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Abstract— Routing dynamics heavily influence Internet data
plane performance. Existing studies only narrowly focused on
a few destinations and did not consider the predictability of
the impact of routing changes on performance metrics such as
reachability. In this work, we propose an efficient framework to
capture coarse-grained but important performance degradation
as a result of BGP routing events using light-weight probing. We
deployed our framework across six vantage points for 11 weeks
and found that the data plane experienced serious performance
degradation in the form of reachability loss and forwarding loops
following a significant fraction of updates affecting many desti-
nation prefixes and networks across all vantage points studied.
Specifically, more than 39% of updates resulted in reachability
loss, some lasting for more than 300 seconds, impacting more
than 72% of probed prefixes and more than 35% of all the
prefixes on the Internet.

We identified that more than half of the prefixes have pre-
dictable routing behavior. Based on the stationarity of the corre-
lation between routing changes and the data plane performance,
we developed a model to accurately predict the severity of the
impact due to routing changes. Such a model is directly helpful
for making informed decisions for improved routing schemes
such as overlay routing and backup path selection.

I. INTRODUCTION

Internet routing dynamics directly influence the data plane,
i.e.,, the packet forwarding behavior. Previous measurement
studies [1], [2], [3], [4] have already shown that routing
changes can cause transient disruption to the data plane in
the form of packet loss, increased delay, and forwarding
loops. In this work, we enhance our understanding of the
impact of routing dynamics on the data plane performance
in two dimensions. First, we develop an efficient framework
enabling a more comprehensive study of routing changes that
are not limited to just specific prefixes as in previous studies.
Second, we identify the predictability of observed performance
degradation in relation to the properties of routing updates
and subsequently develop a model to accurately predict the
performance impact of future updates.

We use the term data plane failures to describe severe
performance degradation on packet forwarding manifested as
reachability loss or forwarding loops. Our study focuses on
data plane failures primarily caused by routing changes, as
understanding the impact of routing dynamics on data plane
performance is critical to the deployment of real-time appli-
cations such as Voice over IP (VoIP) and moreover provides
insights into improved network operations.

Routing changes on the Internet are mostly caused by
failures or configuration changes. They occur quite frequently.

Z. Morley Mao
University of Michigan
zmao @umich.edu

Jia Wang
AT&T Labs-Research
jlawang @research.att.com

At the interdomain level, one can easily observe more than
10 updates per second to a wide range of destinations from
a large tier-1 ISP such as Sprint using publicly available
BGP data from RouteViews [5]. Motivated by such active
routing dynamics on the current Internet, our study develops
a methodology to identify properties of updates that cause
data plane failures and characterize the location, duration, and
stability of these failures.

Data plane failures are often caused by inconsistent forward-
ing information of routers involved in routing changes [2].
During routing convergence, some routers may lose their
routes [6] or have invalid routes [1]. Routing policies, timer
configurations, and network topologies are just some of the
contributing factors [2], [6]. For instance, transient loops can
be caused by temporarily inconsistent views among routers.
Persistent loops are more likely due to misconfigurations [7].
We do not attempt to identify the cause of observed failures
due to lack of information but instead search for patterns
to help predict the impact of routing changes on data plane
performance. Such a prediction model can improve route
selection.

To achieve a comprehensive characterization of many di-
verse routing changes, we develop an efficient and novel
measurement framework deployed at each vantage point with
access to real-time BGP routing updates. Light-weight probing
is triggered by locally observed routing updates. The prob-
ing target is an identified live IP address within the prefix
associated with the routing change. Compared to modeling
or simulation based approaches [8], [9], [10] to understand
the impact routing dynamics on data plane performance,
our measurement-based approach does not make simplifying
assumptions and provide empirical evidence of such impact.

Given that probing is triggered directly by routing updates,
it may be counter-intuitive why the observed data plane
performance may still be impacted by the seemingly converged
route. In some cases, the routing change is still ongoing, often
manifested by subsequent updates to the same destination
prefix. Given the scale of the Internet, some routing changes
may impact many routers and cause delayed convergence [1].
Thus, even if locally the route to a destination appears to
be converged to a stable route, data plane performance may
still be seriously affected. This is supported by previous work
showing that BGP messages sometimes preceded observed
path failures in the order of minutes [11].

