
Journal of Software Engineering and Applications, 2012, 5, 277-290
doi:10.4236/jsea.2012.54033 Published Online April 2012 (http://www.SciRP.org/journal/jsea)

277

A State-of-the-Art Survey on Real-Time Issues in
Embedded Systems Virtualization

Zonghua Gu, Qingling Zhao

College of Computer Science, Zhejiang University, Hangzhou, China.
Email: {zgu, ada_zhao}@zju.edu.cn

Received January 1st, 2012; revised February 5th, 2012; accepted March 10th, 2012

ABSTRACT

Virtualization has gained great acceptance in the server and cloud computing arena. In recent years, it has also been
widely applied to real-time embedded systems with stringent timing constraints. We present a comprehensive survey on
real-time issues in virtualization for embedded systems, covering popular virtualization systems including KVM, Xen,
L4 and others.

Keywords: Virtualization; Embedded Systems; Real-Time Scheduling

1. Introduction

Platform virtualization refers to the creation of Virtual
Machines (VMs), also called domains, guest OSes, or
partitions, running on the physical machine managed by
a Virtual Machine Monitor (VMM), also called a hyper-
visor. Virtualization technology enables concurrent exe-
cution of multiple VMs on the same hardware (single or
multicore) processor. Virtualization technology has been
widely applied in the enterprise and cloud computing
space. In recent years, it has been increasingly widely de-
ployed in the embedded systems domain, including avi-
onics systems, industrial automation, mobile phones, etc.
Compared to the conventional application domain of en-
terprise systems, virtualization in embedded systems
must place strong emphasis on issues like real-time per-
formance, security and dependability, etc.

A VMM can run either on the hardware directly
(called bare-metal, or Type-1 virtualization), or run on
top of a host operating system (called hosted, or Type-2
virtualization). Another way to classify platform-level
virtualization technologies is full virtualization vs para-
virtualization. Full virtualization allows the guest OS to
run on the VMM without any modification, while para-
virtualization requires the guest OS to be modified by
adding hypercalls into the VMM. Representative Type-2,
full virtualization solutions include KVM, VirtualBox,
Microsoft Virtual PC, VMWare Workstation; Represen-
tative Type-1, paravirtualization solutions include Xen,
L4, VMWare ESX. There are some research attempts at
constructing Type-1, full virtualization solutions, e.g.,
Kinebuchi et al. [1] implemented such a solution by port-
ing the QEMU machine emulator to run as an application

on L4Ka::Pistachio microkernel; in turn, unmodified
guest OS can run on top of QEMU; Schild et al. [2] used
Intel VT-d HW extensions to run unmodified guest OS
on L4. There are also Type-2, para-virtualization solu-
tions, e.g., VMWare MVP (Mobile Virtualization Plat-
form) [3], as well as some attempts at adding para-virtu-
alization features to Type-2 virtualization systems to im-
prove performance, e.g., task-grain scheduling in KVM
[4].

Since embedded systems often have stringent timing
and performance constraints, virtualization for embedded
systems must address real-time issues. We focus on real-
time issues in virtualization for embedded systems, and
leave out certain topics that are more relevant to the ser-
ver application space due to space constrains, including:
power and energy-aware scheduling, dynamic adaptive
scheduling, multicore scheduling on high-end NUMA
(Non-Uniform Memory Access) machines, nested virtu-
alization, etc. In addition, we focus on recent develop-
ments in this field, instead of presenting a historical per-
spective.

This paper is structured as follows: we discuss hard
real-time virtualization solutions for safety-critical sys-
tems in Section 2; Xen-based solutions in Section 3, in-
cluding hard real-time and soft real-time extensions to
Xen; KVM-based solutions in Section 4; micro-kernel
based solutions represented by L4 in Section 5; other
virtualization frameworks for embedded systems in Sec-
tion 6; OS virtualization in Section 7; task-grain sched-
uling in Section 8; the Lock-Holder Preemption problem
in Section 9; and finally, a brief conclusion in Section 10.
(The topics of Sections 8 and 9 are cross-cutting issues

Copyright © 2012 SciRes. JSEA

A State-of-the-Art Survey on Real-Time Issues in Embedded Systems Virtualization 278

that are not specific to any virtualization approach, but
we believe they are of sufficient importance to dedicate
separate sections to cover them.)

2. Hard Real-Time Virtualization for
Safety-Critical Systems

The ARINC 653 standard [5] defines a software archi-
tecture for spatial and temporal partitioning designed for
safety-critical IMA (Integrated Modular Avionics) ap-
plications. It defines services such as partition manage-
ment, process management, time management, inter and
intra-partition communication. In the ARINC 653 speci-
fication for system partitioning and scheduling, each par-
tition (virtual machine) is allocated a time slice, and par-
titioned are scheduled in a TDMA (Time Division Multi-
ple Access) manner. A related standard is the Multiple
Independent Levels of Security (MILS) architecture, an
enabling architecture for developing security-critical ap-
plications conforming to the Common Criteria security
evaluation. The MILS architecture defines four concep-
tual layers of separation: separation kernel and hardware;
middleware services; trusted applications; distributed
communications. Authors from Lockheed Martin [6] pre-
sented a feasibility assessment toward applying the Mi-
crokernel Hypervisor architecture to enable virtualization
for a representative set of avionics applications requiring
multiple guest OS environments, including a mixture of
safety-critical and non-safety-critical guest OSes. Several
commercial RTOS products conform to the ARINC 653
standard, including LynuxWorks LynxOS-178, Green
Hills INTEGRITY-178B, Wind River VxWorks 653,
BAE Systems CsLEOS, and DDC-I DEOS, etc. Many
vendors also offer commercial virtualization products for
safety-critical systems, many by adapting existing RTOS
products. For example, LynuxWorks implemented a vir-
tualization layer to host their LynxOS product, called the
LynxSecure hypervisor that supports MILS and ARINC
653. WindRiver [7] provides a hypervisor product for
both its VxWorks MILS and VxWorks 653 platforms,
including support for multicore. Other similar products
include: Greenhills INTEGRITY MultiVisor [8], Real-
Time Systems GmbH Hypervisor [9], Tenasys eVM for
Windows [10], National Instruments Real-Time Hyper
Hypervisor [11], Open Synergy COQOS [12], Enea Hy-
pervisor [13], SysGO PikeOS [14], IBV Automation
GmbH QWin etc. VanderLeest [15], from a company
named DornerWorks, took a different approach by ada-
pting the open-source Xen hypervisor to implement the
ARINC 653 standard.

XtratuM [16] is a Type-1 hypervisor targeting safety
critical avionics embedded systems. It runs on LEON3
SPARC V8 processor, a widely used CPU in space appli-
cations. It features temporal and spatial separation, effi-
cient scheduling mechanism, low footprint with mini-

mum computational overhead, efficient context switch of
the partitions (domains), deterministic hypervisor system
calls. Zamorano et al. [17,18] ported the Ada-based Open
Ravenscar Kernel (ORK+) to run as a partition on Xtra-
tuM, forming a software platform conforming to the
ARINC 653 standard. Campagna et al. [19] implemented
a dual-redundancy system on XtratuM to tolerate tran-
sient faults like Single-Event-Upset, common on the
high-radiation space environment. Three partitions are
executed concurrently, two of them run identical copies
of the application software, and the third checks consis-
tency of their outputs. The OVERSEE (Open Vehicular
Secure Platform) Project [20] aims to bring the avionics
standard to automotive systems by porting FreeOSEK, an
OSEK/VDX-compliant RTOS, as a paravirtualized guest
OS running on top of the XtratuM hypervisor [21]. While
most ARINC-653 compliant virtualization solutions are
based on para-virtualization, Han et al. [22] presented an
implementation of ARINC 653 based on Type-2, full
virtualization architectures, including VM-Ware and Vir-
tualBox.

Next, we briefly mention some virtualization solutions
for safety-critical systems that are not specifically de-
signed for the avionics domain, hence do not conform to
the ARINC-653 standard. Authors from Indian Institute
of Technology [23] developed SParK (Safety Partition
Kernel), a Type-1 para-virtualization solution designed
for safety-critical systems; an open-source RTOS uC/
OS-II and a customized version of saRTL (stand-alone
RT Linux) are ported as guest OSes on SParK. Authors
from CEA (Atomic Energy Commission), France [24]
developed PharOS, a dependable RTOS designed for
automotive control systems featuring temporal and spa-
tial isolation in the presence of a mixed workload of both
time-triggered and event-triggered tasks. They adapted
Trampoline, an OSEK/VDX-compliant RTOS, as a para-
virtualized guest OS running on top of PharOS host OS
to form a Type-2 virtualization architecture. To ensure
temporal predictability, Trampoline is run as a time-
triggered task within PharOS. Authors from PUCRS,
Brazil [25] developed Virtual-Hellfire Hypervisor, a
Type-1 virtualization system based on the microkernel
HellfireOS featuring spatial and temporal isolation for
safety-critical applications. The target HW platform is
HERMES Network-on-Chip with MIPS-like processing
elements [26].

3. Xen-Based Solutions

Cherkasova et al. [27] introduced and evaluated three
CPU schedulers in Xen: BVT (Borrowed Virtual Time),
SEDF (Simple Earliest Deadline First), and Credit. Since
the BVT scheduler is now deprecated, we only discuss
Credit and SEDF here.

The default scheduling algorithm in Xen is the Credit

Copyright © 2012 SciRes. JSEA

A State-of-the-Art Survey on Real-Time Issues in Embedded Systems Virtualization 279

Scheduler: it implements a proportional-share scheduling
strategy where a user can adjust the CPU share for each
VM. It also features automatic workload balancing of
virtual CPUs (vCPUs) across physical cores (pCPUs) on
a multicore processor. This algorithm guarantees that no
pCPU will idle when there exists a runnable vCPU in the
system. Each VM is associated with a weight and a cap.
When the cap is 0, VM can receive extra CPU time un-
used by other VMs, i.e., WC (Work-Conserving) mode;
when the cap is nonzero (expressed as a percentage), it
limits the amount of CPU time given to a VM to not ex-
ceed the cap, i.e., NWC (Non-Work-Conserving) mode.
By default the credits of all runnable VMs are recalcu-
lated in intervals of 30 ms in proportion to each VM’s
weight parameter, and the scheduling time slice is 10 ms,
i.e., the credit of the running virtual CPU is decreased
every 10 ms.

