
Long Residue Checking for Adders
Michael B. Sullivan

Department of Electrical and
Computer Engineering

University of Texas at Austin
Austin, Texas 78712

Email: mbsullivan@utexas.edu

Earl E. Swartzlander, Jr.
Department of Electrical and

Computer Engineering
University of Texas at Austin

Austin, Texas 78712
Email: eswartzla@aol.com

Abstract—As system sizes grow and devices become
more sensitive to faults, adder protection may be necessary
to achieve system error-rate bounds. This study investi-
gates a novel fault detection scheme for fast adders, long
residue checking (LRC), which has substantive advantages
over all previous separable approaches. Long residues
are found to provide a ∼10% reduction in complexity
and ∼25% reduction in power relative to the next most
efficient error detector, while remaining modular and easy
to implement.

Index Terms—Adder, long residue checker (LRC),
residue checking, lazy checker, standard cell synthesis, self-
testing and self-checking circuitry.

I. INTRODUCTION

Adders are of fundamental importance to computer
systems, and as such have been studied extensively.
Addition is a highly utilized instruction and is used
for data manipulation, memory addressing, and control
flow—this means that an error in addition can manifest
in many ways, ranging from silent data corruption to
catastrophic system failure. The wide range of maladies
that can result from adder errors makes the protection
of addition important across many problem domains,
including scientific computing and system software.

While detected errors may be economically corrected
at the architectural level through hardware sparing and
re-execution, dynamic error detection in adders remains
expensive. In part, the high relative cost of error de-
tection in adders comes from the efficiency of adder
designs. An error detection mechanism is often evaluated
relative to the unit it protects, putting adder protection
under stringent area and power constraints. Also, any
arithmetic error code must be closed under addition,
which limits the separable codes to those in the residue
class. While residue codes are well suited elsewhere
in the computer system, they are not typically ideal
for protecting a single adder against error. This study
investigates a modified residue checker that is able to
provide strong, low latency error detection for a single
fast adder at less cost than any other separable design.

A. Residue Checking

Before describing the main contribution of this paper,
some basic properties and definitions of low-cost residue
codes are reviewed. Addition can be checked by testing
the equality of Equation 1, where |N |A = N mod A and
+ denotes modular addition. If both sides of Equation 1
are equal, it is likely that no error has occurred. If they
are not equal, then some error has occurred.

|a⊕ b|A
?
=

∣∣|a|A + |b|A
∣∣
A

(1)

Often, residue checking relies on a restricted class
of residues in the form A = [2a − 1; a ∈ N], in order
to simplify operations.The error coverage of a residue
code depends on the width, a, of its checking modulus.
Given the current trend towards reliability-constrained
devices, strong error protection will become increasingly
valuable. This paper demonstrates that a modified residue
checker can enable low-cost error detection with large
checking moduli. In fact, it is shown that the modified
checker with the largest possible residue width (a = n) is
the least complex, most power efficient, has the highest
error coverage, and the lowest latency. Such a checker
can detect a fault in any single component, providing
complete coverage against single event upsets (SEUs).
Furthermore, experiments demonstrate that this long
residue checker has significant efficiency advantages
over all other techniques for separable error detection
in fast adders.

II. LONG RESIDUE CODES

Long residue codes are based upon a residue checking
algorithm which operates on the modular carry-save
representation of the main adder result subtracted from
its inputs. If

∣∣ |a|A+|b|A ∣∣
A
= |c|A (the traditional residue

checking equality), then
∣∣ |a|A + |b|A − |c|A

∣∣
A

= 0.
This equality holds if and only if the sum and carry
terms cancel. Such cancellation is easily detected without
carry-propagation, such that the carry-propagate adder
from may be eliminated from residue generation.