We deployed our measurement framework at six geograph-



ically distinct locations with different upstream providers for
a period of 11 weeks. Using our collected set of 604,925
live IPs which belong to 48% of prefixes and 53% of ASes,
we analyzed 47%-55% of all observed updates corresponding
to 46%-51% of observed prefixes in routing updates across
different vantage points.

We summarize our main findings by including a range of
results to represent all six vantage points studied.

« Many prefixes became unreachable shortly after respec-
tive routing changes. They account for 39%-45% of
probed updates, covering 72%-86% of probed prefixes.
These prefixes belong to 35%-42% of all announced
prefixes, originating from 39%-42% of all ASes. Stub
ASes are more likely impacted. Unreachable incidences
are usually transient: 84%-91% of them lasting less than
300 seconds. The failure location occurs roughly equally
likely along the path.

« Among the unreachable incidences, a non-negligible frac-
tion exhibits forwarding loops. This contributes to 4%-8%
of probed updates, covering 36%-51% of probed prefixes.
These loops impact 17%-24% of all announced prefixes,
originating from 27%-34% of all ASes. Most loops are
short-lived: 60% of them lasting less than 300 seconds.
Loops are more likely to appear within large ISPs.

e Given a prefix and its identified responsible AS where
traceroute stops or loop occurs, we identify over 51%-
54% of probed updates to be predictable for causing
reachability loss, and 49%-58% for causing loops. For
such prefixes, our prediction model achieves a prediction
accuracy of 90% with a false positive rate of 15% for
unreachable incidences and a prediction accuracy of 80%
with a false positive rate of 12% for loops. In general,
prefixes originating from stub ASes and smaller ISPs are
more predictable; responsible ASes for such predictable
prefixes also tend to be near the edge of the Internet.

Aside from measurement findings, our main contribution
is a framework to efficiently measure the impact of routing
dynamics on data plane performance. Based on identified
inherent stability of routing changes, we develop a method-
ology to predict impact of future routing updates. The ability
to accurately predict routing-induced data plane failures is
directly useful for applications such as overlay route selection
and backup path selection.

This paper is organized as follows. Section II introduces
our measurement methodology. Experiment setup is described
in Section III. We provide detailed data analysis on probing
results in Section IV. In Section V, we present a prediction
model. We discuss related work in Section VI and conclude
in Section VIIL.

II. MEASUREMENT METHODOLOGY

We describe our measurement methodology to enable effi-
cient characterization of the impact of locally observed BGP
routing updates on the data plane performance from the local
network to the relevant destination networks.
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Fig. 1. Active probing architecture for vantage point X (both functionalities
can be implemented on the same host).

A. Terminology

We first introduce our terminology. We use the term data
plane to refer to the packet forwarding behavior on the Inter-
net. data plane failures describe severe data plane performance
degradation in the form of reachability loss or forwarding
loops. The control plane computes the routing state of network
elements performing packet forwarding. On today’s Internet,
inter-domain routing involves distributed router computation
within routers of different networks.

To describe probing results, we use the term probing in-
cidence to mean a set of probes to the relevant destination
prefix triggered by a BGP update of the prefix. Three ping
requests optionally followed by a traceroute probe are sent for
each prefix probed. The destination is deemed reachable if any
ping reply returns or the traceroute response contains interface
IPs belonging to the prefix. It is unreachable otherwise.

B. Data Collection

There are two required data sources: control-plane BGP
updates and data plane active probes. For each monitored
location, local real-time BGP data are analyzed to identify
probing destinations. BGP data can be obtained by setting up
a monitoring BGP session using software such as Zebra [12]
with a BGP router with a default-free routing table in the local
network. To differentiate between unreachable destinations and
blocked probes due to firewalls, we must identify at least one
live IP that responds to ping or traceroute requests for each
prefix probed. Besides active probing [13], such data can be
gathered passively from various server logs, e.g., Web and
DNS server logs, or traffic traces.

C. Active Probing Methodology

Figure 1 depicts the probing architecture for one vantage
point consisting of a BGP analysis host identifying probe
targets based on the local BGP feed and a probe host in the
same network for performing probing triggered by routing
updates. The list of live IPs is continuously updated. To
identify persistent failures and verify live IPs’ responses,
background probing is done.