In the SEDF scheduler, each domain can specify a
lower bound on the CPU reservations that it requests by
specifying a tuple of (slice, period), so that the VM will
receive at least slice time units in each period time units.
A Boolean flag indicates whether the VM is eligible to
receive extra CPU time. If true, then it is WC (Work-
Conserving) mode, and any available slack time is dis-
tributed in a fair manner after all the runnable VMs have
received their specified slices. Unlike the Credit Sched-
uler, SEDF is a partitioned scheduling algorithm that
does not allow VM migration across multiple cores, hence
there is no global workload balancing on multicore pro-
cessors.

Masrur et al. [28] presented improvements to Xen’s
SEDF scheduler so that a domain can utilize its whole
budget (slice) within its period even if it blocks for I/O
before using up its whole slice (in the original SEDF
scheduler, the unused budget is lost once a task blocks).
In addition, certain critical domains can be designated as
real-time domains and be given higher fixed-priority than
other domains scheduled with SEDF. One limitation is
that each real-time domain is constrained to contain a
single real-time task. Masrur et al. [29] removed this
limitation, and considered a hierarchical scheduling ar-
chitecture in Xen, where both the Xen hypervisor and
guest VMs adopt deadline-monotonic Fixed-Priority
scheduling with a tuple of (period, slice) parameters
(similar to SEDF, a VM is allowed to run for a maximum
length of slice time units within each period), and pro-
posed a method for selecting optimum time slices and
periods for each VM in the system to achieve schedula-
bility while minimizing the lengths of time slices.

The RT-Xen project [30,31] implemented a composi-
tional and hierarchical scheduling architecture based on
fixed-priority scheduling within Xen, and extensions of
compositional scheduling framework [32] and periodic
server design for fixed-priority scheduling. Similarly,

Yoo et al. [33] implemented the Compositional Schedul-
ing Framework [32] in Xen-ARM. Jeong et al. [34] de-
veloped PARFAIT, a hierarchical scheduling framework
in Xen-ARM. At the bottom level (near the HW), SEDF
is used to provide CPU bandwidth guarantees to Do-
main0 and real-time VMs; at the higher level, BVT
(Borrowed Virtual Time) is used to schedule all non-real-
time VMs to provide fair distribution of CPU time
among them, by mapping all vCPUs in the non real-time
VMs to a single abstract vCPU scheduled by the under-
lying SEDF scheduler. Lee et al. [30], Xi et al. [31], Yoo
et al. [33], Jeong et al. [34] only addressed CPU schedul-
ing issues, but did not consider I/O scheduling.

Xen has a split-driver architecture for handling I/O,
where a special driver domain (Domain0) contains the
backend driver, and user domains contain the frontend
driver. Physical interrupts are first handled by the hyper-
visor, which then notifies the target guest domain with
virtual interrupts, handled when the guest domain is
scheduled by the hypervisor scheduler. Hong et al. [35]
improved network I/O performance of Xen-ARM by
performing dynamic load balancing of interrupts among
the multiple cores by modifying the ARM11 MPCore
interrupt distributor. In addition, each guest domain con-
tains its own native device drivers, instead of putting all
device drivers in Domain0. Yoo et al. [36] proposed sev-
eral improvements to the Xen Credit Scheduler to im-
prove interrupt response time, including: do not de-
schedule the driver domain when it disables virtual in-
terrupts; exploit ARM processor support for FIQ, which
has higher priority than regular IRQ, to support real-time
I/O devices; ensure that the driver domain is always
scheduled with the highest priority when it has pending
interrupts.

Lee et al. [37] enhanced the soft real-time performance
of the Xen Credit Scheduler. They defined a laxity value
as the target scheduling latency that the workload desires,
and preferentially schedule the vCPU with smallest laxity.
Furthermore, they take cache-affinity into account for
real time tasks when performing multicore load-balanc-
ing to prevent cache thrashing.

Yu et al. [38] presented real-time improvements to the
Xen Credit Scheduler: real-time vCPUs are always given
priority over non real-time vCPUs, and can preempt any
non real-time vCPUs that may be running. When there
are multiple real-time vCPUs, they are load-balanced
across multiple cores to reduce their mutual interference.
Wang et al. [39] proposed to insert a workload monitor
in each guest VM to monitor and calculate both the CPU
and GPU resource utilization of all active guest VMs,
and give priority to guest VMs that are GPU-intensive in
the Xen Credit Scheduler, since those are likely the in-
teractive tasks that need the shortest response time.

Chen et al. [40] improved the Xen Credit Scheduler to

Copyright © 2012 SciRes. JSEA

A State-of-the-Art Survey on Real-Time Issues in Embedded Systems Virtualization 280

have better audio-playing performance. The real-time
vCPUs are assigned a shorter time slice, say 1 ms, while
the non-real-time vCPUs keep the regular time slice of
30 ms. The real-time vCPUs are also allowed to stay in
the BOOST state for longer periods of time, while the
regular Credit Scheduler only allows a vCPU to stay in
the BOOST state for one time slice before demoting it to
UNDER state. Xen provides a mechanism to pin certain
vCPUs on physical CPUs (pCPUs). Chen et al. [41]
showed that when the number of vCPUs in a domain is
greater than that of pinned pCPUs, the Xen Credit Sche-
duler may seriously impair the performance of I/O-in-
tensive applications. To improve performance of pinned
domains, they added a periodic runtime monitor in the
VMM to monitor the length of time when each domain’s
vCPUs go into the BOOST state, as well as the bus
transactions with the help of HW Performance Monitor-
ing Unit, in order to distinguish between CPU-intensive
and I/O intensive domains. The former are assigned lar-
ger time slices, and the latter are assigned smaller time
slices to improve their responsiveness.

Gupta et al. [42] presented a set of techniques for en-
forcing performance isolation among multiple VMs in
Xen: XenMon measures per-VM resource consumption,
including work done on behalf of a particular VM in
Xen’s driver domains; a SEDF-DC (Debt Collector) sched-
uler periodically receives feedback from XenMon about
the CPU consumed by driver domains for I/O processing
on behalf of guest domains, and charges guest domains
for the time spent in the driver domain on their behalf
when allocating CPU time; ShareGuard limits the total
amount of resources consumed in driver domains based
on administrator-specified limits.

Ongaro et al. [43] studied impact of the Xen VMM
scheduler on performance using multiple guest VMs con-
currently running different types of application work-
loads, i.e., different combinations of CPU-intensive, I/O-
intensive, and latency-sensitive applications. Several op-
timizations are proposed, including disabling preemption
for the privileged driver domain, and optimizing the Cre-
dit Scheduler by sorting VMs in run queue based on re-
maining credits to give priority to short-running I/O VMs.

Govindan et al. [44] presented a communication-aware
CPU scheduling algorithm and a CPU usage accounting
mechanism for Xen. They modified the Xen SEDF
scheduler by preferentially scheduling I/O-intensive VMs
over their CPU-intensive VMs, by counting the number
of packets flowing into or out of each VM, and selecting
the VM with the highest count that has not yet consumed
its entire slice during the current period.

Hu et al. [45] proposed a method for improving I/O
performance of Xen on a multicore processor. The cores
in the system are divided into 3 subsets, including the
driver core hosting the single driver domain, hence it

does not need VMM scheduling; fast-tick cores for han-
dling I/O events, which employs preemptive scheduling
with small time slices to ensure fast response to I/O events;
and general cores for computation-intensive workloads,
which use the default Xen Credit Scheduler for fair CPU
sharing.

Lee et al. [46] improved performance of multimedia
applications in Xen by assigning higher fixed-priorities
to Domain0 and other real-time domains than non-real-
time domains, which are scheduled by the default credit
scheduler.

4. KVM-Based Solutions

KVM is a Type-2 virtualization solution that uses Linux
as the host OS, hence any real-time improvements to the
Linux host OS kernel directly translate into real-time
improvements to the KVM VMM. For example, real-
time kernel patches like Ingo Milnar’s PREEMPT_RT
patch, can be applied to improve the real-time perform-
ance and predictability of the Linux host OS.

Kiszka [4] presented some real-time improvements to
KVM. Real-time guest VM threads are given real-time
priorities, including the main I/O thread and one or more
vCPU threads, at the expense of giving lower priorities to
threads in the host Linux kernel for various system-wide
services. A paravirtualized scheduling interface was in-
troduced to allow task-grain scheduling by introducing
two hypercalls for the guest VM to inform the host
VMM about priority of the currently running task in the
VM, as well as when an interrupt handler is finished
execution in the VM. Introduction of these hypercalls
implies that the resulting system is no longer a strict full-
virtualization system as the conventional KVM. Zhang et
al. [47] presented two real-time improvements to KVM
with coexisting RTOS and GPOS guests: giving the
guest RTOS vCPUs higher priority than GPOS vCPUs;
use CPU shielding to dedicate one CPU core to the
RTOS guest and shield it from GPOS interrupts, by set-
ting the CPU affinity parameter of both host OS pro-
cesses and interrupts. Experimental results indicate that
the RTOS interrupt response latencies are reduced. Based
on the work of [47], Zuo et al. [48] presented additional
improvements by adding two hypercalls that enable the
guest OS to boost priority of its vCPU when a high-
priority task is started, e.g., like an interrupt handler, and
deboost it when the high-priority task is finished.

Cucinotta et al. [49] presented the IRMOS scheduler,
which implements a hard reservation variant of CBS
(Constant Bandwidth Server) on top of the EDF sched-
uler in Linux by extending the Linux CGroup interface.
When applied in the context of KVM, inter-VM sched-
uling is CBS/EDF, while intra-VM task scheduling is
Fixed-Priority. While Cucinotta et al. [49] only addressed

Copyright © 2012 SciRes. JSEA

A State-of-the-Art Survey on Real-Time Issues in Embedded Systems Virtualization 281

CPU scheduling, Cucinotta et al. [50] addressed I/O and
networking issues by grouping both guest VM threads
and interrupt handler threads in the KVM host OS kernel
into the same CBS reservation, and over-provisioning the
CPU budget assigned to each VM by an amount that is
dependent on the overall networking traffic performed by
VMs hosted on the same system. Cucinotta et al. [51]
improved the CBS scheduler in the KVM host OS for a
mixed workload of both compute-intensive and network-
intensive workloads. In addition to the regular CPU CBS
reservation of (Q, P), where the VM is guaranteed to re-
ceive budget Q time units of CPU time out of every P
time units, a spare CPU reservation of (Qs, Ps) is attached
to the VM and dynamically activated upon a new packet
arrival. The spare reservation (Qs, Ps) has much smaller
budget and period than the regular reservation (Q, P) to
provide fast networking response time. Checconi et al.
[52] addressed real-time issues in live migration of KVM
virtual machines by using a probabilistic model of the
migration process to select an appropriate policy for me-
mory page migration, either based on a simple LRU
(Least-Recently Used) order, or a more complex one
based on observed page access frequencies in the past
VM history.

