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Abstract—Visual speech information plays an important role in
lipreading under noisy conditions or for listeners with a hearing
impairment. In this paper, we present local spatiotemporal de-
scriptors to represent and recognize spoken isolated phrases
based solely on visual input. Spatiotemporal local binary patterns
extracted from mouth regions are used for describing isolated
phrase sequences. In our experiments with 817 sequences from ten
phrases and 20 speakers, promising accuracies of 62% and 70%
were obtained in speaker-independent and speaker-dependent
recognition, respectively. In comparison with other methods on
AVLetters database, the accuracy, 62.8%, of our method clearly
outperforms the others. Analysis of the confusion matrix for 26
English letters shows the good clustering characteristics of visemes
for the proposed descriptors. The advantages of our approach
include local processing and robustness to monotonic gray-scale
changes. Moreover, no error prone segmentation of moving lips is
needed.

Index Terms—Lipreading, local binary patterns, spatiotemporal
descriptors, visual speech recognition.

I. INTRODUCTION

I T is well known that human speech perception is a mul-
timodal process. Visual observation of the lips, teeth,

and tongue offers important information about the place of
pronunciation articulation. A human listener can use visual
cues, such as lip and tongue movements, to enhance the level
of speech understanding. The process of using visual modality
is often referred to as lipreading which is to make sense of
what someone is saying by watching the movement of his lips.
In some research, lipreading combined with face and voice is
studied to help biometric identification [4], [12], [13], [21].
There is also a lot of work focusing on audio-visual speech
recognition (AVSR) [2], [3], [5]–[7], [11], [14], [15], [18],
[26], [27], [29], [32], trying to find effective ways of combining
visual information with existing audio-only speech recognition
systems (ASR). The McGurk effect [23] demonstrates that
inconsistency between audio and visual information can result
in perceptual confusion. Visual information plays an important
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role especially in noisy environments or for the listeners with
hearing impairment.

Most of the research focuses on using visual information
to improve speech recognition. Audio features are still the
main contribution and play a more important role than visual
features. However, in some cases, it is difficult to extract useful
information from the audio. There are many applications in
which it is necessary to recognize speech under extremely
adverse acoustic environments. Detecting a person’s speech
from a distance or through a glass window, understanding a
person speaking among a very noisy crowd of people, and
monitoring a speech over a TV broadcast when the audio link is
weak or corrupted are some examples. Furthermore, for people
with hearing impairments, visual information is the only source
of information from TV broadcasts or speeches, if there is no
assisting sign language. In these applications, the performance
of traditional speech recognition is very limited. There are a
few works focusing on the lip movement representations for
speech recognition solely with visual information [9], [24],
[34], [35]. Saenko et al. [34], [35] use articulatory features
and dynamic Bayesian network for recognizing spoken phrases
with multiple loosely synchronized streams. Chiou and Hwang
[9] utilize snakes to extract visual features from geometric
space, Karhunen-Loeve transform to extract principal com-
ponents in the color eigenspace and HMMs to recognize the
isolated words. Matthews et al. [24] present two top-down
approaches that fit a model of the inner and outer lip contours
and derive lipreading features from a PCA of shape, or shape
and appearance, respectively, and as well a bottom-up method
which uses a nonlinear scale-space analysis to form features
directly from the pixel intensity.

Comprehensive reviews of automatic audio-visual speech
recognition can be found in [32] and [33]. Extraction of a dis-
criminative set of visual observation vectors is the key element
of an AVSR system. Geometric features, appearance features,
and combined features are commonly used for representing
visual information. Geometry-based representations include
fiducial points like facial animation parameters [3], contours
of lips [2], [26], [29], shape of jaw and cheek [2], [26], and
mouth width, mouth opening, oral cavity area, and oral cavity
perimeter [7]. These methods commonly require accurate and
reliable facial and lip feature detection and tracking, which are
very difficult to accommodate in practice and even impossible
at low image resolution.

A desirable alternative is to extract features from the gray-
level data directly. Appearance features are based on observing
the whole mouth region-of-interest (ROI) as visually informa-
tive about the spoken utterance. The feature vectors are com-
puted using all the video pixels within the ROI. The proposed
approaches include principal component analysis (PCA) [5],
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Fig. 1. (a) Basic LBP operator. (b) Circular (8,2) neighborhood.

[6], the discrete cosine transform (DCT) [31], or a combination
of these transforms [14], [34], [35].