1) Probing Methodology: Unlike previous studies, our
probing is designed to be light-weight to scale to many
destinations covering most observed updates. Therefore, we



Category

| Tier-1 [ Tier-2 | Tier-3 [ Tier-4 [ Tier-5 |

Num of ASes 20 173 1092 1235 7136

(Pctg relative to all | (90%) (80%) (78%) (80%) (52%)

ASes in each tier)

Num of prefixes 3045 4672 10034 9424 16727

Num of IPs 73670 | 119136 | 134982 | 126818 | 116643
TABLE I

DIVERSITY OF NETWORKS COVERED BY OUR COLLECTED LIVE IPS.

focus on coarse-grained performance metrics associated with
reachability. We are nevertheless limited to probing only
prefixes for which we have identified a live IP. We plan to
remedy this in the future.

We describe the detailed probing steps. Triggered by a
routing update, three ICMP-based ping requests are first sent
to the corresponding live IP. We randomly choose the IPs
belonging to the given prefix and regularly update IP liveness.
Three is chosen to balance the overhead and packet loss prob-
ability. If any ping reply returns, the destination is considered
reachable. Otherwise, traceroute is performed. If the traceroute
response contains an [P belonging to the probe destination
prefix, the destination is deemed reachable. Otherwise, ping
and traceroute probes are continuously sent after each other
as soon as the previous probe finishes, until the destination or
a timing limit is reached as described later.

2) Probing Control: Given the potential high frequency of
routing updates, we take measures to avoid overloading the
probe host and the destination networks probed. The resources
under consideration are CPU and memory resources of the
probe host, and network bandwidth of both the probe host and
targets. Multiple probe hosts can be used. We make explicit
trade-offs between probing coverage and consumed resources.

The first measure is to ignore routing updates caused by
the BGP session reset of the monitoring session using known
techniques such as [14], as such updates do not reflect true
routing changes. As a second measure, we impose a limit
on the maximum probing duration for each destination prefix.
Probing is performed as long as the target is deemed unreach-
able until this limit is reached. Moreover, at most one IP from
each prefix is probed by a single host at any time.

Probe requests may not be serviced immediately due to
unfinished probing. We impose a maximum wait time between
the time an update is received and the time its probe request
is initiated, as excessive delays prevent us from effectively
capturing the impact of routing changes. As future work, we
plan to explore other ways to reduce probing overhead, e.g.,
by probing based on unique AS paths.

III. EXPERIMENT SETUP

We describe the experiment setup based on our measure-
ment methodology.

A. Data Collection

We set up a software router using Zebra [12] to serve as
the BGP monitor to obtain live BGP feeds from six distinct
locations with different upstream providers mostly in the U.S.:
Michigan, Massachusetts, New York, Illinois, Washington, and
Amsterdam. They belong to the PlanetLab [15] and the RON
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Fig. 2. Probing delay distribution for each BGP feed: Most delays are within
100 seconds.

project [16]. Combining active probing [13], DNS logs, and
five days of Netflow data from a Tier-1 ISP network, we
collected 604,925 live IPs covering 48% of all announced
prefixes and 53% of all ASes. Using the tier ranking defined
in [17], where a lower tier means large ISPs and tier-5 refers to
stub or customer ASes, we illustrate the diversity of collected
IPs in Table 1. The set is shown to cover a large percentage of
ASes in different tiers. The results presented span an 11-week
period from May 3 until July 19, 2006.

B. Probing Control

We limit the maximum probing duration to be 300 seconds
as most BGP routing changes converge within about three
minutes based on previous studies [1], [3]. Our own measure-
ments described later in Section IV also show that about 90%
of reachability problems last less than 300 seconds. To ensure
our characterization captures the effect of routing dynamics
on the data plane, we limit the maximum wait time to be 300
seconds. Background probing is performed to ensure each live
IP is probed at least once every 300 seconds.

C. Probing System Performance

During the 11 weeks of study, the average probing rate is
only about 2 updates per second for each feed with a maximum
rate of 11 updates per second. Probing duration varies from
less than 10 seconds to the limit of 300 seconds.

Figure 2 plots the distribution of probing delays for each
probing location. The delay is computed as the time difference
between the probe time and the update receive time. The figure
shows that at least 80% of updates are probed within 100
seconds for most feeds. For some locations, the delays are
mostly between 50 to 100 seconds. Only 6% of updates are
not probed due to the maximum wait time constraint.