RESCH (REal-time SCHeduler framework) [53] is an
approach to implementing new scheduling algorithms
within Linux without modifying the kernel. In contrast to
typical user-level schedulers [54], RESCH consists of a
loadable kernel module called RESCH core, and a user
library called RESCH library. In addition to the built-in
Fixed-Priority (FP) scheduling algorithm in Linux, 4 new
real-time FP-based scheduling algorithms have been im-
plemented with RESCH, including: FP-FF (partitioned
scheduling with First-Fit heuristic for mapping tasks to
processors), FP-PM (when a task cannot be assigned to
any CPU by first-fit allocation, the task can migrate
across multiple CPUs with highest priority on its allo-
cated CPU), G-FP (Global FP scheduling, where tasks
can freely migrate among different processors, and the
task with globally highest priority is executed), FP-US
(global FP scheduling, where tasks are classified into
heavy tasks and light tasks, based on their utilizations
factors. If the CPU utilization of a task is greater than or
equal to m/(3m−2), where m is the number of processors,
it is a heavy task. Otherwise, it is a light task. All heavy
tasks are statically assigned the highest priorities, while
light tasks have the original priorities). Other scheduling
algorithms can also be implemented. Asberg et al. [55]
applied RESCH to KVM to implement a real-time hier-
archical scheduling framework in a uni-processor envi-
ronment, where RESCH is used in both the host OS and
guest OS to implement FP scheduling. Asberg et al. [56]
used RESCH to implement 4 variants of multi-core glo-
bal hierarchical scheduling algorithms in Linux.

Lin et al. [54] presented VSched, an user-space im-
plementation of EDF-based scheduling algorithm in the
host OS of a Type-2 virtualization system VMware GSX
Server. The scheduler is a user-level process with highest
priority, and Linux SIGSTOP/SIGCONT signals are used
to implement (optional) hard resource reservations, hence
it does not require kernel modification, but carries large
runtime overhead due to excessive context-switches be-
tween the scheduler process and application processes
compared to RESCH. (Although VSched is not imple-
mented on KVM, we place it here due to its similarity to
RESCH.)

5. MicroKernel-Based Solutions

L4 is a representative microkernel operating system, ex-
tended to be a Type-1 virtualization architecture. There
are multiple active variants of L4. Figure 1 shows the
evolution lineage of L4 variants.

Authors from Avaya Labs [57] implemented a para-
virtualized Android kernel, and ran it alongside a para-
virtualized Linux kernel from OK Labs, L4Linux, on an
ARM processor. Iqbal et al. [58] presented a detailed
comparison study between microkernel-based approach,
represented by L4, and hypervisor-based approach, rep-
resented by Xen, to embedded virtualization, and con-
cluded that L4-based approaches have better perfor-
mance and security properties. Gernot Heiser [59], foun-
der of OKL4, argued for microkernel-based virtualization
for embedded systems. Performance evaluation of OKL4
hypervisor on Beagle Board based on 500 MHz Cortex
A8 ARMv7 processor, running netperf benchmark shows
that the TCP and UDP throughput degradation due to
virtualization is only 3% - 4%. Bruns et al. [60] and

Figure 1. L4 evolution lineage (from Acharya et al. [57]).

Copyright © 2012 SciRes. JSEA

A State-of-the-Art Survey on Real-Time Issues in Embedded Systems Virtualization 282

Lackorzynski et al. [61] performed performance evalua-
tion of L4Linux. Using L4/Fiasco as the hypervisor,
L4Linux as the guest OS, an ARM-based Infineon X-
GOLD618 processor for mobile phones, Bruns et al. [60]
compared thread context-switching times and interrupt
latencies of L4Linux to those of a stand-alone RTOS
(FreeRTOS), and demonstrated that L4-based system has
relatively small runtime overhead, but requires signifi-
cantly more cache resources than an RTOS, with cache
contention as the main culprit for performance degrada-
tions.

One important application area of L4 is mobile phone
virtualization. A typical usage scenario is co-existence of
multiple OSes on the same HW platform, e.g., have a
“rich” OS like Android or Windows for handling user
interface and other control-intensive tasks, and a “sim-
ple” real-time OS for handling performance and timing-
critical tasks like baseband signal processing. Another
goal is to save on hardware bill-of-material costs by hav-
ing a single core instead of two processor cores. Open
Kernel Labs implemented the first commercial virtua-
lized phone in 2009 named the Motorola Evoke QA4,
which runs two VMs on top of L4 hypervisor, one is
Linux for handling user interface tasks, and the other is
BREW (Binary Runtime Environment for Wireless) for
handling baseband signal processing tasks on a single
ARM processor.

The company SysGo AG developed PikeOS, which
evolved from a L4-microkernel, designed for safety-
critical applications. Kaiser et al. [62] described the sche-
duling algorithm in PikeOS, which is a combination of
priority-based, time-driven and proportional share sche-
duling. Each real-time VM is assigned a fixed-priority
decided by the designer, hence a time-driven VM can
have lower or higher priority values than an event-driven
VM. Non real-time VMs execute in the background
when real-time VMs are not active. Yang et al. [63] de-
veloped a two-level Compositional Scheduling Architec-
ture (CSA), using the L4/Fiasco microkernel as a VMM
and L4Linux as a VM.

The NOVA Hypervisor [64] from Technical Univer-
sity of Dresden is a Type-1 hypervisor focusing on secu-
rity issues that shares many similarities with L4, but it is
a full-virtualization solution based on processor HW sup-
port that does not require modification of the guest OS.

6. Other Virtualization Frameworks for
Embedded Systems

Authors from Motorola [65] argued for the use of Type-1
hypervisors as opposed to Type-2 hypervisors for mobile
phone virtualization for their security benefits due to a
small TCB (Trusted Computing Base). Representative
mobile virtualization solutions include MVP (Mobile Vir-

tualization Platform) from VMWare [3,66], VLX from
Red Bend [67,68], Xen-ARM from Samsung [69], etc.
L4, VLX and Xen-ARM are all Type-1 hypervisors.
VMWare MVP is a Type-2 virtualization solution with
Linux as both host and guest OSes implemented on
ARMv7 processor. It adopts a lightweight para-virtuali-
zation approach: 1) the entire guest OS is run in CPU
user-mode; most privileged instructions are handled via
trap-and-emulate, e.g., privileged coprocessor access in-
structions mcr and mrc; other sensitive instructions are
replaced with hypercalls; 2) all devices are para-virtua-
lized; especially, the paravirtualized TCP/IP is different
from traditional para-virtualized networking by operating
at the socket system call level instead of at the device
interface level: When a guest VM calls a syscall to open
a socket, the request is made directly to the offload en-
gine in the host OS, which opens a socket and performs
TCP/IP protocol processing within the host OS kernel.

SPUMONE (Software Processing Unit, Multiplexing
ONE into two or more) [70,71] is a lightweight Type-1
virtualization software implemented on a SH-4A proces-
sor with the goal of running a GPOS (General-Purpose
OS) like Linux and an RTOS like TOPPERS (an open
source implementation of the ITRON RTOS standard
[72]) on the same HW processor. It can either use fixed-
priority scheduling, and always assign the RTOS higher
priority than GPOS, or adopt task-grain scheduling [73],
where each task can be assigned a different priority to
allow more fine-grained control, e.g., an important task
in the GPOS can be assigned a higher priority than a less
important task in the RTOS. Inter-OS communication is
achieved with IPI (Inter-Processor Interrupts) and shared
memory. Aalto [74] developed DynOS SPUMONE, an
extension to SPUMONE to enable runtime migration of
guest OSes to different cores on a 4-core RP1 processor
from Renesas. Lin et al. [75] presented a redesign of
SPUMONE as a multikernel architecture. (Multikernel
means that a separate copy of the kernel or VMM runs on
each core on a multicore processor.) Each processor core
has its private local memory. To achieve better fault iso-
lation, the VMM runs in the local memory, while the
guest OSes run in the global shared main memory; both
run in kernel mode. To enhance security, Li et al. [76]
added a small trusted OS called xv6 to run a monitoring
service to detect any integrity violations of the large and
untrusted Linux OS. Upon detection of such integrity
violations, the monitoring service invokes a recovery
procedure to recover the integrity of the data structures,
and if that fails, reboot Linux.

SIGMA System [77] assigns a dedicated CPU core to
each OS, to build a multi-OS environment with native
performance. Since there is no virtualization layer, guest
OSes cannot share devices and interrupts among them,
hence all interrupts are bound and directly delivered to

Copyright © 2012 SciRes. JSEA

A State-of-the-Art Survey on Real-Time Issues in Embedded Systems Virtualization 283

their target OSes, e.g., for the Intel multiprocessor archi-
tecture, APIC (Advanced Peripheral Interrupt Controller)
can be used to distribute I/O interrupts among processors
by interrupt numbers.

Gandalf [78,79] is a lightweight Type-1 VMM de-
signed for resource-constrained embedded systems. It is
called meso-virtualization, which is more lightweight and
requires less modification to the guest OS than typical
para-virtualization solutions. Similar to SIGMA, inter-
rupts are not virtualized, but instead delivered to each
guest OS directly.

Yoo et al. [80] developed MobiVMM, a lightweight
virtualization solution for mobile phones. It uses preemp-
tive fixed-priority scheduling and assigns the highest
priority to the real-time VM (only a single real-time VM
is supported), and uses pseudo-polling to provide low-
latency interrupt processing. Physical interrupts are stored
temporarily inside the VMM, and delivered to the target
guest VM when it is scheduled to run. Real-time sche-
dulability test is used to determine if certain interrupts
should be discarded to prevent overload. Yoo et al. [81]
improved I/O performance of MobiVMM, by letting the
non-real-time VM preempt the real-time VM whenever a
device interrupt occurs targeting the non real-time VM.