In addition, features from both categories can be combined
for lip localization and visual feature extraction [9], [26], [27].
It appears that most of the research on visual speech recognition
based on the appearance features has considered global features
of lip or mouth images but omitted the local features. Local fea-
tures can describe the local changes of images in space and time.
In this paper, we propose an approach for lipreading, i.e., vi-
sual speech recognition, which could improve the human-com-
puter interaction and understanding especially in noisy environ-
ments or for listeners with hearing impairments. A preliminary
version of this work was presented in [40]. We focus on the
recognition of isolated phrases using only visual information.
A new appearance feature representation based on spatiotem-
poral local binary patterns is proposed, taking into account the
motion of mouth region and time order in pronunciation. A sup-
port vector machine (SVM) classifier is utilized for recogni-
tion. Spatiotemporal multiresolution descriptors are introduced,
and feature selection using AdaBoost to select more important
slices (principal appearance and motion) is also presented. Ex-
periments on different databases are carried out for performance
analysis. Section II presents the spatiotemporal descriptors for
mouth movement, and the multiresolution features and feature
selection method are described in Section III. In Section IV, the
whole system is introduced, and experiments are presented in
Section V. Section VI concludes the paper.

II. LOCAL SPATIOTEMPORAL DESCRIPTORS

FOR VISUAL INFORMATION

The local binary pattern (LBP) operator is a gray-scale in-
variant texture primitive statistic, which has shown excellent
performance in the classification of various kinds of textures
[30]. For each pixel in an image, a binary code is produced by
thresholding its neighborhood with the value of the center pixel
[Fig. 1(a) and (1)]:

(1)

where corresponds to the gray value of the center pixel
of the local neighborhood and to the gray values of

equally spaced pixels on a circle of radius . By considering
simply the signs of the differences between the values of
neighborhood and the center pixel instead of their exact values,
LBP achieves invariance with respect to the scaling of the gray
scale.

A histogram is created to collect up the occurrences of dif-
ferent binary patterns. The definition of neighbors can be ex-

tended to include circular neighborhoods with any number of
pixels, as shown in Fig. 1(b). In this way, one can collect larger-
scale texture primitives or micro-patterns, like lines, spots, and
corners [30].

“Uniform patterns” [30] are usually used to shorten the length
of the feature vector of LBP. Here, a pattern is considered uni-
form if it contains at most two bitwise transitions from 0 to 1
or vice versa when the bit pattern is considered circular (e.g.,
11110011. However, 1000100 is not a uniform pattern since it
contains four bitwise transitions). When using the uniform pat-
terns, all non-uniform LBP patterns are collected into a single
bin during the histogram computation. In the following sections,
“u2” is utilized to refer to uniform patterns.

Local texture descriptors have gained increasing attention in
facial image analysis due to their robustness to challenges such
as pose and illumination changes. Ahonen et al. proposed LBP-
based facial representation for face recognition from static im-
ages [1].

Recently, a method for temporal texture recognition using
spatiotemporal local binary patterns extracted from three
orthogonal planes (LBP-TOP) was proposed [39]. With this
approach, the ordinary LBP for static images was extended
to the spatiotemporal domain. For LBP-TOP, the radii in
spatial and temporal axes X, Y, and T, and the number of
neighboring points in the XY, XT, and YT planes can also be
different, which can be marked as , and , ,

and ; the corresponding LBP-TOP feature is then
denoted as . Suppose
the coordinates of the center pixel are , the
coordinates of local neighborhood in XY plane are given
by , the
coordinates of local neighborhood in XT plane are given
by ,
and the coordinates of local neighborhood in YT plane

. This is
different from the ordinary LBP widely used in many papers,
and it extends the definition of LBP. A histogram is created to
represent the occurrences of different binary patterns in these
three planes. Spatial information such as appearance is captured
in the plane and temporal information such as horizontal or
vertical motion is captured in the and planes, respec-
tively. Sometimes, the radii in three axes are the same and so do
the number of neighboring points in XY, XT, and YT planes.
In that case, we use for abbreviation where

and . The
length or dimension of the features is .
Moreover, region-concatenated descriptors using LBP-TOP
features were developed for facial expression recognition.
The results obtained with the Cohn–Kanade facial expression
database outperformed the state-of-the-art.

Due to its ability to describe spatiotemporal signals, robust-
ness to monotonic gray-scale changes caused, e.g., by illumina-
tion variations, the LBP-TOP is utilized to represent the mouth
movements in this paper. Considering the motion of the mouth
region, the descriptors are obtained by concatenating local bi-
nary patterns on three orthogonal planes from the utterance se-
quence: XY, XT, and YT, considering only the co-occurrence
statistics in these three directions. Fig. 2(a) demonstrates the
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Fig. 2. (a) Volume of utterance sequence. (b) Image in XY plane (147 � 81).
(c) Image in XT PLANE (147 � 38) in � � �� (last row is pixels of � � ��

in first image). (d) Image in TY plane (38 � 81) in � � �� (first column is the
pixels of � � �� in first frame).