To prevent aggressive probing, we measure the probing rate.
We found that 80% of the difference between two consecutive
probes for the same IP is larger than 300 seconds, with a
minimum difference of around 100 seconds. This shows that
our system did not overload the destination networks probed.

D. Probing System Limitations

We discuss the limitations of our probing methodology
to understand the potential bias introduced in our results.



| | Incidence | Prefix | AS |
Toop | 185728 | 21821 | 5024
6.0%) | (23.9%) | (33.5%)
Unreachable 00 | 1109014 | 66321 | 5802
(36.3%) | (72.8%) | (38.7%)
All 1314742 | 66883 | 9559
@2.3%) | (73.5%) | (63.0%)
Reachable 1796302 | 75578 | 14870
(57.7%) | (83.1%) | (98.0%)

TABLE II

GENERAL STATISTICS OVER THE PERIOD OF 11 WEEKS

First, the data presented later correspond to probing triggered
by routing announcements only. We also probed after route
withdrawals, as such prefixes can still be reachable due to cov-
ering prefixes: 1.4%-2.1% of withdrawn prefixes are reachable,
while less than .013% of withdrawn prefixes are unreachable
despite the presence of covering prefixes. But most of them
recover within 300 seconds. Second, our probe delays are
mostly within 100 seconds. Thus, we focus on serious data
plane failures lasting for at least 100 seconds.

The third limitation is that we do not differentiate between
performance degradation due to routing changes from other
possibly unrelated causes such as congestion. Given that our
probing immediately follows routing updates, the observed
performance degradation could also coincide with other events.
However, if a destination consistently experiences performance
degradation following routing changes, such degradation may
likely be caused by routing dynamics.

Although our probing uses simple ping and traceroute
probes, we try to overcome limitations of measurement tools.
For example, we distinguish unreachable cases caused by
routers disabling ICMP replies from unreachable end hosts
using history information.

IV. CHARACTERIZING DATA PLANE FAILURES

During a routing event such as link failures or recoveries,
packet forwarding is likely disrupted. This is likely caused by
some routers temporarily losing their routes to the destination.
Moreover, even without transient failures in the control plane,
i.e., every router has a route to the destination, the route
may not be valid due to routing inconsistency. Next, we
characterize data plane transient failures using “reachability”
as the performance metric. This is motivated by the fact that
gain or loss reachability will cause the most severe impact on
data plane performance.

A. Overall Statistics

We conducted Internet experiments over the period of 11
weeks from May 3, 2006 to July 19, 2006. Table II shows the
overall statistics. We found that 42% of probing incidences are
unreachable, affecting 73.5% of destination prefixes and 63%
of destination ASes probed in our experiments. In addition,
about 14% of the unreachable incidences are caused by loops,
affecting 24% of destination prefixes and 34% of ASes probed.

B. Reachability Failures

1) Destination Networks Impacted by Failures: We classify
destination ASes experiencing reachability loss according to
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their tiers and geographic locations. Table III shows the top
10 destination ASes which encounter the most unreachable
incidences. We observe that most of them are stub ASes, i.e.,
customer ASes. Moreover, we found that many unreachable
incidences affect a small portion of destination prefixes and
ASes observed in our routing updates. For example, as shown
in Figure 3, 80% of unreachable incidences impact only 30%
of prefixes and 10% of ASes, respectively.

Identifying the failure location along the path helps us
understand whether the problem usually happens close to
the destination networks. If failures occur near or within
destination networks, multi-homing or overlay routing cannot
bypass such failures. We approximate the location of a data
plane failure as the IP hop where the traceroute probe stops.

Figure 4 shows that the normalized hop count is evenly
distributed along both the IP level and AS level path. The
hop distance is normalized by the hop count of the reachable
path before the incidence. Note that the last hop of the
stopped traceroute may not be where the problem resides
since absence of traceroute replies may be due to firewalls or
routers disabling ICMP replies. We differentiate such cases by
examining whether routers in a particular AS ever replied with
ICMP packets in history data. Such an AS is expected appear
in the data path based on history or BGP data. Furthermore,