Li et al. [82] developed Quest-V, a virtualized mul-
tikernel for high-confidence systems. Memory virtualiza-
tion with shadow paging is used for fault isolation. It
does not virtualize any other resources like CPU or I/O,
i.e., processing or I/O handling are performed within the
kernels or user-spaces on each core without intervention
from the VMM. vCPUs are the fundamental kernel ab-
straction for scheduling and temporal isolation. A hie-
rarchical approach is adopted where vCPUs are sche-
duled on pCPUs and threads are scheduled on vCPUs [83]
Quest-V defines two classes of vCPUs: Main vCPUs,
configured as sporadic servers by default, are used to
schedule and track the pCPU usage of conventional
software threads, while I/O vCPUs are used to account
for, and schedule the execution of, interrupt handlers for
I/O devices. Each device is assigned a separate I/O vCPU,
which may be shared among multiple main vCPUs. I/O
vCPUs are scheduled with a Priority-Inheritance Band-
width-Preserving (PIBS) server algorithm, where each
shared I/O vCPU inherits its priority from the main
vCPUs of tasks responsible for I/O requests, and is as-
signed a certain CPU bandwidth share that should not be
exceeded.

7. OS Virtualization

OS virtualization, also called container-based virtualiza-
tion, allows to partition an OS environment into multiple
domains with independent name spaces to achieve a cer-
tain level of security and protection between different
domains. Examples include FreeBSD Jails [84], OpenVZ

[85], Linux VServer [86], Linux Containers LXC and
Solaris Zones. The key difference between OS virtualiza-
tion and system-level virtualization is that the former
only has a single copy of OS kernel at runtime shared
among multiple domains, while the latter has multiple
OS kernels at runtime. As a result, OS virtualization is
more lightweight, but can only run a single OS, e.g.,
Linux. Commercial products that incorporate OS virtua-
lization technology include: Parallels Virtuozzo Con-
tainers [87] is a commercial version of the open-source
OpenVZ software; the MontaVista Automotive Techno-
logy Platform [88] adopts Linux Containers in combina-
tion with SELinux (Security Enhanced Linux) to run
multiple Linux or Android OSes on top of MontaVista
Linux host OS.

Resource control and isolation in OS virtualization are
often achieved with the Linux kernel mechanism CGroup.
For example, Linux VServer [86] enforces CPU isolation
by overlaying a token bucket filter (TBF) on top of the
standard O(1) Linux CPU scheduler. Each VM has a
token bucket that accumulates incoming tokens at a spe-
cified rate; every timer tick, the VM that owns the run-
ning process is charged one token. The authors modified
the TBF to provide fair sharing and/or work-conserving
CPU reservations. CPU capacity is effectively partitioned
between two classes of VMs: VMs with reservations get
what they have reserved, and VMs with shares split the
unreserved CPU capacity proportionally. For network
I/O, the Hierarchical Token Bucket (HTB) queuing dis-
cipline of the Linux Traffic Control facility is used to
provide network bandwidth reservations and fair service
among VMs. Disk I/O is managed using the standard
Linux CFQ (Completely-Fair Queuing) I/O scheduler,
which attempts to divide the bandwidth of each block
device fairly among the VMs performing I/O to that de-
vice.

OS virtualization has been traditionally applied in ser-
ver virtualization, since it is essentially a name-space se-
paration technique, but has limited support for I/O device
virtualization (typically only disk and network devices).
Recently, Andrus et al. [89] developed Cells, an OS vir-
tualization architecture for enabling multiple virtual An-
droid smart phones to run simultaneously on the same
physical cell phone in an isolated, secure manner. The
main technical challenges is to develop kernel-level and
user-level device virtualization techniques for a variety
of handset devices like GPU, touch screen, GPS, etc.

8. Task-Grain Scheduling

Conventional VMM schedulers view each guest VM as
an opaque blackbox and unaware of individual tasks
within each VM. This is true for both full-virtualization
solutions like KVM and para-virtualization solutions like
Xen. This opacity is beneficial for system modularity,
but can sometimes be a impediment to optimal perform-

Copyright © 2012 SciRes. JSEA

A State-of-the-Art Survey on Real-Time Issues in Embedded Systems Virtualization 284

ance. Some authors have implemented task-grain sched-
uling schemes, where the VMM scheduler has visibility
into the internal task-grain details within each VM. This
work can be further divided into two types: one approach
is to modify the guest OS to inform the VMM about its
internal tasks via hypercalls in a paravirtualization ar-
chitecture; another approach is to let the VMM infer the
task-grain information transparently without guest OS
modification in a full-virtualization architecture.

8.1. Approaches That Require Modifying the
Guest OS

Augier et al. [90] implemented task-grain scheduling al-
gorithm within VirtualLogix VLX, by removing the
scheduler from each guest OS and letting the hypervisor
handle scheduling of all tasks.

KimD et al. [91] presented a guest-aware, task-grain
scheduling algorithm in Xen by selecting the next VM to
be scheduled based on the highest-priority task within
each VM and the I/O behavior of the guest VMs via in-
specting the I/O pending status.

Kiszka [4] developed a para-virtualized scheduling in-
terface for KVM. Two hypercalls are added: one for let-
ting the guest OS inform the VMM about the priority of
currently running task in the guest OS, and the VMM
schedules the guest VMs based on task priority informa-
tion; another for the guest OS to inform the VMM that it
has just finished handling an interrupt, and its priority
should be lowered to its nominal priority.

Xia et al. [92] presented PaS (Preemption-aware Sche-
duling) with two interfaces: one to register VM preemp-
tion conditions, the other to check if a VM is preempting.
VMs with incoming pending I/O events are given higher
priorities and allowed to preempt the currently running
VM scheduled by the Credit Scheduler. Instead of adding
hypercalls, the PaS interface is implemented by adding
two fields in a data structure which is shared between the
hypervisor and guest VM.

Wang et al. [93] implemented task-grain scheduling
within Xen by adding a hypercall to inform the VMM
about the timing attributes of a task at its creation time,
and using either fixed-priority or EDF to schedule the
tasks directly, bypassing the guest VM scheduler.

Kim et al. [94] presented a feedback control architec-
ture for adaptive scheduling in Xen, by adding two hy-
percalls for the guest VMs to increase or decrease the
CPU budget (slice size) requested per period based on
CPU utilization and deadline miss ratios in the guest
VMs.

8.2. Approaches That Do Not Require
Modifying the Guest OS

To avoid modifying the guest OS, the VMM attempts to

infer graybox knowledge about a VM by monitoring cer-
tain HW events. Kim et al. [95] presented task-aware
virtual machine scheduling for I/O Performance by in-
troducing a partial boosting mechanism into the Xen
Credit Scheduler, which enables the VMM to boost the
priority of a vCPU that contains an inferred I/O-bound
task in response to an incoming event. The correlation
mechanism for block and network I/O events is best-
effort and lightweight. It works by monitoring the CR3
register on x86 CPU for addressing the MMU, in order to
capture process context-switching events, which are cla-
ssified into disjoint classes: positive evidence, negative
evidence, and ambiguity, to determine a degree of belief
on the I/O boundedness of tasks. Kim et al. [96] pre-
sented an improved credit scheduler that transparently
estimates multimedia quality by inferring frame rates
from low-level hardware events, and dynamically adjusts
CPU allocation based on the estimates as feedback to
keep the video frame rate around a set point Desired
Frame Rate. For memory-mapped display, the hypervi-
sor monitors the frequency of frame buffer writes in or-
der to estimate the frame rates; for GPU-accelerated dis-
play, the hypervisor monitors the rate of interrupts raised
by a video device, which is shown to exhibit good linear
correlation with frame rate.

Tadokoro et al. [97] implemented the Monarch sched-
uler in the Xen VMM, which works by monitoring and
manipulating the run queue and the process data structure
in guest VMs without modifying guest OSes, using Vir-
tual Machine Intraspection (VMI) to monitor process
execution in the guest VMs, and Direct Kernel Object
Manipulation (DKOM) to modify the scheduler queue
data structure in the guest VMs.

9. The Lock-Holder Preemption Problem

Spinlocks are used extensively in the Linux kernel for
synchronizing access to shared data. When one thread is
in its critical section holding a spinlock, another thread
trying to acquire the same spinlock to enter the critical
section will busy-wait (spin in a polling loop and con-
tinuously check the locking condition) until the lock-
holding thread releases the spinlock. Since the typical
critical sections protected by the spinlocks are kept very
short, the waiting times are acceptable for today’s Linux
kernels, especially with real-time enhancements like the
PREEMPT_RT patch. However, in a virtualized envi-
ronment, Lock Holder Preemption (LHP) may cause ex-
cessively long waiting times for guest OSes configured
with SMP support with multiple vCPUs in the same
guest VM. A VM is called overcommitted when its num-
ber of vCPUs exceeds the available number of physical
cores. Since the VMM scheduler is not aware of any
spinlocks held within the guest OSes, when thread A in a

Copyright © 2012 SciRes. JSEA

A State-of-the-Art Survey on Real-Time Issues in Embedded Systems Virtualization 285

guest OS holding a spinlock being waited for by an-
other thread B on a different vCPU in the same guest OS
is preempted by the VMM scheduler to run another
vCPU, possibly in a different guest OS, Thread B will
busy-wait for a long time until the VMM scheduler
switches back to this guest OS to allow thread A to con-
tinue execution and release the spinlock. When LHP oc-
curs, the waiting times can be tens of milliseconds in-
stead of the typical tens of microseconds in the Linux
kernel without virtualization.

There are two general approaches to addressing the
LHP problem: preventing it from occurring, or mitigating
it after detecting that it has occurred.

Pause Loop Exit (PLE) is an HW mechanism built-in
the latest Intel processors for detecting guest spin-lock. It
can be used by the VMM software to mitigate LHP after
detection. It enables the VMM to detect spin-lock by
monitoring the execution of PAUSE instructions in the
VM through the PLE_Gap and PLE_Window values.
PLE_Gap denotes upper bound on the amount of time
between two successive executions of PAUSE in a loop.
PLE_Window denotes upper bound on the amount of
time a guest is allowed to execute in a PAUSE loop. If
the amount of time between this execution of PAUSE
and previous one exceeds the PLE_Gap, then processor
consider this PAUSE belongs to a new loop. Otherwise,
processor determines the total execution time of this loop
(since 1st PAUSE in this loop), and triggers a VM exit if
total time exceeds PLE_Window. According to KVM’s
source code, PLE_Gap is set to 41 and PLE_Window is
4096 by default, which means that this approach can de-
tect a spinning loop that lasts around 55 microseconds on
a 3GHz CPU. AMD processors has similar HW support
called Pause-Filter-Count. (Since these HW mechanisms
are relatively new, the techniques discussed below ge-
nerally do not make use of them.)