Fig. 3. Mouth region images (first row), LBP-XY images (second row),
LBP-XT images (third row), and LBP-YT images (last row) from one utter-
ance.

volume of utterance sequence. Fig. 2(b) shows image in the XY
plane. Fig. 2(c) is an image in the XT plane providing a visual
impression of one row changing in time, while Fig. 2(d) de-
scribes the motion of one column in temporal space. An LBP
description computed over the whole utterance sequence en-
codes only the occurrences of the micro-patterns without any
indication about their locations. To overcome this effect, a rep-
resentation which consists of dividing the mouth image into sev-
eral overlapping blocks is introduced. Fig. 3 also gives some ex-
amples of the LBP images. The second, third, and fourth rows
show the LBP images which are drawn using LBP code of every
pixel from XY (second row), XT (third row), and YT (fourth
row) planes, respectively, corresponding to mouth images in the
first row. From this figure, the change in appearance and motion
during utterance can be seen.

However, taking only into account the locations of micro-pat-
terns is not enough. When a person utters a command phrase,
the words are pronounced in order, for instance “you-see” or
“see-you”. If we do not consider the time order, these two
phrases would generate almost the same features. To overcome

Fig. 4. Features in each block volume. (a) Block volumes. (b) LBP features
from three orthogonal planes. (c) Concatenated features for one block volume
with the appearance and motion.

Fig. 5. Mouth movement representation.

this effect, the whole sequence is not only divided into block
volumes according to spatial regions but also in time order,
as Fig. 4(a) shows. The LBP-TOP histograms in each block
volume are computed and concatenated into a single histogram,
as Fig. 4 shows. All features extracted from each block volume
are connected to represent the appearance and motion of the
mouth region sequence, as shown in Fig. 5.

In this way, we effectively have a description of the phrase ut-
terance on three different levels of locality. The labels (bins) in
the histogram contain information from three orthogonal planes,
describing appearance and temporal information at the pixel
level. The labels are summed over a small block to produce in-
formation on a regional level expressing the characteristics of
the appearance and motion in specific locations and time seg-
ments, and all information from the regional level is concate-
nated to build a global description of the mouth region mo-
tion. Moreover, even though different utterances have different
length, they are divided into the same number of block volumes,
so the lengths of their feature vectors are the same to compare.

A histogram of the mouth movements can be defined as

(2)
in which is the number of different labels produced by the
LBP operator in the th plane ( : , 1: , and 2: ),

expresses the LBP code of central pixel in
the th plane, ,

, ( and are width and
height of image and is the utterance length). is the index of
rows, is of columns, and is of time of block volume:

if is true
if is false.

(3)
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The histograms must be normalized to get a coherent descrip-
tion:

(4)

III. MULTIRESOLUTION FEATURES AND FEATURE SELECTION

Multiresolution features can provide more information and
improve the analysis of dynamic events. Using multiresolution
features, however, will also greatly increase the number of
features available. If the features from different resolutions
were concatenated directly, the feature vector would become
very long, making the computational complexity too high. It is
obvious that all multiresolution spatiotemporal features do not
contribute equally, either. Therefore, it is necessary to find out
what features (in which location, with what resolutions, and
more importantly, what types: appearance, horizontal motion,
or vertical motion) are more important. Feature selection is
needed for this purpose.

In this section, we consider the use of spatiotemporal local
binary patterns computed at multiple resolutions for describing
dynamic events, combining static and dynamic information
from different spatiotemporal resolutions. For a more com-
plete description of this approach, see [41]. The whole video
sequence can be divided into sub-volumes, and
inside each sub-volume, the LBP-TOP features are computed
to describe the characteristic of the sub-volume, and finally
are connected together to represent the videos. In changing the
parameters, three different types of spatiotemporal resolution
are presented: 1) Use of a different number of neighboring
points when computing the features in (appearance),
(horizontal motion), and (vertical motion) slices; 2) Use
of different radii that can capture the occurrences in different
space and time scales; 3) Use of blocks of different sizes
to create global and local statistical features. The first two
resolutions focus on the pixel level in feature computation,
providing different local spatiotemporal information, while the
third one focuses on the block or volume level, giving more
global information in the space and time dimensions.

Appearance and motion are the key components for visual
speech analysis. The AdaBoost algorithm is utilized for learning
the principal appearance and motion from spatiotemporal de-
scriptors derived from three orthogonal slices (slice-based
method), providing important information about the locations
and types of features for further analysis. Our approach is un-
like earlier work [16], [38] (block-based method), in which just
the importance of block or location was considered, missing
the detailed appearance and motion information. To keep the
global description with histograms, and at the same time, to
separate the appearance and motions, every slice histogram
is thought as an element. To get the slice similarity within
class and diversity between classes, we compare every slice
histogram from different samples with same multiresolution
parameters. The similarity values are used as the new features.

Fig. 6. System diagram.