[ ASN | Unreachable Incidences | Prefixes |

AS Name | Tier | Primary Country |

25543 112784 (8.6%) 34 FasoNet-AS ONATEL/FasoNet’s Autonomous System 5 Burkina Faso
4134 110787 (8.4%) 590 CHINANET-BACKBONE No.31, Jin-rong Street 2 China
19982 107709 (8.1%) 3 TOWERSTREAM-PROV Towerstream 4 United States
8866 45840 (3.4%) 72 BTC-AS Bulgarian Telecommunication Company 3 Bulgaria
9121 43021 (3.2%) 423 TTnet Autonomous System 3 TURKEY
8011 41768 (3.1%) 39 CoreComm - Voyager, Inc. 4 United States
22543 37267 (2.8%) 16 PIXELWEB Pixelweb 5 Canada
4595 36300 (2.7%) 8 ICNET ICNet/Innovative Concepts 5 United States
17974 35573 (2.7%) 369 TELKOMNET-AS2-AP PT TELEKOMUNIKASI INDONESIA 5 Indonesia
4314 28951 (2.2%) 20 COMMNET-ASN CommNet Data Systems, Inc. 3 United States

TABLE III
TopP 10 DESTINATION ASES EXPERIENCING MOST UNREACHABLE INCIDENCES.
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Fig. 5. Duration of unreachable incidences.

we can usually assume that an AS applies a uniform policy
regarding ICMP for all its routers [18].

2) Failure Duration: We compute the duration of reacha-
bility loss to be the period starting from the time when the
update is received to the time that the destination is reachable
by probing. Figure 5 shows the cumulative distribution of
the duration of unreachable incidences. We found that most
such incidences last than 300 seconds. They are likely due to
transient routing failures [6] or routing convergence delays.
However, 10% unreachable incidences last longer than the
maximum probing limit of 300 seconds. They may be caused
by other factors such as configuration errors and path failures.
The observed reachability disruption lasting a few hundred
seconds is expected to have serious performance impact on
real-time applications such as Voice over IP.

3) Failure Predictability: Routing incidences and their
corresponding impact on certain destination networks can
be predictable. For a given destination prefix D, we define
the appearance probability of D as the probability of an
unreachable incidence occurring with any routing update to D.
We define the conditional probability of D conditioned on an
AS or an AS path segment as the probability of an unreachable
incidence occurring under the condition of observing a routing
update to D through a particular AS or an AS path segment.
Moreover, we define the responsible AS for an unreachable
incidence to be the AS where traceroute stops.

Figure 6 shows the CDF of the appearance probability and
the conditional probability conditioned on the responsible AS.
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Fig. 6. Appearance probability and conditional probability (conditioned on
the responsible AS) of unreachable incidences.

Around 30% of the prefixes have unreachable appearance
probability of larger than 0.5. This indicates that the reachabil-
ity loss is difficult to predict for most prefixes upon observing a
routing update of that prefix. However, the corresponding plot
for the conditional probability (conditioned on the responsible
AS) is about 80%. This indicates that, given a routing update to
a destination and the responsible AS, unreachable incidences
can be much more predictable. By comparing the looping
AS path with the normal AS path obtained from background
probing, we can estimate the responsible AS’s AS level hop
count to the destination. 95.9% of these responsible ASes are
at least one hop away from the destination. Therefore, taking
alternate path might be possible to bypass the problem.

C. Forwarding Loops

We now focus on a subset of unreachable incidences — for-
warding loops, which have been widely studied [19], [20], [4],
[21]. It has been shown that transient loops can be caused by
inconsistent or incomplete views among routers during routing
convergence [22], while persistent loops are more likely a
result of configuration errors [7]. In our experiments, we
identify loops in traceroute and compare path from background
probing with path from triggered probing to detect persistent
loops and to exclude loops caused by measurement artifacts.
We find only 0.027% forwarding loops are persistent. We focus
on transient loops in the rest of this section.
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1) Destination Networks Impacted by Loops: Figure 7
shows the fraction of destination prefixes and ASes impacted
by forwarding loops. Similar to unreachable incidences, we
observe that the distribution of loop incidences across desti-
nation prefixes and ASes are very skewed. For example, top
10% of prefixes and ASes observed in our routing updates
experience 60% and 80% of forwarding loops, respectively.

For each loop incidence, we consider the ASes where the
loop occurs as the responsible ASes. We observe that 98% of
the loop incidences are intra-AS loops, i.e., the IPs involved
in the loop are within one AS. Table IV shows the top 10
responsible ASes for loop incidences. Interestingly, we observe
that most of these ASes are tier-1 ASes. This is because
large ASes in the core of the Internet have more complicated
routing policies, potentially more complex routing dynamics,
and larger network diameters translate to longer delays for
propagating updates. All these factors can cause more transient
failures within such networks [6], [19].