Uhlig et al. [98] presented techniques to address LHP
for both fully virtualized and para-virtualized environ-
ments. In the paravirtualization case, the guest OS is
modified to add a delayed preemption mechanism: before
acquiring a spinlock, the guest OS invokes a hypercall to
indicate to the VMM that it should not be preempted for
the next n microseconds, where n is a configurable pa-
rameter depending how long the guest OS expects to be
holding a lock. After releasing the lock, the guest OS in-
dicates its willingness to be preempted again. In the full
virtualization case where the guest OS cannot be modi-
fied, the VMM transparently monitors guest OS switches
between user space and kernel space execution, and pre-
vents a vCPU from being preempted when it is running
in kernel space and may be holding kernel spinlocks.
(The case when a user-level application is holding a spin-
lock is not handled, and it is assumed that the application
itself is responsible for handling this case.) The imple-

mentation is based on a L4-ka microkernel-based virtu-
alization system with a paravirtualized Linux as guest OS,
although their techniques do not depend on the specific
virtualization software.

Friebel [99] extended the spinlock waiting code in the
guest OS to issue a yield() hypercall when a vCPU has
been waiting longer than a certain threshold of 216 cycles.
Upon receiving the hypercall, the VMM schedules an-
other VCPU of the same guest VM, giving preference to
vCPUs preempted in kernel mode because they are likely
to be preempted lock-holders.

Coscheduling, also called Gang Scheduling, is a com-
mon technique for preventing the LHP problem, where
all vCPUs of a VM are simultaneously scheduled on phy-
sical processors (PCPUs) for an equal time slice. Strict
co-scheduling may lead to performance degradation due
to fragmentation of processor availability. To improve
runtime efficiency, VMWare ESX 4.x implements re-
laxed co-scheduling to allow vCPUs to be co-scheduled
with slight skews. It maintain synchronous progress of
vCPU siblings by deferring the advanced vCPUs until
the slower ones catch up. Several authors developed va-
rious versions of relaxed co-scheduling, as we discuss
next.

Jiang et al. [100] presented several optimizations to
the CFS (Completely Fair Scheduler) in KVM to help
prevent or mitigate LHP. Three techniques were pro-
posed for LHP prevention: 1) add two hypercalls that
enable the guest VM to inform the host VMM that one of
its vCPU threads is currently holding a spinlock or just
released a spinlock. The host VMM will not de-schedule
a vCPU that is currently holding a spinlock; 2) add two
hypercalls for one vCPU thread to boost its priority when
acquiring a spinlock, and resume its nominal priority
when releasing it; 3) implement approximate co-sched-
uling by temporarily changing a VM’s scheduling policy
from SCHED_OTHER (default CFS scheduling class) to
SCHED_RR (real-time scheduling class) when the VM
has high degree of internal concurrency, and changing it
back a short period of time later. Two techniques were
proposed for LHP mitigation after it occurs: 1) Add a
hypercall yield() in the vCPU thread source code to let it
give up the CPU when it has been spin-waiting for a
spinlock for too long, by adding a counter in the source
code to record the spin-waiting time; 2) implement co-
descheduling by slowing down or stopping all other
vCPUs of the same VM if one of its vCPUs is desched-
uled, since if a vCPU thread requires a spinlock, it is
possible for the other vCPUs to require the same spinlock
later.

Weng et al. [101] presented a hybrid scheduling frame-
work in Xen by distinguishing between two types of
VMs: the high-throughput type and the concurrent type.
A VM is set as the concurrent type when the majority of

Copyright © 2012 SciRes. JSEA

A State-of-the-Art Survey on Real-Time Issues in Embedded Systems Virtualization 286

its workload is concurrent applications in order to reduce
the cost of synchronization, and otherwise set as the
high-throughput type by default. Weng et al. [102] im-
plemented dynamic co-scheduling by adding vCPU Re-
lated Degree (VCRD) to reflect the degree of related-
ness of vCPUs in a VM. When long waiting times occur
in a VM due to spinlocks, the VCRD of the VM is set as
HIGH, and all vCPUs should be co-scheduled; otherwise,
the VCRD of the VM is set as LOW, and vCPUs can be
scheduled asynchronously. A monitoring module is added
in each VM to detect long waiting times due to spinlocks,
and uses a hypercall to inform the host VMM about the
VCRD values of the guest VM.

Bai et al. [103] presented a task-aware co-scheduling
method, where the VMM infers gray-box knowledge
about the concurrency and synchronization of tasks with-
in guest VMs. By tracking the states of tasks within guest
VMs and combining this information with states of
vCPUs, they are able to infer occurrence of spinlock wait-
ing without modifying the guest OS.

Yu et al. [104] presented two approaches: Partial Co-
scheduling and Boost Co-scheduling, both implemented
within the Xen credit scheduler. Partial Co-scheduling
allows multiple VMs to be co-scheduled concurrently,
but only raises co-scheduling signals to the CPUs whose
run-queues contain the corresponding co-scheduled VCPUs,
while other CPUs remain undisturbed; Boost Co-sched-
uling promotes the priorities of vCPUs to be co-sched-
uled, instead of using co-scheduling signals to force them
to be co-scheduled. They performed performance com-
parisons with hybrid co-scheduling [101] and co-de-sch-
eduling [100] and showed clear advantages.

Sukwong et al. [105] presented a balance scheduling
algorithm which attempts to balance vCPU siblings in
the same VM on different physical CPUs without forcing
the vCPUs to be scheduled simultaneously by dynami-
cally setting CPU affinity of vCPUs so that no two vCPU
siblings are in the same CPU run-queue. Balance sched-
uling is shown to significantly improve application per-
formance without the complexity and drawbacks found
in co-scheduling (CPU fragmentation, priority inversion
and execution delay). Balance scheduling is similar to
relaxed co-scheduling in VMWare ESX 4.x [106], but it
never delays execution of a vCPU to wait for another
vCPU in order to maintain synchronous progress of
vCPU siblings. It differs from the approximate co-sche-
duling algorithm in [100] in that it does not change
vCPU scheduling class or priorities.

SPUMONE [71] adopts a unique runtime migration
approach to address the LHP (Lock-Holder Preemption)
problem by migrating a vCPU away from a core where
LHP may occur with another co-located vCPU: if vCPUs
of a GPOS and an RTOS share the same pCPU core on a
multicore processor, and the thread running on the vCPU

of GPOS issues a system call, or when an interrupt is
raised to the vCPU of GPOS, the vCPU of GPOS is im-
mediately migrated away from to another core that does
not host any RTOS vCPUs, thus achieving the effect of
co-scheduling on different cores. This is a pessimistic
approach, since the migration takes place even when
there may not be any lock contention.

10. Conclusion

In this paper, we have presented a comprehensive survey
on real-time issues in embedded systems virtualization.
We hope this article can serve as a useful reference to
researchers in this area.

11. Acknowledgements

This work was supported by MoE-Intel Information Te-
chnology Special Research Fund under Grant Number
MOE-INTEL-10-02; NSFC Project Grant #61070002;
the Fundamental Research Funds for the Central Univer-
sities.

REFERENCES
[1] Y. Kinebuchi, H. Koshimae and T. Nakajima, “Con-

structing Machine Emulator on Portable Microkernel,”
Proceedings of the 2007 ACM Symposium on Applied
Computing, 11-15 March 2007, Seoul, 2007, pp. 1197-
1198. doi:10.1145/1244002.1244261

[2] H. Schild, A. Lackorzynski and A. Warg, “Faithful Virtu-
alization on a Realtime Operating System,” 11th Real-
Time Linux Workshop, Dresden, 28-30 September 2009.

[3] K. Barr, P. P. Bungale, S. Deasy, V. Gyuris, P. Hung, C.
Newell, H. Tuch and B. Zoppis, “The VMware Mobile
Virtualization Platform: Is That a Hypervisor in Your
Pocket?” Operating Systems Review, Vol. 44, No. 4, 2101,
pp. 124-135. doi:10.1145/1899928.1899945

[4] J. Kiszka, “Towards Linux as a Real-Time Hypervisor,”
11th Real-Time Linux Workshop, Dresden, 28-30 September
2009.

[5] Airlines Electronic Engineering Committee, “ARINC
653—Avionics Application Software Standard Interface,”
2003

[6] T. Gaska, B. Werner and D. Flagg, “Applying Virtualiza-
tion to Avoinics Systems—The Integration Challenge,”
Proceedings of the 29th Digital Avionics Systems Con-
ference of the IEEE/AIAA, Salt Lake City, 3-7 October
2010, pp. 1-19. doi:10.1109/DASC.2010.5655297

[7] Wind River Hypervisor Product Overview.
http://www.windriver.com/products/hypervisor

[8] INTEGRITY Multivisor Datasheet. http://www.ghs.com

[9] Real-Time Systems GmbH.
http://www.real-time-systems.com

[10] Tenasys eVM for Windows.
http://www.tenasys.com/products/evm.php

[11] Quick Start Guide, NI Real-Time Hypervisor.

Copyright © 2012 SciRes. JSEA

http://dx.doi.org/10.1145/1244002.1244261
http://dx.doi.org/10.1145/1899928.1899945
http://dx.doi.org/10.1109/DASC.2010.5655297

A State-of-the-Art Survey on Real-Time Issues in Embedded Systems Virtualization 287

http://www.ni.com/pdf/manuals/375174b.pdf.

[12] OpenSynergy COQOS.
http://www.opensynergy.com/en/Products/COQOS

[13] Enea Hypervisor.
http://www.enea.com/software/products/hypervisor

[14] SysGO GmbH. http://www.sysgo.com

[15] S. H. VanderLeest, “ARINC 653 Hypervisor,” Proceed-
ings of 29th Digital Avionics Systems Conference of IE-
EE/AIAA, Salt Lake City, 3-7 October 2010, pp. 1-20.
doi:10.1109/DASC.2010.5655298

[16] M. Masmano, I. Ripoll, A. Crespo and J. J. Metge “Xtra-
tuM: A Hypervisor for Safety Critical Embedded Sys-
tems,” Proceedings of Real-Time Linux Workshop, Dres-
den, 28-30 September 2009.

[17] J. Zamorano and J. A. de la Puente, “Open Source Im-
plementation of Hierarchical Scheduling for Integrated
Modular Avionics,” Proceedings of Real-Time Linux Work-
shop, Nairobi, 25-27 October 2010.