Due to the fact that the modified checking algorithm
has no carry dependence, its efficiency does not strongly

Main
Adder

A

B

Output

Error?Checker
N

FAs

Neg

2N
{S, C}

Fig. 1. The long residue checker.

depend on the checking modulus. Further simplifications
to the system are possible when the checking modu-
lus is equal to the word size (a = n), as shown in
Figure 1. This long residue checker (LRC) eliminates
the need for a general carry-save multi-operand modular
adder (CS-MOMA), and instead uses a single carry-save
adder followed by a full-length checking tree. Later,
in Section IV, it is shown that the efficiency gained
by eliminating the CS-MOMA outweighs any added
checking costs, making the long residue checker the most
efficient residue checking implementation for adders.

A. Two’s Complement Numbers and Subtraction

The LRC checker is easily adapted to work for two’s
complement numbers and to support subtraction. For
two’s complement arithmetic, the final check slice carry-
out is checked against the complemented carry-out of
the main adder. In order to support subtraction, the
subtrahend must be inverted (not shown), and the main
adder carry-in propagated into the first checking stage.

III. RELATIONSHIP TO EXISTING WORK

An error code is separable if it can be split into a data
and check portion such that the checking procedure does
not change the main datapath. Separability is highly de-
sirable for arithmetic error detection, because it increases
the modularity of a design and allows for error detection
to be implemented off of the critical arithmetic path.
Residue checking is the only separable arithmetic error
code for adders, apart from full duplication [1]. This
limits the number of competing designs; the competing
mechanisms used in this study are described below.

Coarse duplication (also known as dual modular re-
dundancy [DMR]) is simple, intuitive, strong, separable,
general, and may be applied to addition. The area and
power costs of duplication, however, generally keep it
from being competitive with coding approaches.

Figure 2(a) shows one bit-slice of the lazy error
checker proposed by Yilmaz et al. [2]. Each slice checks
one output bit using a modified full adder and an XOR
gate; the error signal from each bit is ORed together
to determine if an error has occurred. The checker has

A B Sum

Cin

Cout

10

Err
(a) Lazy Adder Checker

FA

A B CI

SCO

A B
Sum

CinCout

Err
(b) Long Residue Checker

Fig. 2. A 1-bit slice of the lazy adder checker [2] and of the long
residue error checker proposed in this study.

no carry dependence, such that the checker delay (apart
from the OR tree) does not directly depend on the word
width. Careful inspection shows that the functionality of
the long residue and lazy checkers are essentially equiv-
alent1; each is a bit-sliced design, and the two have a
similar error coverage. Figure 2(b) shows the equivalent
bit-slice implementation of long residue checking.

While long residue checking is functionally similar to
the lazy checker, the LRC has the potential to signifi-
cantly reduce error detection overheads using standard
cell synthesis. An important advantage of the LRC is
that it uses a full adder as a fundamental unit. There
exist efficient full adder cells [3] in many standard cell
libraries, which can increase the efficiency of the LRC
checker without resorting to custom cell design.

To demonstrate the efficiency advantages of the LRC,
this study makes use of the mirror adder cell found in the
Nangate 45nm standard cell library [4]. Isolated analysis
of both the checkers in Figure 2 shows that an LRC
cell consumes 10.73% less area and 19.66% less power
than its lazy-checker counterpart. The following section
evaluates all separable adder protection approaches, and
finds that the full LRC has efficiency advantages equal
to or greater than these initial estimates.

IV. LONG RESIDUE EVALUATION

To evaluate the LRC, long residue checking is first
shown to be the most efficient residue checking im-
plementation for addition. Having established this, the
LRC is evaluated relative to lazy checking and DMR.
Dual modular redundancy is evaluated using two config-
urations: one with a second fast parallel prefix adder,
and one with a serial prefix checking adder. Unless
mentioned otherwise, each mechanism is given an extra
cycle of detection latency for completion, to mimic

1With a different carry interface; the two designs cannot be mixed.