Several possible dissimilarity measures are available. In this
work, Chi square statistic defined below is adopted:

(5)

where and are two slice histograms and is the bin
number of the histogram. The whole feature pool contains
an enormous amount of possible features because of the
highly overcomplete representation (each feature prototype
can appear at different position, scale, and in any type).

are the similarity of the
LBP-TOP features in three slices from samples and , and
used as the new features fed into learners. Here, and are
the indexes of samples. They could come from the same class
which would be the intra-class features, or different classes
which would be the extra-class features. In this way, the dissim-
ilarity for three kinds of slices are obtained, which can further
be used to describe the importance of appearance, horizontal
motion, and vertical motion.

In addition, learners are designed for selecting the most
important features for each specific pair of speech classes [41].
Previous work [16], [38] employed an all-against-all (All-All)
approach to AdaBoost learning. This approach determined the
global variations between all classes. However, if we could
determine the specific differences between each pair, it would
be helpful to improve the further analysis. To deal with this
problem, we propose to use the class-pair learning, also called
one-against-one (One-One) learning. That means the learners
are designed for every pair of two classes and the aim is to learn
more specific and discriminative features for each pair.

IV. OUR SYSTEM

Our system consists of three stages, as shown in Fig. 6. The
first stage is a combination of discriminative classifiers that first
detects the face, and then the eyes. The positions of the eyes are
used to localize the mouth region. The second stage extracts the
visual features from the mouth movement sequence. The role of
the last stage is to recognize the input utterance using an SVM
classifier.

Boosted Haar features [37] are used for automatic coarse face
detection and 2-D Cascaded AdaBoost [28] is applied for local-
izing eyes in the detected faces. Because the face images in the
database are of good quality and almost all of them are frontal
faces, detection of faces and eyes is quite easy. The positions
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of the two eyes in the first frame of each sequence were given
by the eye detector automatically, and then these positions were
used to determine the fine facial area and localize the mouth
region using predefined ratio parameters [40] for the whole se-
quence.

For recognition, an SVM classifier was selected since it is
well founded in statistical learning theory and has been suc-
cessfully applied to various object detection tasks in computer
vision. Since the SVM is only used for separating two sets of
points, the -phrase classification problem is decomposed into

two-class problems, then a voting scheme is used
to accomplish recognition. Here, after the comparison of linear,
polynomial, and RBF kernels in experiments, we use the second
degree polynomial kernel function, which provided the best re-
sults. Sometimes more than one class gets the highest number
of votes; in this case, 1-NN template matching is applied to
these classes to reach the final result. This means that in training,
the spatiotemporal LBP histograms of utterance sequences be-
longing to a given class are averaged to generate a histogram
template for that class. In recognition, a nearest-neighbor clas-
sifier is adopted.

V. EXPERIMENTS

A. Databases

1) OuluVS Database: In contrast to the abundance of audio-
only corpora, there exist only a few databases suitable for visual
or audio-visual ASR research. The audio-visual datasets com-
monly used in literature include [17], [18], [25], [27], [32], and
[36].

A variety of audio-visual corpora have been created in order
to obtain experimental results for specific tasks. Many of the
them contain recordings of only one subject, e.g., [3] and [34].
Even those with multiple subjects are usually limited to small
tasks such as isolated digits [5], or a short list of fixed phrases
[25]. The M2VTS database and the expanded XM2VTSDB
[25] are geared more toward person authentication, even though
they consist of 37 and 295 subjects, respectively. Only two of
the audio-visual corpora published so far (including English,
French, German, and Japanese) contain both a large vocabulary
and a significant number of subjects. One of these is IBM’s
proprietary, 290-subject, large-vocabulary AV-ViaVoice data-
base of approximately 50 h in duration [27]. The other one is
the VidTIMIT database [36], which consists of 43 subjects each
reciting the ten different TIMIT sentences. It has been used in
multimodal person verification research.

There are few datasets providing phrase data [17], [25], [34],
[36], and in those, the number of speakers is pretty small [34].
Though AVTIMIT [17], XM2VTSDB [25], and VidTIMIT [36]
include many speakers, the speakers utter different sentences or
phrases [17], [36] or small number of sentences [25]. Due to the
lack of publicly available databases suitable for our needs, we
collected our own visual speech dataset, i.e., OuluVS database,
for performance evaluation.

A SONY DSR-200AP 3CCD-camera with a frame rate 25 fps
was used to collect the data. The image resolution was 720
576 pixels. Our dataset includes 20 persons, each uttering ten

TABLE I
PHRASES INCLUDED IN THE DATASET

Fig. 7. Mouth regions from the dataset.

everyday greetings one to five times. These short phrases are
listed in Table I.

The subjects were asked to sit on a chair. The distance be-
tween the speaker and the camera was 160 cm. He/she was then
asked to read ten phrases which were written on a paper, each
phrase one to five times. The data collection was done in two
parts: the first from ten persons and four days later from the
ten remaining ones. Seventeen males and three females are in-
cluded, nine of whom wear glasses. Speakers are from four dif-
ferent countries, so they have different pronunciation habits in-
cluding different speaking rates.