2) Loop Duration: We measure the loop duration as the
time period from the receipt of the routing update until when
probes can reach the destination without experiencing loops.
Figure 8 shows about 70% loops last less than 350 seconds.
Note that for loops lasting longer than 300 seconds from the
first probe, we overcome our maximum probing duration of
300 seconds by background probing to such long-lasting loops
to determine whether they are persistent loops. We found that
only 0.0027% loop incidences are persistent loops, 74% of
which occur close to the destination networks. In addition,
we observe that the vast majority of loops involves a small
number of IP level hops. For example, 81% of loops involve
two IP addresses.

3) Loop Predictability: Similarly, we study how predicable
loop incidences are. The appearance probability and condi-
tional probability (conditioned on the responsible AS) of loop
incidences are shown in Figure 9. Only around 20% of prefixes
have appearance probability of more than 0.5, indicating that
loop incidences are difficult to predict for most prefixes based
simply on the presence of any update to the prefix. However,
75% of prefixes have conditional probability (conditioned on
responsible AS) of more than 0.5. This illustrates that, given
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a routing update to the prefix and the responsible AS, loop
incidences can be much more predictable.

V. FAILURE PREDICTION MODEL

How well does a routing update indicate the occurrence of
a data plane failure? Can we detect the presence of such a
failure based on observed routing updates? To answer these
questions, we develop a statistical prediction model to infer
the probability of a data plane failure given a routing update.
As observed in our experiments, the predictability of failure
incidences given routing updates across all prefixes follows
a bi-modal distribution: some prefixes are highly predictable,
while others are not. In this section, we focus on prefixes
which are more predictable as analyzed in Section IV. We
first present our prediction model and then verify the model
via supervised learning. Finally, we discuss applications of the
prediction model.

A. Prediction Model

In this section, we derive a model for predicting whether a
failure incidence Y occurs upon observing a routing update R
to a given destination.

1) Model: We use the random variable Y to represent the
data plane observation: Y = 1 if there is a failure in the data
plane, and Y = 0 otherwise. We use the random variable



ASN [ Loop Incidences | Destination Prefixes |

Responsible AS Name

| Tier | Primary Country |

701 34457 (18.6%) 2059 ALTERNET-AS UUNET Technologies, Inc. 1 United States
1239 | 33998 (17.7%) 2013 SPRINTLINK Sprint 1 United States
3356 32674 (17.6%) 1998 LEVEL3 Level 3 Communications, LLC 1 United States
7018 | 27971 (15.1%) 1587 ATT-INTERNET4 AT&T WorldNet Services 1 United States
174 21060 (11.3%) 1149 PSINET PSINet Inc. 1 United States
2914 13612 (7.3%) 787 VERIO Verio, Inc. 1 United States
4134 13362 (7.2%) 534 CHINANET-BACKBONE No.31, Jin-rong Street 2 China

6453 13106 (7.0%) 746 TELEGLOBE-AS Teleglobe Inc 1 United States
3549 12267 (6.6%) 850 GBLX Global Crossing 1 United States
3561 12087 (6.5%) 691 CWUSA Cable & Wireless USA 1 United States

TABLE IV
FORWARDING LOOP INCIDENCES IN THE TOP 10 RESPONSIBLE ASES.

R to represent routing updates with AS path zq,...,z,.
The model is built based on observations of <failure Y,
routing update R > pairs in the history data.

In our model, we use a direct acyclic graph (DAG) to
represent all the paths for each destination prefix. Each node
in the graph represents an AS. In addition, we assume that
failures are independent. To determine whether a data plane
failure will occur, i.e., Y = 1 given a routing update R, we
compute the data plane failure likelihood ratio.

P(Y =1|R; D) |
P(Y =0|R; D) )
where P(Y = 1|R; D) is the conditional probability of data
plane failure occurrence given a routing update R for prefix D,
and P(Y = O|R; D) is the conditional probability of no data
plane failure occurrence given a routing update R for prefix
D. We say that a data plane failure occurs if A(Y") > A, where
A is a decision threshold which determines false positive and
negative rate.
Given an update R with the AS path z1,29,...,2,, if a
failure occurs in x3, then the ASes along the path can be
classified to three categories:
e ASes z1,...,zp_1 appearing in the path before z; are
“good” AS nodes;

o AS 1z is a “bad” AS node, also known as the responsible
AS.

o ASes xpi1,...,x, appearing after xp in the path are
“unknown” AS nodes.