Delay, ns

E
ne

rg
y,

 p
J/

op

0.40

0.45

0.50

0.55

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●●
●

●●●
●

●

●

●

●
●

●

●

0.4 0.5 0.6 0.7 0.8 0.9

Fig. 3. Pareto-efficient 16-bit adder designs. The highlighted adder
minimizes the ED2 metric and is used as a baseline.

operation in a pipelined design. Pipeline registers are
not inserted or evaluated, due to their similar impact on
every design and because it is difficult to pipeline the
DMR designs for every considered configuration. Every
error detection mechanism is examined across a range
of adder widths, to study how it scales with input size.

A. Experimental Methodology

RTL-level design space exploration is used to ex-
amine the area and energy properties of each error
detection mechanism. The Synopsys toolchain is used
for synthesis, targeting the 45nm Nangate Open Cell
Library [5], [4]. All circuits are compiled with high
mapping effort and options consistent with an area-
optimized implementation. Dual-rail encoded checkers
are used to create totally self-testing designs. In-house
circuits are used for residue checking; the baseline adders
are taken from a high-performance cell-based arithmetic
unit library [6]. Gate-level (pre-layout) area and power
estimates are used for all analyses; dynamic power is
determined using a pair of random test vectors every
cycle. Energy calculations assume that the latency of the
main adder dictates the clock frequency. It is assumed
that all circuitry is driven by (and drives) pipeline latches.

All LRC overheads are given relative to an efficient 2’s
complement adder design. A Pareto-optimal (over area
and energy) post-synthesis design which minimizes the
ED2 metric [7] is chosen at each word length through a
search of the design space. Figure 3 shows a simplified
Pareto frontier of possible 16-bit adder designs, and
highlights the reference adder used in this study. Table I
gives the area, power, and delay of each selected design.
Most results are normalized relative to the baseline
adder or the LRC; absolute area and power consumption
estimates can be derived accordingly.

B. Results

Figure 4 shows the area and power consumption
of traditional and modified residue checking for a 32-
bit adder across different residue widths. The LRC is
denoted by a rhombus. The CS-MOMA for modified
residue checking is implemented using a tree carry-save
adders with an end-around-carry at each level. Any such
CS-MOMA requires a constant number of full adders
regardless of the modulus width. Wiring complexity
increases drastically at low residue widths, however,
making the long residue configuration (a = n) more
area and power efficient than any alternative. Increasing
CS-MOMA depths conspire to make residue checking at
short residue widths (a � n) a long latency operation.
As such, all designs in Figure 4 use a fixed detection
latency of three cycles, despite the fact that long residue
checking easily completes earlier.

Table II gives the area and power of the long residue
checker relative to the baseline adder. The relative power
overheads of the LRC are slightly higher than its area
costs. This trend is consistent with prior work [2]; it is
likely that the main adder exacerbates the difference, as
it is selected to be energy efficient. Due to the continual
utilization of the circuit, dynamic power dominates.

Table III shows the additional area and power over-
heads incurred by competing error detection mechanisms
(normalized relative to the area and power of the LRC).
Long residue checking has significant efficiency gains
relative to all other designs. The lazy checker consumes
about 10% more area and 25% more power than the
LRC. The power advantages of the LRC slightly out-
weigh the savings of a single LRC cell relative to a lazy
checker cell, due to reduced switching activity at its error
checking tree. The LRC is the lowest latency design of
those considered. The longer latency of lazy checking
causes a significant loss in its relative efficiency at 16-
bits—in order to satisfy timing, the lazy checker must

TABLE I
BASELINE ADDER PROPERTIES.

Adder Width Delay (ns) Area (µm2) Power (mW)
16 0.42 381.35 0.657
32 0.55 848.79 1.133
64 0.67 1546.06 1.616
128 0.7 3247.85 3.161TABLE II
THE OVERHEAD OF LONG RESIDUE CHECKING.

Adder Width % Area Overhead % Energy Overhead
16 38 69
32 33 70
64 36 84

128 34 86

TABLE III
ADDITIONAL OVERHEADS RELATIVE TO THE LRC.