[18] Á. Esquinas, J. Zamorano, J. Antonio de la Puente, M.
Masmano, I. Ripoll and A. Crespo, “ORK+/XtratuM: An
Open Partitioning Platform for Ada,” Lecture Notes in
Computer Science, Vol. 6652, pp. 160-173.
doi:10.1007/978-3-642-21338-0_12

[19] S. Campagna, M. Hussain and M. Violante, “Hypervi-
sor-Based Virtual Hardware for Fault Tolerance in COTS
Processors Targeting Space Applications,” Proceedings
of the 2010 IEEE 25th International Symposium on De-
fect and Fault Tolerance in VLSI Systems, Kyoto, 6-8
October 2010, pp. 44-51. doi:10.1109/DFT.2010.12

[20] N. McGuire, A. Platschek and G. Schiesser, “OVER-
SEE—A Generic FLOSS Communication and Applica-
tion Platform for Vehicles,” Proceedings of 12th Real-
Time Linux Workshop, Nairobi, 25-27 October 2010.

[21] A. Platschek and G. Schiesser, “Migrating a OSEK Run-
time environment to the OVERSEE Platform,” Proceed-
ings of 13th Real-Time Linux Workshop, Prague, 22-22
October 2011.

[22] S. Han and H. W. Jin, “Full Virtualization Based ARINC
653 Partitioning,” Proceedings of the 30th Digital Avion-
ics Systems (DASC) Conference of the IEEE/AIAA, Seat-
tle, 16-20 October 2011, pp. 1-11.
doi:10.1109/DASC.2011.6096132

[23] S. Ghaisas, G. Karmakar, D. Shenai, S. Tirodkar and K.
Ramamritham, “SParK: Safety Partition Kernel for Inte-
grated Real-Time Systems,” Lecture Notes in Computer
Science, Vol. 6462, 2010, pp. 159-174.
doi:10.1007/978-3-642-17226-7_10

[24] M. Lemerre, E. Ohayon, D. Chabrol, M. Jan and M.-B.
Jacques, “Method and Tools for Mixed-Criticality Real-
Time Applications within PharOS,” Proceedings of IEEE
International Symposium on Object/Component/Service-Ori-
ented Real-Time Distributed Computing Workshops, New-
port Beach, 28-31 March 2011, pp. 41-48.
doi:10.1109/ISORCW.2011.15

[25] A. Aguiar and F. Hessel, “Virtual Hellfire Hypervisor:
Extending Hellfire Framework for Embedded Virtualiza-
tion Support,” Proceedings of the 12th International Sym-
posium on Quality Electronic Design (ISQED), Santa
Clara, 14-16 March 2011, pp. 129-203.

doi:10.1109/ISQED.2011.5770725

[26] F. Moraes, N. Calazans, A. Mello, L. Möller and L. Ost,
“HERMES: An Infrastructure for Low Area Overhead
Packet-Switching Networks on Chip,” Integration, the VLSI
Journal, Vol. 38, No. 1, 2004, pp. 69-93.
doi:10.1106/j.vlsi.2004.03.003

[27] L. Cherkasova, D. Gupta and A. Vahdat, “Comparison of
the Three CPU Schedulers in Xen,” ACM SIGMETRICS
Performance Evaluation Review, Vol. 35, No. 2, 2007, pp.
42-51. doi:10.1145/1330555.1330556

[28] A. Masrur, S. Drössler, T. Pfeuffer and S. Chakraborty,
“VM-Based Real-Time Services for Automotive Control
Applications,” Proceedings of the 2010 IEEE 16th Inter-
national Conference on Embedded and Real-Time Com-
puting Systems and Applications, Macau, 23-25 August
2010, pp. 218-223. doi:10.1109/RTCSA.2010.38

[29] A. Masrur, T. Pfeuffer, M. Geier, S. Drössler and S.
Chakraborty, “Designing VM Schedulers for Embedded
Real-Time Applications,” Proceedings of the 7th IEEE/AC-
M/IFIP International Conference on Hardware/Software
Codesign and System Synthesis, Taipei, 9-14 October 2011,
pp. 29-38. doi:10.1145/2039370.2039378

[30] J. Lee, S. S. Xi, S. J. Chen, L. T. X. Phan, C. Gill, I. Lee,
C. Y. Lu and O. Sokolsky, “Realizing Compositional Sch-
eduling through Virtualization,” Technical Report, Uni-
versity of Pennsylvania, Philadelphia, 2011.

[31] S. S. Xi, J. Wilson, C. Y. Lu and C. Gill, “RT-Xen: To-
wards Real-Time Hypervisor Scheduling in Xen,” Pro-
ceedings of the 2011 International Conference on Em-
bedded Software, Taipei, 9-14 October 2011, pp. 39-48.

[32] I. Shin and I. Lee, “Compositional Real-Time Scheduling
Framework with Periodic Model,” ACM Transactions on
Embedded Computing Systems, Vol. 7, No. 3, 2008.
doi:10.1145/1347375.1347383

[33] S. Yoo, Y.-P. Kim and C. Yoo, “Real-time Scheduling in
a Virtualized CE Device,” Proceedings of 2010 Digest of
Technical Papers International Conference on Consumer
Electronics (ICCE), Las Vegas, 9-13 January 2010, pp.
261-262. doi:10.1109/ICCE.2010.5418991

[34] J.-W. Jeong, S. Yoo and C. Yoo, “PARFAIT: A New Sch-
eduler Framework Supporting Heterogeneous Xen-ARM
Schedulers,” Proceedings of 2011 Consumer Communi-
cations and Networking Conference of the IEEE CCNC,
Las Vegas, 9-12 January 2011, pp. 1192-1196.
doi:10.1109/CCNC.2011.5766431

[35] C.-H. Hong, M. Park, S. Yoo, C. Yoo and H. D. Consid-
ering, “Hypervisor Design Considering Network Per-
formance for Multi-Core CE Devices,” Proceedings of
2010 Digest of Technical Papers International Confer-
ence on Consumer Electronics of the IEEE ICCE, Las
Vegas, 9-13 January 2010, pp. 263-264.
doi:10.1109/ICCE.2010.5418708

[36] S. Yoo, K.-H. Kwak, J.-H. Jo and C. Yoo, “Toward Un-
der-Millisecond I/O Latency in Xen-ARM,” The 2nd ACM
SIGOPS Asia-Pacific Workshop on Systems, Shanghai,
11-12 July 2011, p. 14.

[37] M. Lee, A. S. Krishnakumar, P. Krishnan, N. Singh and S.
Yajnik, “Supporting Soft Real-Time Tasks in the Xen
Hypervisor,” Proceedings of the 6th ACM SIGPLAN/SIGO-

Copyright © 2012 SciRes. JSEA

http://dx.doi.org/10.1109/DASC.2010.5655298
http://dx.doi.org/10.1007/978-3-642-21338-0_12
http://dx.doi.org/10.1109/DFT.2010.12
http://dx.doi.org/10.1109/DASC.2011.6096132
http://dx.doi.org/10.1007/978-3-642-17226-7_10
http://dx.doi.org/10.1109/ISORCW.2011.15
http://dx.doi.org/10.1109/ISQED.2011.5770725
http://dx.doi.org/10.1106/j.vlsi.2004.03.003
http://dx.doi.org/10.1145/1330555.1330556
http://dx.doi.org/10.1109/RTCSA.2010.38
http://dx.doi.org/10.1145/2039370.2039378
http://dx.doi.org/10.1145/1347375.1347383
http://dx.doi.org/10.1109/ICCE.2010.5418991
http://dx.doi.org/10.1109/CCNC.2011.5766431
http://dx.doi.org/10.1109/CCNC.2011.5766431

A State-of-the-Art Survey on Real-Time Issues in Embedded Systems Virtualization 288

PS International Conference on Virtual Execution Envi-
ronments, Pittsburgh, March 2010, pp. 97-108.
doi:10.1145/1837854.1736012

[38] P. J. Yu, M. Y. Xia, Q. Lin, M. Zhu, S. Gao, Z. W. Qi, K.
Chen and H. B. Guan, “Real-Time Enhancement for Xen
Hypervisor,” Proceedings of the 8th International Confer-
ence on Embedded and Ubiquitous Computing of the
IEEE/IFIP, Hong Kong, 11-13 December 2010, pp. 23-30.

[39] Y. X. Wang, X. G. Wang and H. Guo, “An Optimized
Scheduling Strategy Based on Task Type In Xen,” Lec-
ture Notes in Electrical Engineering, Vol. 123, 2011, pp.
515-522. doi:10.1007/978-3-642-25646-2_67

[40] H. C. Chen, H. Jin, K. Hu and M. H. Yuan, “Adaptive
Audio-Aware Scheduling in Xen Virtual Environment,”
Proceedings of the International Conference on Computer
Systems and Applications (AICCSA) of the IEEE/ACS,
Hammamet, 16-19 May 2010, pp. 1-8.
doi:10.1109/AICCSA.2010.5586974

[41] H. C. Chen, H. Jin and K. Hu, “Affinity-Aware Propor-
tional Share Scheduling for Virtual Machine System,”
Proceedings of the 9th International Conference on Grid
and Cooperative Computing (GCC), Nanjing, 1-5 No-
vember 2010, pp. 75-80. doi:10.1109/GCC.2010.27

[42] D. Gupta, L. Cherkasova, R. Gardner and A. Vahdat,
“Enforcing Performance Isolation across Virtual Ma-
chines in Xen,” Proceedings of the ACM/IFIP/USENIX
2006 International Conference on Middleware, Melbourne,
27 November-1 December 2006, pp. 342-362.