Therefore, the probability of AS z; being a bad node for
destination D can be computed as

. _ BadCount(z;)
P =1z D) = TotalCount(x;) @
where BadCount(x;) is the number of occurrences AS x;
appears as a bad node for destination D, and T'otalCount(x;)
is the total number of occurrences AS z; appears in the path
for destination D.
Thus, given a routing update R with AS path z1, ..., z, for
destination D, the probability that R will cause a data plane
failure is

A(Y) =

n

P(Y =1R=x1,22,...,20; D) =1 = [ [(1 = P(Y = 1|z; D))
=1
3)

Similarly, the probability that R will not cause a data plane
failure is

P(Y =0|R=m1,72,...,2,; D) = [ [(1 = P(Y = 1|z;; D) 4)

i=1

After computing the failure likelihood ratio A(Y’), we use
the receiver operating characteristic (ROC) in signal detection
theory [23] to decide the value of A\. ROC curves are com-
monly used to evaluate prediction results. In particular, the
ROC of a predictor shows the trade-off between selectivity
and sensitivity. A curve of false positives ratio (false alarms)
versus true positive ratio (detection accuracy) is plotted while
varying a sensitivity or threshold parameter. In our experiment,
given A(Y'), we determine the ratio of false positive, Prp, and
the ratio of detection accuracy P4c, with varying values of .

2) Validation: We evaluate both false positive ratio and
false negative ratio of our prediction model. A false positive
refers to the case where our prediction model predicts a data
plane failure given a routing update, while there is no failure
observed in our experiment. A false negative refers to the case
where our prediction model fails to predict a data plane failure
given a routing update. As we have observed in Figures 6
and 9, some prefixes are more predictable than others. The
poor predictability on certain prefixes could be explained
by inherent non-stationary properties associated with certain
failures, or by the limited visibility from the vantage points
of our experiments. Next, we analyze the predictability across
different prefixes and focus on the set of more predictable
prefixes to further evaluate our prediction model.

We repeat the following experiments 10 times. We first
divide the data set into the training set and the testing set. In
particular, we randomly sample 50% of the entire observations
as the training set and compute the failure likelihood ratio
for all the routing updates in the test set. During the training
process, we only consider observations that appear at least
k times for a given prefix and a responsible AS. In our
experiment, we choose k = 3. As a result, we discard 5.6%
of observations. Using k = 4 will increase the prediction
accuracy by 0.34%, while discarding 1.3% of observations.

Next, we compute the average A(Y) of each prefix for
both unreachable and reachable incidences based on our
observations. Figure 10 shows that the prediction accuracy
is limited considering all observed prefixes. Given A = 1,
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61% of prefixes are predictable (i.e., A > 1) for all failure
incidences and 72% of prefixes are predictable (i.e., A < 1)
for all non-failure incidences.

Given a prefix and its identified responsible AS, we identify
over 51.2%-54.3% of probed updates to be predictable for
causing reachability loss and 48.9%-57.5% for causing loops
across all six vantage points. The corresponding figures for
probed prefixes are 58.7%-67.5% and 53.2%-55.8%, respec-
tively. These destination prefixes account for 28.1%-32.4% of
announced prefixes originating from 27.4%-31.9% of all ASes.
3.8% and 5.1% of such destination ASes are tier-1 and tier-
2 ASes respectively. The figures for tier-3, tier-4, and tier-5
ASes are 22.4%, 23.6%, and 45.1%, respectively. The set of
responsible ASes for unreachable and loop incidences consists
of 10.8% tier-1 ASes, 11.9% tier-2 ASes, 19.7% tier-3 ASes,
21.2% tier-4 ASes, and 36.4% tier-5 ASes. This shows that
prefixes from the edge of the Internet are more predictable and
most responsible ASes are also from the edge.