In total, 817 sequences from 20 speakers were used in the
experiments.

Fig. 7 gives some examples of the mouth localization. The
average size of the mouth image is around 120 70. We know
that using a fixed ratio perfect mouth regions cannot always be
obtained, so in the future, a combination of eye positions and
mouth detection will be considered to get more accurate mouth
regions.

2) AVLetters Database: The AVletters database [24] consists
of three repetitions by each of ten speakers, five male, two of
whom have moustaches, and five female, of the isolated letters
A-Z, a total of 78 utterances. Speakers were prompted using
an autocue that presented each of three repetitions of the al-
phabet in nonsequential, nonrepeating order. Each speaker was
requested to begin and end each letter utterance with their mouth
in the closed position. No head restraint was used, but speakers
were provided with a close-up view of their mouth and asked not
to move out of frame. The full face images were further cropped
to a region of 80 60 pixels after manually locating the center
of the mouth in the middle frame of each utterance. Each utter-
ance was temporally segmented by hand using the visual data so
that each utterance began and ended with the speaker’s mouth
in the closed position. Fig. 8 shows example images from the
ten speakers. To make an unbiased comparison, we also carry
out the experiments on this public database.

B. Experimental Protocol and Results

For comprehensive evaluation of our proposed method,
we design different experiments, including speaker-indepen-
dent, speaker-dependent, multiresolution, and one-against-one
versus one-against-rest experiments on these two databases. We
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Fig. 8. Example images from ten speakers.

also analyze the viseme confusion matrix to see the clustering
ability of the proposed method.

1) Speaker-Independent Experiments: For the speaker-inde-
pendent experiments, leave-one-speaker-out is utilized. In the
testing procedure on OuluVS database, in each run, training was
done on 19 speakers in the data set, while testing was performed
on the remaining one. The same procedure was repeated for each
speaker, and the overall results were obtained using (
is the total number of correctly recognized sequences and is
the total number of testing sequences).

When extracting the local patterns, we take into account not
only locations of micro-patterns but also the time order in ar-
ticulation, so the whole sequence is divided into block volumes
according to not only spatial regions but also time order.

According to tests, parameter values
, , and an overlap ratio of 70% of the

original non-overlapping block size were selected empirically.
After experimenting with different block sizes, we chose to use

(rows by columns by time segments) blocks in our
experiments.

Fig. 9 shows the recognition results using three different fea-
tures on OuluVS database. As expected, the result of the features
from three planes is better than that just from the appearance
(XY) plane which justifies the effectiveness of the feature com-
bining appearance with motion. The features with block
volumes omitted the pronunciation order, providing a lower per-
formance than those with block volumes for almost all
the tested phrases. It can be seen from Fig. 9 that the recogni-
tion rates of phrases “See you” (C6) and “Thank you” (C8) are
lower than others because the utterances of these two phrases
are quite similar, just different in the tongue’s position. If we
take those two phrases as one class, the recognition rate would
be 4% higher.

We compared the recognition performance for automatic
mouth localization to that obtained with hand-marked eye
positions. The results are given in Table II, showing that au-
tomatic eye detection gave similar performance to the manual
approach. The second row demonstrates the results from the
combined features of two kinds of block features, which are a
little higher than those from one kind of block features (first
row). We also used the temporal derivatives [15] which means
pixel-by-pixel differences between consecutive frames, optical
flow features [22], and DCT features [27], [31], [34] which have
been exploited in early research. The DCT features are first
computed for every frame, while the temporal derivatives and
optical flow features are computed for every two frames to get
the frame-level features. The whole utterance sequence can also
be divided into segments in time axis, and the final features

Fig. 9. Phrases recognition comparison of different features on OuluVS data-
base.

TABLE II
RESULTS OF SPEAKER-INDEPENDENT EXPERIMENTS ON OuluVS DATABASE

(“��” FOR DCT: S MEANS SQUARE SUBLATTICES AND “5” MEANS THE

LAYERS OF THE COEFFICIENTS SELECTION. SIMILAR MEANINGS FOR “���”,
“��”, AND “��”. FOR DETAILS, PLEASE REFER TO [31])

are obtained by averaging the frame-level features through the
segment. This is to keep the pronunciation order. The results
for automatically localized mouth regions are listed in Table II.
We have experimented using different parameters, and here we
only list the best accuracy for temporal derivatives and optical
flow features, and some DCT results with different number
of coefficients, the lattice selection (S: square, T: triangular,
C: circular, or H: hyperbolic sublattices), and the number of
time segments. (For DCT, here we list the best accuracies for
respective sublattice in our experiment.) From Table II, we can
see our features perform much better than these features.

On AVLetters database, in each run, training was done on
nine speakers in the data set, while testing was performed on
the remaining one. The same procedure was repeated for each
individual test speaker.