[43] D. Ongaro, A. L. Cox and S. Rixner, “Scheduling I/O in
Virtual Machine Monitors,” Proceedings of the 4th ACM
SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, Seattle, 5-7 March 2008, pp. 1-
10. doi:10.1145/134256.1246258

[44] S. Govindan, J. Choi, A. R. Nath, A. Das, B. Urgaonkar,
and A. Sivasubramaniam, “Xen and Co.: Communica-
tion-Aware CPU Management in Consolidated Xen-
Based Hosting Platforms,” IEEE Transactions on Com-
puters, Vol. 58, No. 8, 2009, pp. 1111-1125.
doi:10.1109/TC.2009.53

[45] Y. Y. Hu, X. Long, J. Zhang, J. He and L. Xia, “I/O
Scheduling Model of Virtual Machine Based on Multi-
Core Dynamic Partitioning,” Proceedings of the 19th AC-
M International Symposium on High Performance Dis-
tributed Computing, Chicago, 21-25 June 2010, pp. 142-
154. doi:10.1145/1851476.1851494

[46] J. G. Lee, K. W. Hur and Y. W. Ko, “Minimizing Sched-
uling Delay for Multimedia in Xen Hypervisor,” Commu-
nications in Computer and Information Science, Vol. 199,
2011, pp. 96-108. doi:10.1007/978-3-642-23312-8_12

[47] J. Zhang, K. Chen, B. J. Zuo, R. H. Ma, Y. Z. Dong and
H. B. Guan, “Performance Analysis towards a KVM-
Based Embedded Real-Time Virtualization Architecture,”
Proceedings of the 5th International Conference on Com-
puter Sciences and Convergence Information Technology
(ICCIT), Seoul, 30 November-2 December 2010, pp.
421-426. doi:10.1109/ICCIT.2010.5711095

[48] B. J. Zuo, K. Chen, A. Liang, H. B. Guan, J. Zhang, R. H.
Ma and H. B. Yang, “Performance Tuning towards a
KVM-Based Low Latency Virtualization System,” Pro-
ceedings of the 2nd International Conference on Informa-

tion Engineering and Computer Science (ICIECS), Wu-
han, 25-26 December 2010, pp. 1-4.
doi:10.1109/ICIECS.2010.5678357

[49] T. Cucinotta, G. Anastasi and L. Abeni, “Respecting Tem-
poral Constraints in Virtualised Services,” Proceedings of
the 33rd Annual IEEE International Conference on Com-
puter Software and Applications, Seattle, Washington DC,
20-24 July 2009. pp. 73-78.
doi:10.1109/COMPSAC.2009.118

[50] T. Cucinotta, D. Giani, D. Faggioli and F. Checconi, “Pro-
viding Performance Guarantees to Virtual Machines Us-
ing Real-Time Scheduling,” Proceedings of Euro-Par
Workshops, Naples, 31 August-3 September 2010, pp. 657-
664.

[51] T. Cucinotta, F. Checconi and D. Giani, “Improving Re-
sponsiveness for Virtualized Networking under Intensive
Computing Workloads,” Proceedings of the 13th Real-Time
Linux Workshop, Prague, 20-22 October 2011.

[52] F. Checconi, T. Cucinotta and M. Stein, “Real-Time Is-
sues in Live Migration of Virtual Machines,” Proceedings
of Euro-Par Workshops, Delft, 29-28 August 2009, pp. 454-
466.

[53] S. Kato, R. (Raj) Rajkumar and Y. Ishikawa, “A Loadable
Real-Time Scheduler Framework for Multicore Plat-
forms,” Proceedings of the 6th IEEE International Con-
ference on Embedded and Real-Time Computing Systems
and Applications (RTCSA), Macau, 23-25 August 2010.

[54] B. Lin and P. A. Dinda, “VSched: Mixing Batch And In-
teractive Virtual Machines Using Periodic Real-time Sche-
duling,” Proceedings of the ACM/IEEE SC 2005 Confer-
ence Supercomputing, Seattle, 12-18 November 2005, p.
8. doi:10.1109/SC.2005.80

[55] M. Asberg, N. Forsberg, T. Nolte and S. Kato, “Towards
Real-Time Scheduling of Virtual Machines without Ker-
nel Modifications,” Proceedings of the 2011 IEEE 16th
Conference on Emerging Technologies & Factory Auto-
mation (ETFA), Toulouse, 5-9 September 2011, pp. 1-4.
doi:10.1109/ETFA.2011.6059185

[56] M. Asberg, T. Nolte and S. Kato, “Towards Hierarchical
Scheduling in Linux/Multi-Core Platform,” Proceedings
of the 2010 IEEE Conference on Emerging Technologies
and Factory Automation (ETFA), Bilbao, 13-16 Septem-
ber 2010, pp. 1-4. doi:10.1109/ETFA.2010.5640999

[57] A. Acharya, J. Buford and V. Krishnaswamy, “Phone
Virtualization Using a Microkernel Hypervisor,” Pro-
ceedings of the 2009 IEEE International Conference on
Internet Multimedia Services Architecture and Applica-
tions (IMSAA), Bangalore, 9-11 December 2009, pp. 1-6.
doi:10.1109/IMSAA.2009.5439460

[58] A. Iqbal, N. Sadeque and R. I. Mutia, “An Overview of
Microkernel, Hypervisor and Microvisor Virtualization
Approaches for Embedded Systems,” Technical Report,
Lund University, Lund, 2009.

[59] G. Heiser, “Virtualizing Embedded Systems: Why Bo-
ther?” Proceedings of the 2011 48th ACM/EDAC/IEEE
Conference on Design Automation, San Diego, 5-9 June
2011, pp. 901-905.

[60] F. Bruns, S. Traboulsi, D. Szczesny, M. E. Gonzalez, Y.
Xu and A. Bilgic, “An Evaluation of Microkernel-Based

Copyright © 2012 SciRes. JSEA

http://dx.doi.org/10.1109/CCNC.2011.5766431
http://dx.doi.org/10.1109/CCNC.2011.5766431
http://dx.doi.org/10.1109/GCC.2010.27
http://dx.doi.org/doi:10.1145/134256.1246258
http://dx.doi.org/doi:10.1109/TC.2009.53
http://dx.doi.org/doi:10.1109/TC.2009.53
http://dx.doi.org/10.1007/978-3-642-23312-8_12
http://dx.doi.org/10.1007/978-3-642-23312-8_12
http://dx.doi.org/10.1007/978-3-642-23312-8_12
http://dx.doi.org/10.1109/CCNC.2011.5766431
http://dx.doi.org/10.1109/CCNC.2011.5766431
http://dx.doi.org/10.1109/CCNC.2011.5766431
http://dx.doi.org/10.1109/ETFA.2010.5640999
http://dx.doi.org/10.1109/CCNC.2011.5766431

A State-of-the-Art Survey on Real-Time Issues in Embedded Systems Virtualization 289

Virtualization for Embedded Real-Time Systems,” Pro-
ceedings of the 22nd Euromicro Conference on Real-Time
Systems (ECRTS), Dublin, 6-9 July 2010, pp. 57-65.
doi:10.1109/ECRTS.2010.28

[61] A. Lackorzynski, J. Danisevskis, J. Nordholz and M. Peter,
“Real-Time Performance of L4Linux,” Proceedings of the
13th Real-Time Linux Workshop, Prague, 20-22 October
2011.

[62] R. Kaiser, “Alternatives for Scheduling Virtual Machines
in Real-Time Embedded Systems,” Proceedings of the 1st
Workshop on Isolation and Integration in Embedded Sys-
tems, Glasgow, 1 April 2008, pp. 5-10.
doi:10.1145/1435458.1435460

[63] J. Yang, H. Kim, S. Park, C. K. Hong and I. Shin, “Im-
plementation of Compositional Scheduling Framework on
Virtualization,” SIGBED Review, Vol. 8, No. 1, 2011, pp.
30-37. doi:10.1145/1967021.1967025

[64] U. Steinberg and B. Kauer, “NOVA: A Microhypervisor-
Based Secure Virtualization Architecture,” Proceedings
of the 5th European Conference on Computer Systems, Paris,
13-16 April 2010, pp. 209-222.
doi:10.1145/1755913.1755935

[65] K. Gudeth, M. Pirretti, K. Hoeper and R. Buskey, “De-
livering Secure Applications on Commercial Mobile De-
vices: The Case for Bare Metal Hypervisors,” Proceed-
ings of the 1st ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices, Chicago, 17-21 Octo-
ber 2011, pp. 33-38. doi:10.1145/2046614.2046622

[66] VMware MVP (Mobile Virtualization Platform)
http://www.vmware.com/products/mobile

[67] F. Armand and M. Gien, “A Practical Look at Micro-Ker-
nels and Virtual Machine Monitors,” Proceedings of the
6th IEEE Consumer Communications and Networking Con-
ference, Las Vegas, 10-13 January 2009, pp. 1-7.
doi:10.1109/CCNC.2009.4784874

[68] Red Bend VLX for Mobile Handsets.
http://www.virtuallogix.com/products/vlx-for-mobile-han
dsets.html

[69] J.-Y. Hwang, S.-B. Suh, S.-K. Heo, C.-J. Park, J.-M. Ryu,
S.-Y. Park and C.-R. Kim, “Xen on ARM: System Virtu-
alization Using Xen Hypervisor for ARM-Based Secure
Mobile Phones,” Proceedings of the 5th IEEE Consumer
Communications and Networking Conference, Las Vegas,
10-12 January 2008, pp. 257-261.
doi:10.1109/ccnc08.2007.64

[70] W. Kanda, Y. Yumura, Y. Kinebuchi, K. Makijima and T.
Nakajima, “SPUMONE: Lightweight CPU Virtualization
Layer for Embedded Systems,” Proceedings of the
IEEE/IFIP International Conference on Embedded and
Ubiquitous Computing, Shanghai, 17-20 December 2008,
pp. 144-151. doi:10.1109/EUC.2008.157

[71] H. Mitake, Y. Kinebuchi, A. Courbot and T. Nakajima,
“Coexisting Real-Time OS and General Purpose OS on
an Embedded Virtualization Layer for a Multicore Proc-
essor,” Proceedings of the 2011 ACM Symposium on Ap-
plied Computing, Taichung, 21-24 March 2011, pp. 629-
630. doi:10.1145/1982185.1982322

[72] H. Tadokoro, K. Kourai and S. Chiba, “A Secure Sys-
tem-wide Process Scheduler across Virtual Machines,”

Proceedings of the 16th Pacific Rim International Sym-
posium on Dependable Computing (PRDC), Tokyo, 13-
15 December 2010, pp. 27-36.
doi:10.1109/PRDC.2010.34

[73] Y. Kinebuchi, M. Sugaya, S. Oikawa and T. Nakajima,
“Task Grain Scheduling for Hypervisor-Based Embedded
System,” Proceedings of the 10th IEEE International Con-
ference on High Performance Computing and Communi-
cations, Dalian, 25-27 September 2008, pp. 190-197.
doi:10.1109/HPCC.2008.144

[74] A. Aalto, “Dynamic Management of Multiple Operating
Systems in an Embedded Multi-Core Environment,” Mas-
ter’s Thesis, Aalto University, Finland, 2010.