Figure 11 shows the receiver operating characteristics curve
of predicting the incidences in the test set. The false positive
ratio is shown in z-axis and the prediction accuracy ratio is
shown in y-axis. We observe that, by varying A, our prediction
model achieves different degrees of accuracy. For example,
with A =1 (i.e., if A(Y) > 1, failure is predicted to occur),
our model can achieve 89.8% prediction accuracy with 14.5%
false positives for unreachable failures and 79.9% accuracy
with 12.3% false positives for loops on the subset of prefixes
selected above. This observation implies that the prediction
model built on history observation can be used to predict future
failures on certain prefixes. Figure 12 shows the corresponding
curves for all prefixes. Given A = 1, our model achieves
51% and 60% prediction accuracy for unreachable failures and
loops with false positive ratio of 21% and 18%, respectively.
This is consistent with our observation in Figure 10 that
the predictability in general is limited. However, compared
to existing work [24] on predicting data plane performance
degradations with only 50% prediction accuracy with 60%
false positives, our model is much more accurate.

Threshold = 0
1 T T T 2

0.5

008 1.5

©

g 2

&

50.6* 25/ B

Q

(5]

©

_50.4’ 3

°©

1) 3.5

Jo}

Bo.2f 45 4 1
¢ o—olUnreachable
0Threshol =5 =—al oop
1074 _3 _2 _1 0

10° 10 10
False positive rate for selected prefixes

Fig. 11. Receiver operating characteristics for selected subset of prefixes.
1r Threshold.s 0

—6— Unreachable
—&— Loop

20.8f

o

>

8

50.6

Q

Q

©

c

S 0.4

o

s

2

& o0.2r

0

3 10

1
False positive ratio for all the orefixes

Fig. 12. Receiver operating characteristics for all probed prefixes.

B. Discussion

In this section, we discuss potential applications of the
measurement framework and the prediction model. First, the
measurement infrastructure provides a platform of measuring
the impact of routing changes on data plane performance.
Detecting control plane changes and predicting corresponding
data plane disruptions provide additional information for best
route selection. By examining the predicted data plane per-
formance among all available routes, the least impacted route
can be selected as the best route to reduce the likelihood and
degree of data plane performance degradation.

Let us use an example to illustrate how the route selection
process can be improved for overlay routing. Suppose a given
destination prefix can be reached via multiple overlay nodes.
When a failure is predicted in AS A based on the observation
of a routing update of the destination prefix, we can select
the next hop for a path avoiding A to reach the destination.
Compared to random next hop selection proposed in [25], this
selection process is more deterministic and has a higher chance
of avoiding data plane failures.

VI. RELATED WORK

A significant number of measurement studies have been
conducted to examine the impact of routing changes on data
plane performance degradation [11], [2], [6], [21], [26], [27],
[28]. For example, [28] focused on the stability of the path



between two ISPs by artificially injecting routing failures.
The duration and location of end-to-end path failures are
studied and correlated with BGP routing instability in [11].
Recent work [2] analyzes how routing events affect end-
to-end Internet performance and explores the root cause of
data plane performance degradation. Our work focuses on
exploring the coarse-grained performance degradation in terms
of reachability caused by routing changes. We measure the
data plane performance via active probing triggered by routing
updates.

Data plane transient failures are also widely studied in [6],
[21], [19], [20], [4]. It has been shown that transient loops can
be caused by inconsistent or incomplete views among routers
during routing convergence [22], while persistent loops are
more likely a result of misconfiguration and can be explored
to create flooding attacks [7]. In [29], light-weight data plane
countermeasures are used to detect routing protocol and data
plane attacks, which can be used in the routing architecture.
Our work uses a wide range of measurements in analyzing the
impact of the data plane failures triggered by routing updates.

To mitigate forwarding failures, previous research [25],
[30] use reactive routing to discover and bypass the failure.
Resilient Overlay Networks (RON) [31], [32] and PlanetLab
[15] provides a platform to re-route the packets in an overlay
network. Our paper provides a prediction model that helps
select best routes which are least likely impacted by failures.

VII. CONCLUSION

In this paper, we develop an efficient framework to measure
and predict data plane performance degradation as a result
of routing changes. Using this framework, we conducted a
large scale Internet measurement study and characterized data
plane performance upon receiving a BGP routing update.
Our experiments and analysis cover a large portion of the
announced prefixes and ASes on the Internet. We observe that
the data plane performance of a certain set of prefixes is highly
predictable. We further develop a statistical model which can
accurately predict the severity of potential data plane failures
based on observations of routing updates for a given prefix. We
show that our model is very useful in a number of applications
such as route selection in an overlay network.
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