Fig. 10 demonstrates the performance for every speaker. As
we can see, the results from the second speaker are the worst,
mainly because the big moustache of that speaker (as shown in
Fig. 8) really influences the appearance and motion in the mouth
region.

Table III lists the accuracy from different parameters. The
uniform features with neighborhood samples number eight and
radius three extracted from blocks got the best result
43.46%, which is even comparable to the best accuracy 44.6%
from the semi-speaker-dependent evaluation in [24]. Normal
features even with longer feature vectors do not work as well
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Fig. 10. Recognition performance for every speaker.

TABLE III
RESULTS OF SPEAKER-INDEPENDENT EXPERIMENTS ON AVLetters

DATABASE (U2 REFERS TO UNIFORM PATTERNS)

Fig. 11. Speaker-dependent recognition results for every subject on OuluVS
database.

as the uniform patterns. The radius with three and neighboring
points with eight outperform the radius with one and neigh-
boring points four, which is consistent to the results from facial
expression recognition.

2) Speaker-Dependent Experiments: For speaker-dependent
experiments, the leave-one utterance-out is utilized for cross
validation on OuluVS database because there are not abundant
samples for each phrase of each speaker. In total, ten speakers
with at least three training samples for each phrase are selected
for this experiment, because too few training samples, for in-
stance, one or two, could bias the recognition rate. In our ex-
periments, every utterance is left out, and the remaining utter-
ances are trained for every speaker. Fig. 11 presents a detailed
comparison of the results for every subject. Table IV shows the
overall recognition results. The block parameters used here are
also . We can see there is no significant
difference in performance between automatic eye detection and
manual eye positioning.

On the basis of AVLetters database, Matthews et al. [24] pre-
sented two top-down approaches that fits a model of the inner

TABLE IV
RESULTS OF SPEAKER-DEPENDENT EXPERIMENTS ON OuluVS DATABASE

and outer lip contours and derive lipreading features from a PCA
of shape—Active Shape Model (ASM)—or shape and appear-
ance—Active Appearance Model (AAM)—respectively, and as
well a bottom-up method which uses a nonlinear scale-space
analysis—multiscale spatial analysis (MSA)—to form features
directly from the pixel intensity.

In their experiments, their training set was the first two utter-
ances of each of the letters from all speakers (520 utterances)
and the test set was the third utterance from all speakers (260
utterances). In this way, the training set includes the utterances
from all speakers, so it is not speaker-independent. But it is not
trained and tested for individual speakers, so it is also not com-
pletely speaker-dependent. We call this evaluation setup “semi-
speaker-dependent”.

We did the same evaluation using the same training set and
test set, i.e., using the first two utterances of each of the letters
from all speakers (520 utterances) as training set and the third ut-
terance from all speakers (260 utterances) as test set. The results
are listed in the second column (third-test) in Table V. As well,
the three-fold-cross-validation is also made by using every one
from three repetitions as test set and the other two repetitions as
training set. In this way, the overall performance could be eval-
uated, seeing the third column (three-fold) in Table V. Com-
paring to the best results from ASM, AAM, and MSA proposed
in [24], our accuracy (fifth row) from same classifier HMM,
but with our own proposed LBP-TOP features, is 12.7% higher
than MSA, 30.4% higher than ASM. Table V also gives the re-
sults from different parameters of LBP-TOP features with SVM
classifiers. The best result is 58.85% for the third-fold test and
62.82% for the three-fold test. The performance of commonly
used features: temporal derivatives, optical flow, and DCT with
same SVM classifiers are also provided. Even though they work
better than ASM, and the accuracy from DCT is even better than
MSA, our method obtained the best recognition results on the
same evaluation setup.

Moreover, we also carry out experiments on continuous
speech segmentation. The letters are combined into longer
sequences to be used for segmentation and classification.
Every one from three repetitions for each letter is put into one
sequence in random order for all subjects, so we have 30 long
sequences each containing 26 spoken letters in random order.

The groundtruth for each sequence is provided by the labeling
of the letters in the AVLetters database.

For training, these 30 sequences are divided into three groups,
and every time, one group is used as test set and the other two as
training set. That is to say, the th ( , 2, 3) test sequence in-
cludes ten speakers with their th utterances for 26 letters. This
is repeated three times. In this way, the training set includes the
utterances from all speakers, not for every speaker, so it is not
speaker-dependent. This evaluation setup is semi-speaker-inde-
pendent. HMM has been used successfully in many different se-
quence recognition applications. In speech recognition, HMM is
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TABLE V
RESULTS OF SEMI-SPEAKER-DEPENDENT EXPERIMENTS

ON AVLetters DATABASE

the most common method of modeling. Here, based on
features with 2 5 blocks, an HMM is utilized to rec-

ognize and segment these longer sequences. This is done by first
training an HMM for each letter in the AVLetters database; these
HMMs form the states of a larger HMM used to model the tran-
sitions between the letters and decode the long sequence of let-
ters.