Lazy Checker
Word Width Area (%) Power (%)

16 36 48
32 9 24
64 10 23
48 10 25

Duplication (Serial Prefix)
Word Width Area (%) Power (%)

16 65 28
32 92 37
64 97 41
48 100 38

Duplication (Sklansky)
Word Width Area (%) Power (%)

16 193 111
32 205 98
64 186 59
48 188 48

increase the size and power consumption of its cells.
Duplication consumes significantly more area and

power than the LRC or lazy checker. Apart from the
reduced efficiency of lazy checking at 16-bits, Table III
shows a clear ordinal rank among the four detectors.

V. DISCUSSION

The majority of efficiency gains from the long residue
checker come from its ability to leverage efficient full
adders while using only standard library cells. Custom
cell design may be used to improve the efficiency of
the lazy checker. One of the main strengths of the LRC
is that it is able to avoid such custom design while
providing superior implementation efficiency.

Some standard cells (such as D flip-flops) offer both
an inverted and non-inverted output with little additional
complexity or power usage. As such, a pipeline register
with dual outputs may be used after the main adder to
avoid an explicit inversion of the sum signal in the LRC.

Residue Width (bits)

N
or

m
al

iz
ed

 w
.r.

t.
Lo

ng
 R

es
id

ue
 C

he
ck

in
g

1.0

1.2

1.4

1.6

1.8

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

● ●
●

●

●

●

2 4 8 16 32

Metric
●● Area
●● Power

Design
Optimized
Traditional

Fig. 4. The area and power of traditional and modified residue
checking, normalized w.r.t. long residue checking.

Preliminary experiments show that this optimization may
give∼6% area and∼12–14% power savings over the long
residue checker used in this study.

Careful inspection shows that the relative overheads
presented for the LRC (Table II) are higher than those
claimed in prior work for lazy checking [2], despite the
fact that this study finds long residue checking to be
more efficient. It is likely that this difference is mainly
due to differences in the baseline adders. However, some
methodological decisions could also have an impact. All
error protection designs in this study also employ a dual-
rail encoded checker (unlike prior work). This is consis-
tent with totally self-testing circuit implementations, and
is intended to be correctly diagnose permanent checker
errors. Experiments indicate that a single checker would
reduce the area and power of the LRC by ∼8% and
∼13–15%, respectively.

VI. CONCLUSION

The long residue checker is a novel error detection
scheme for fast adders which is based on a straightfor-
ward modification of residue checking. The LRC pro-
vides levels of SEU coverage comparable to duplication,
while drastically reducing the area and power overheads
of error detection. The LRC is shown to be the most
efficient separable design for protecting fast adders using
standard-cell synthesis. The error coverage, efficiency,
low detection latency, modularity, and separability of the
LRC make it a valuable error detection technique for
fast adders, and motivate its use towards the reliability
of future computer systems.

ACKNOWLEDGMENTS

Michael Sullivan’s research was supported by the
Temple Foundation. Earl Swartzlander is supported in
part by a grant from AMD, Inc.

REFERENCES

[1] W. W. Peterson, “On checking an adder,” IBM Journal of
Research and Development, pp. 166–168, 1958.

[2] M. Yilmaz, A. Meixner, S. Ozev, and D. Sorin, “Lazy error detec-
tion for microprocessor functional units,” in IEEE International
Symposium on Defect and Fault-Tolerance in VLSI Systems,
2007, pp. 361–369.

[3] M. Alioto and G. Palumbo, “Analysis and comparison on full
adder block in submicron technology,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 10, no. 6, pp.
806–823, 2002.

[4] Nangate, “Open Cell Library v1.3,” 2009.
[5] Synopsys Inc., “Design Compiler,” 2010.
[6] R. Zimmermann, “VHDL library of arithmetic units,” in The

International Forum on Design Languages, 1998, pp. 267–272.
[Online]. Available: http://www.iis.ee.ethz.ch/∼zimmi/arith lib

[7] A. J. Martin, “Towards an energy complexity of computation,”
Information Processing Letters, vol. 77, pp. 181–187, 2001.