[75] T.-H. Lin, Y. Kinebuchi, H. Shimada, H. Mitake, C.-Y.
Lee and T. Nakajima, “Hardware-Assisted Reliability
Enhancement for Embedded Multi-Core Virtualization
Design,” Proceedings of the 17th International Confer-
ence on Embedded and Real-Time Computing Systems
and Applications of the IEEE RTCSA, Toyama, 28-31
August 2011, pp. 241-249. doi:10.1109/RTCSA.2011.24

[76] N. Li, Y. Kinebuchi and T. Nakajima, “Enhancing Secu-
rity of Embedded Linux on a Multi-Core Processor,” Pro-
ceedings of the 17th International Conference on Embed-
ded and Real-Time Computing Systems and Applications
of the IEEE RTCSA, Toyama, 28-31 August 2011, pp.
117-121. doi:10.1109/RTCSA.2011.36

[77] W. Kanda, Y. Murata and T. Nakajima, “SIGMA System:
A Multi-OS Environment for Embedded Systems,” Jour-
nal Of Signal Processing Systems, Vol. 59, No. 1, 2010,
pp. 33-43. doi:10.1007/s11265-008-0272-9

[78] M. Ito and S. Oikawa, “Mesovirtualization: Lightweight
Virtualization Technique for Embedded Systems,” So-
ciedad Española de UitraSonidos, Vol. 4761, 2007, pp. 496-
505.

[79] M. Ito and S. Oikawa, “Making a Virtual Machine Moni-
tor Interruptible,” Journal of Information Processing, Vol.
19, 2011, pp. 411-420.

[80] S.-H. Yoo, Y. X. Liu, C.-H. Hong, C. Yoo and Y. G. Zh-
ang, “MobiVMM: A Virtual Machine Monitor for Mo-
bile Phones,” Proceedings of the 1st Workshop on Virtu-
alization in Mobile Computing, Breckenridge, 17 June 2008,
pp. 1-5.

[81] S. Yoo, M. Park and C. Yoo, “A Step to Support Real-
Time in Virtual Machine,” Proceedings of the 6th Inter-
national Conference on Consumer Communications and
Networking of the IEEE CCNC, Las Vegas, 10-13 Janu-
ary 2009, pp. 1-7. doi:10.1109/CCNC.2009.4784876

[82] Y. Li, M. Danish and R. West, “Quest-V: A Virtualized
Multikernel for High-Confidence Systems,” Technical Re-
port, Boston University, Boston, 2011.

[83] M. Danish, Y. Li and R. West, “Virtual-CPU Scheduling
in the Quest Operating System,” Proceedings of the 17th
International Conference on Real-Time and Embedded
Technology and Applications Symposium of the IEEE RTAS,
Chicago, 11-14 April 2011, pp. 169-179.
doi:10.1109/RTAS.2011.24

[84] P.-H. Kamp and R. N. M. Watson, “Jails: Confining the
Omnipotent Root,” Proceedings of the 2nd International
System Administration and Networking Conference, Maas-

Copyright © 2012 SciRes. JSEA

http://dx.doi.org/10.1007/978-3-642-23312-8_12
http://dx.doi.org/10.1007/978-3-642-23312-8_12
http://dx.doi.org/10.1007/978-3-642-23312-8_12
http://dx.doi.org/10.1007/978-3-642-23312-8_12
http://dx.doi.org/10.1109/CCNC.2009.4784874
http://dx.doi.org/10.1109/ccnc08.2007.64
http://dx.doi.org/10.1109/EUC.2008.157
http://dx.doi.org/10.1145/1982185.1982322
http://dx.doi.org/10.1109/PRDC.2010.34
http://dx.doi.org/10.1007/978-3-642-23312-8_12
http://dx.doi.org/10.1109/RTCSA.2011.24
http://dx.doi.org/10.1109/RTCSA.2011.36
http://dx.doi.org/10.1007/s11265-008-0272-9
http://dx.doi.org/10.1109/CCNC.2009.4784876
http://dx.doi.org/10.1109/RTAS.2011.24

A State-of-the-Art Survey on Real-Time Issues in Embedded Systems Virtualization

Copyright © 2012 SciRes. JSEA

290

tricht, 22-25 May 2000.

[85] OpenVZ Linux Containers. http://wiki.openvz.org

[86] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. C. Bavier and L.
L. Peterson, “Container-Based Operating System Virtual-
ization: A Scalable, High-Performance Alternative to Hy-
pervisors,” Proceedings of EuroSys 2007, Lisbon, 21-23
March 2007, pp. 275-287.

[87] Parallels Virtuozzo Containers.
http://www.parallels.com/products/pvc

[88] MontaVista Automotive Technology Platform.
http://mvista.com/sol_detail_ivi.php

[89] J. Andrus, C. Dall, A. V. Hof, O. Laadan and J. Nieh, “Cells:
A Virtual Mobile Smartphone Architecture,” Columbia
University Computer Science Technical Reports, Colum-
bia University, Columbia, 2011, pp. 173-187.

[90] C. Augier, “Real-Time Scheduling in a Virtual Machine
Environment,” Proceedings of Junior Researcher Work-
shop on Real-Time Computing (JRWRTC), Nancy, 29-30
March 2007.

[91] D. Kim, H. Kim, M. Jeon, E. Seo and J. Lee, “Guest-
Aware Priority-Based Virtual Machine Scheduling for
Highly Consolidated Server,” Proceedings of the 14th In-
ternational Euro-Par Conference on Parallel Processing,
Las Palmas de Gran Canaria, 26-29 August 2008, pp.
285-294. doi:10.1007/978-3-540-85451-7_31

[92] Y. B. Xia, C. Yang and X. Cheng, “PaS: A Preemption-
Aware Scheduling Interface for Improving Interactive
Performance in Consolidated Virtual Machine Environ-
ment,” Proceedings of the 15th International Conference
on Parallel and Distributed Systems (ICPADS), Shenzhen,
8-11 December 2009, pp. 340-347.
doi:10.1109/ICPADS.2009.51

[93] Y. D. Wang, J. Zhang, L. H. Shang, X. Long and H. H.
Jin, “Research of Real-Time Task in Xen Virtualization
Environment,” Proceedings of the 2nd International Con-
ference on Computer and Automation Engineering (IC-
CAE), Mumbai, 26-28 February 2010, pp. 496-500.
doi:10.1109/ICCAE.2010.5451903

[94] B. K. Kim, K. W. Hur, J. H. Jang and Y. W. Ko, “Feed-
back Scheduling for Realtime Task on Xen Virtual Ma-
chine,” Communication and Networking, Vol. 266, 2011,
pp. 283-291. doi:10.1007/978-3-642-27201-1_32

[95] H. Kim, H. Lim, J. Jeong, H. Jo and J. Lee, “Task-Aware
Virtual Machine Scheduling for I/O Performance,” Pro-
ceedings of the 2009 ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments, Wa-
shington DC, 11-13 March 2009, pp. 101-110.
doi:10.1145/1508293.1508308

[96] H. Kim, J. Jeong, J. Hwang, J. Lee and S. Maeng, “Sch-
eduler Support for Video-Oriented Multimedia on Client-
Side Virtualization,” Proceedings of the 3rd Multimedia

Systems Conference, Orange County, 22 February 2012.
doi:10.1145/2155555.2155566

[97] H. Tadokoro, K. Kourai and S. Chiba, “A Secure Sys-
tem-wide Process Scheduler across Virtual Machines,”
Proceedings of the 16th Pacific Rim International Sym-
posium on Dependable Computing of the IEEE PRDC, To-
kyo, 13-15 December 2010, pp. 27-36.
doi:10.1109/PRDC.2010.34

[98] V. Uhlig, J. LeVasseur, E. Skoglund and U. Dannowski,
“Towards Scalable Multiprocessor Virtual Machines,”
Proceedings of the 3rd Conference on Virtual Machine
Research and Technology Symposium, San Jose, 6-12 May
2004, pp. 43-56.

[99] T. Friebel and S. Biemueller, “How to Deal with Lock
Holder Preemption,” Proceedings of the Xen Summit, Bos-
ton, 23-24 June 2008.

[100] W. Jiang, Y. S. Zhou, Y. Cui, W. Feng, Y. Chen, Y. C.
Shi and Q. B. Wu, “CFS Optimizations to KVM Threads
on Multi-Core Environment,” Proceedings of the 15th In-
ternational Conference on Parallel and Distributed Sy-
stems of the IEEE ICPADS, Shenzhen, 8-11 December
2009, pp. 348-354. doi:10.1109/ICPADS.2009.83

[101] C. L. Weng, Z. G. Wang, M. L. Li and X. D. Lu, “The
Hybrid Scheduling Framework for Virtual Machine Sys-
tems,” Proceedings of the 2009 ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environ-
ments, Washington DC, 11-13 March 2009, pp. 111-120.
doi:10.1145/1508293.1508309

[102] C. L. Weng, Q. Liu, L. Yu and M. L. Li, “Dynamic Adap-
tive Scheduling for Virtual Machines,” Proceedings of the
20th International Symposium on High Performance Dis-
tributed Computing, San Jose, 8-11 June 2011, pp. 239-
250. doi:10.1145/1996130.1996163

[103] Y. B. Bai, C. Xu and Z. Li, “Task-Aware Based Co-
Scheduling for Virtual Machine System,” Proceedings of
the 2010 ACM Symposium on Applied Computing, Sierre,
22-26 March 2010, pp. 181-188.
doi:10.1145/1774088.1774126

[104] Y. L. Yu, Y. X. Wang, H. Guo and X. B. He, “Hybrid
Co-Scheduling Optimizations for Concurrent Applica-
tions in Virtualized Environments,” Proceedings of the
6th IEEE International Conference on Networking, Ar-
chitecture and Storage (NAS), Dalian, 28-30 July 2011,
pp. 20-29. doi:10.1109/NAS.2011.30

[105] O. Sukwong and H. S. Kim, “Is Co-Scheduling Too Ex-
pensive for SMP VMs?” Proceedings of EuroSys 2011,
Salzburg, 10-13 April 2011, pp. 257-272.

[106] VMWARE White Paper, Performance Tuning Best Prac-
tices for ESX Server, 2007.
http://www.vmware.com/pdf/vi_performance_tuning.pdf

http://dx.doi.org/10.1007/978-3-642-23312-8_12
http://dx.doi.org/10.1109/ICPADS.2009.51
http://dx.doi.org/10.1109/ICPADS.2009.51
http://dx.doi.org/10.1109/ICPADS.2009.51
http://dx.doi.org/10.1109/ICPADS.2009.51
http://dx.doi.org/10.1145/2155555.2155566
http://dx.doi.org/10.1109/RTAS.2011.24
http://dx.doi.org/10.1109/ICPADS.2009.83
http://dx.doi.org/10.1145/1508293.1508309
http://dx.doi.org/10.1145/1996130.1996163
http://dx.doi.org/10.1145/1774088.1774126
http://dx.doi.org/10.1109/NAS.2011.30