Frame recognition rate (FRR) is used as measure. FRR is de-
fined as

(6)

where is the number of frames classified correctly and is
the total number of frames in the sequence. This is a measure of
segmentation accuracy as well as classification accuracy.

With this approach, an accuracy of 56.09% is obtained by av-
eraging the results from three rounds of evaluation, which shows
promising performance for continuous speech segmentation.

3) Experiments With Feature Selection: For OuluVS data-
base, we use with block volumes
in two-fold cross-validation for the following unbiased compar-
ison, from which the baseline result is 54.22%. To learn more
effective multiresolution features, the proposed feature selec-
tion method is utilized and a comparison is made. To get the
multiresolution features, eight groups of features
from different neighboring points, radii, and block volume sizes
with 339 slices in total, as shown in Table VI, were extracted and
exploited for selection. In the experimental results from separate
resolution features, the best accuracy is from
with block volumes. The highest number of features is
also selected from with block volumes,
which proves the consistency of the selected effective features.
To give a concise presentation, in the following parts, Figs. 13
and 14 just show the selected features in with

block volumes while the results in comparisons shown
in Fig. 12 are from the multiresolution features.

Fig. 12 shows that the slice-based feature selection algorithm
works much better than the block-based one. It also demon-
strates that when the number of selected slices is quite high,
e.g., 60 slices, the All-All strategy provided better results than
the one-one approach. This is perhaps because the use of too

TABLE VI
MULTIRESOLUTION FEATURES

Fig. 12. Comparative results for slice-based and block-based methods on
OuluVS database.

many slices will weaken the discrimination among the pairs of
classes. More importantly, when a smaller number of selected
slices is used, the One-One strategy will learn more discrimi-
native features for the pairs of spoken phrases achieving better
results than the All-All approach, for example 56.18% versus
55.57% from just 15 slices, as well as around 2% better than
obtained from separate with 45 slices, 54.22%.

Fig. 13 shows the selected slices for similar phrases “see you”
and “thank you”. These phrases were the most difficult to recog-
nize because they are quite similar in the latter part containing
the same word “you”. The selected slices are mainly in the first
and second part of the phrase; just one vertical slice is from the
last part. The selected features are consistent with the human
intuition. The phrases “excuse me” and “I am sorry” shown in
Fig. 14 are different throughout the whole utterance, and the se-
lected features also come from the whole pronunciation. With
the proposed feature selection strategy, more specific and adap-
tive features are selected for different pairs of phrase classes, as
shown in Figs. 13 and 14, providing more discriminative fea-
tures.

4) One-One versus One-Rest Recognition: We use the SVMs
as the classifiers. Since SVMs are only used for separating two
classes, when we have multiple classes, there could be different
strategies. In the previous experiments on our own dataset, the
ten-phrase classification problem is decomposed into 45 two-
class problems (“Hello”- “Excuse me”, “I am sorry”- “Thank
you”, “You are welcome”- “Have a good time”, etc.). But using
this multiple two-class strategy, the number of classifiers grows
quadratically with the number of classes to be recognized like in
AVLetters database. When the class number is , the number
of the SVM classifiers would be . The other option
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Fig. 13. Selected 15 slices for phrases “See you” and “Thank you”. “�” in the
blocks means the YT slice (vertical motion) is selected, and “�” the XT slice
(horizontal motion), “�” means the appearance XY slice.

Fig. 14. Selected 15 slices for phrases “Excuse me” and “I am sorry”. “�” in
the blocks means the YT slice is selected, and “�” the XT slice, “�” means the
appearance XY slice.

TABLE VII
RESULTS FROM ONE-TO-ONE AND ONE-TO-REST CLASSIFIERS

ON SEMI-SPEAKER-DEPENDENT EXPERIMENTS (RESULTS IN THE

PARENTHESES ARE FROM ONE-TO-REST STRATEGY)

is one-to-rest strategy, to decompose the N-class problem into N
one-to-rest problems. Here we give the results from one-to-one
and one-to-rest strategies for semi-speaker-dependent evalua-
tion on AVLetters database.

It can be seen from Tables V and VII that the results from
one-to-rest using the proposed features are better than those
from the ASM, AAM, MSA, and other commonly-used fea-
tures. However, compared with one-to-one, the results from
one-to-rest are much lower. So the decision of which strategy
to use depends on the application. If the number of classes
is not too high, and the recognition accuracy is much more
important than the time consumed, the one-to-one strategy
could be utilized. Otherwise, one-to-rest can be a good option.

