), we have

(A.24)

which is simplified to

(A.25)

The solution to the above differential equation is

(A.26)

However, for any . Therefore,
exponentially decays to zero with any , i.e.,
for .

2.3) For

(A.27)
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Assume is large. It has been shown in 2.1) that
for and for . Hence we drop the last two
terms, and the equation becomes

(A.28)

To show that converges, we define another function

(A.29)

Utilizing (A.28), we have

(A.30)

So we see that . Thus is a Lyapunov function
and takes its minimum at . Therefore,
with any .

In 2.1) it is shown that for . In 2.2) it is shown
that for . in 2.3) it is shown that . We
know that . Therefore
the last two terms decay to zero. For any initial value ,

with a complex factor of norm one.
With the above analyzes of 1) and 2), we arrive at the con-

clusion that columns of matrix converge to corresponding
eigenvectors of . In other words, CGHA converges.
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