5) Confusion Matrix: In visual speech recognition, a viseme
is defined as the smallest visibly distinguishable unit of speech
[8]. The viseme is analogous to the phoneme in audio speech, as
words are composed of phonemes, so the visual sequences used
here are composed of visemes. There is currently no agreement
on the mapping of phonemes to visemes, for example, [8]

TABLE VIII
PHONEMES USED IN THE AVLetters DATABASE WITH THE

CORRESPONDING VISEMES. IN THIS PAPER, WE USE THE ARPABET
PHONETIC ALPHABET NOTATION, COMMONLY USED IN THE SPEECH

RECOGNITION COMMUNITY, TO REPRESENT PHONEMES. A MAPPING

OF ARPABET NOTATION TO IPA PHONEME SYMBOLS CAN BE

FOUND AT www.cs.cmu.edu/laura/pages/arpabet.ps

groups the audio consonants into nine viseme groups, whereas
[20] and [19] group audio phonemes into five consonant
visemes and six vowel visemes, as shown in Table VIII.

It is interesting to note that the distribution of errors in our ex-
periments on the AVLetters database is not random. In Table IX,
showing the confusion matrices for subjects pronouncing the
letters of the alphabet, we can see that the majority of confusion
is between sequences consisting of the same visemes, for ex-
ample the words and , composed of phonemes and

, respectively. If we take the mapping of phonemes to
visemes from Table VIII, we can see that these words are visu-
ally the same and composed of the visemes . Similarly
the words , and , , and , are com-
posed of the same sequence of visemes, .

While most confusions in visual speech recognition are
caused by the phonemes of two words being mapped to the
same viseme, it is possible for different visemes to appear the
same due to their context. These confusions are caused by the
phenomena of co-articulation [10], where the mouth shape of
a particular phoneme can cause nearby phonemes to have a
similar mouth shape. This is particularly true in cases where
the phonemes have little visible effect on the shape of the lips.
In the SVM confusion matrix, Table IX, we can see that the
words and , and , are confused due to
the rounded vowel causing the in to also be rounded.
Similarly in the words and , and
the initial vowel governs the lip shape of the whole word.
Consonants can also cause co-articulation effects. In the case
of and , although the final vowel is mapped to a different
viseme, and , the sequence is dominated
by the rounded lip shape of the consonant causing the
confusion between the two sequences.

If we put (B,P), (C,D,T), (Q,U), (S,X), (G,J) into viseme
groups, the recognition accuracy just from the visual features
is up to 75.77%.

VI. CONCLUSIONS

A novel local spatiotemporal descriptor for visual speech
recognition was proposed, considering the spatial region and
pronunciation order in the utterance. The movements of mouth
regions are described using local binary patterns from XY, XT,
and YT planes, combining local features from pixel, block,
and volume levels. Reliable lip segmentation and tracking is
a major problem in automatic visual speech recognition, es-
pecially in poor imaging conditions. Our approach avoids this
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TABLE IX
CONFUSION MATRIX FROM SVMS (��� � ��� FEATURES WITH �� �� � BLOCKS)

using local spatiotemporal descriptors computed from mouth
regions which are much easier to extract than lips. Automatic
face and eye detection are exploited to extract mouth regions.
With our approach, no error prone segmentation of moving lips
is needed.

Experiments on a dataset collected from 20 persons show
very promising results. For ten spoken phrases, the obtained
speaker-independent recognition rate is around 62% and
speaker-dependent result around 70%. Moreover, 62.8% ac-
curacy is obtained for AVLetters database, which is much
better than the other methods. Especially, when using the same
classifier, our accuracy is 12.7% higher than [24] under the
same test setup, which obviously shows the effectiveness of
our proposed features. Multiresolution features and feature
selection approach are presented and the preliminary experi-
ments are carried out on OuluVS database. Results show the
effectiveness of selecting principal appearance and motion for
specific class pairs. OuluVS database includes ten phrases from
20 people, while AVLetters database has 26 letters from ten
people. So with these two databases, we evaluate and report
the performance for data with phrase variations and as well
the diversities from different speakers. We also carried out
continuous speech segmentation experiments on AVLetters
database. The obtained accuracy 56.09% is promising for this
challenging task using solely visual information.

From the analysis of confusion matrix with 26 English let-
ters, we can see that the clustering of errors in the word recog-
nition actually shows that this method is accurately recognizing
visemes by capturing the shape of the mouth.

Compared with the state-of-the-art, our method does not need
to 1) segment lip contours [2], [26]; 2) track lips in the subse-
quent frames; 3) select constant illumination or perform illumi-
nation correction [34]; and 4) align lip features with respect to
the canonical template [2], [3] or normalize the mouth images to

a fixed size as done by most of the papers [5], [26], [34]. Further-
more, our method shows stability for low-resolution sequences.
In this way, our experimental setup is more realistic.

Our future plan is to research not only isolated phrases but
also the continuous speech, e.g., using viseme models for recog-
nition, to improve the quality of lipreading. Moreover, it is of
interest to combine visual and audio information to promote
speech recognition, and to apply our methodology to human-
robot interaction in a smart environment.
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