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ABSTRACT 

Virtualization has gained great acceptance in the server and cloud computing arena. In recent years, it has also been 
widely applied to real-time embedded systems with stringent timing constraints. We present a comprehensive survey on 
real-time issues in virtualization for embedded systems, covering popular virtualization systems including KVM, Xen, 
L4 and others. 
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1. Introduction 

Platform virtualization refers to the creation of Virtual 
Machines (VMs), also called domains, guest OSes, or 
partitions, running on the physical machine managed by 
a Virtual Machine Monitor (VMM), also called a hyper- 
visor. Virtualization technology enables concurrent exe- 
cution of multiple VMs on the same hardware (single or 
multicore) processor. Virtualization technology has been 
widely applied in the enterprise and cloud computing 
space. In recent years, it has been increasingly widely de- 
ployed in the embedded systems domain, including avi- 
onics systems, industrial automation, mobile phones, etc. 
Compared to the conventional application domain of en- 
terprise systems, virtualization in embedded systems 
must place strong emphasis on issues like real-time per- 
formance, security and dependability, etc. 

A VMM can run either on the hardware directly 
(called bare-metal, or Type-1 virtualization), or run on 
top of a host operating system (called hosted, or Type-2 
virtualization). Another way to classify platform-level 
virtualization technologies is full virtualization vs para- 
virtualization. Full virtualization allows the guest OS to 
run on the VMM without any modification, while para- 
virtualization requires the guest OS to be modified by 
adding hypercalls into the VMM. Representative Type-2, 
full virtualization solutions include KVM, VirtualBox, 
Microsoft Virtual PC, VMWare Workstation; Represen- 
tative Type-1, paravirtualization solutions include Xen, 
L4, VMWare ESX. There are some research attempts at 
constructing Type-1, full virtualization solutions, e.g., 
Kinebuchi et al. [1] implemented such a solution by port- 
ing the QEMU machine emulator to run as an application 

on L4Ka::Pistachio microkernel; in turn, unmodified 
guest OS can run on top of QEMU; Schild et al. [2] used 
Intel VT-d HW extensions to run unmodified guest OS 
on L4. There are also Type-2, para-virtualization solu- 
tions, e.g., VMWare MVP (Mobile Virtualization Plat- 
form) [3], as well as some attempts at adding para-virtu- 
alization features to Type-2 virtualization systems to im- 
prove performance, e.g., task-grain scheduling in KVM 
[4]. 

Since embedded systems often have stringent timing 
and performance constraints, virtualization for embedded 
systems must address real-time issues. We focus on real- 
time issues in virtualization for embedded systems, and 
leave out certain topics that are more relevant to the ser- 
ver application space due to space constrains, including: 
power and energy-aware scheduling, dynamic adaptive 
scheduling, multicore scheduling on high-end NUMA 
(Non-Uniform Memory Access) machines, nested virtu- 
alization, etc. In addition, we focus on recent develop- 
ments in this field, instead of presenting a historical per- 
spective. 

This paper is structured as follows: we discuss hard 
real-time virtualization solutions for safety-critical sys- 
tems in Section 2; Xen-based solutions in Section 3, in-
cluding hard real-time and soft real-time extensions to 
Xen; KVM-based solutions in Section 4; micro-kernel 
based solutions represented by L4 in Section 5; other 
virtualization frameworks for embedded systems in Sec- 
tion 6; OS virtualization in Section 7; task-grain sched-
uling in Section 8; the Lock-Holder Preemption problem 
in Section 9; and finally, a brief conclusion in Section 10. 
(The topics of Sections 8 and 9 are cross-cutting issues 
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that are not specific to any virtualization approach, but 
we believe they are of sufficient importance to dedicate 
separate sections to cover them. ) 

2. Hard Real-Time Virtualization for  
Safety-Critical Systems  

The ARINC 653 standard [5] defines a software archi- 
tecture for spatial and temporal partitioning designed for 
safety-critical IMA (Integrated Modular Avionics) ap- 
plications. It defines services such as partition manage- 
ment, process management, time management, inter and 
intra-partition communication. In the ARINC 653 speci- 
fication for system partitioning and scheduling, each par- 
tition (virtual machine) is allocated a time slice, and par- 
titioned are scheduled in a TDMA (Time Division Multi- 
ple Access) manner. A related standard is the Multiple 
Independent Levels of Security (MILS) architecture, an 
enabling architecture for developing security-critical ap- 
plications conforming to the Common Criteria security 
evaluation. The MILS architecture defines four concep- 
tual layers of separation: separation kernel and hardware; 
middleware services; trusted applications; distributed 
communications. Authors from Lockheed Martin [6] pre- 
sented a feasibility assessment toward applying the Mi- 
crokernel Hypervisor architecture to enable virtualization 
for a representative set of avionics applications requiring 
multiple guest OS environments, including a mixture of 
safety-critical and non-safety-critical guest OSes. Several 
commercial RTOS products conform to the ARINC 653 
standard, including LynuxWorks LynxOS-178, Green 
Hills INTEGRITY-178B, Wind River VxWorks 653, 
BAE Systems CsLEOS, and DDC-I DEOS, etc. Many 
vendors also offer commercial virtualization products for 
safety-critical systems, many by adapting existing RTOS 
products. For example, LynuxWorks implemented a vir-
tualization layer to host their LynxOS product, called the 
LynxSecure hypervisor that supports MILS and ARINC 
653. WindRiver [7] provides a hypervisor product for 
both its VxWorks MILS and VxWorks 653 platforms, 
including support for multicore. Other similar products 
include: Greenhills INTEGRITY MultiVisor [8], Real- 
Time Systems GmbH Hypervisor [9], Tenasys eVM for 
Windows [10], National Instruments Real-Time Hyper 
Hypervisor [11], Open Synergy COQOS [12], Enea Hy- 
pervisor [13], SysGO PikeOS [14], IBV Automation 
GmbH QWin etc. VanderLeest [15], from a company 
named DornerWorks, took a different approach by ada- 
pting the open-source Xen hypervisor to implement the 
ARINC 653 standard. 

XtratuM [16] is a Type-1 hypervisor targeting safety 
critical avionics embedded systems. It runs on LEON3 
SPARC V8 processor, a widely used CPU in space appli- 
cations. It features temporal and spatial separation, effi- 
cient scheduling mechanism, low footprint with mini- 

mum computational overhead, efficient context switch of 
the partitions (domains), deterministic hypervisor system 
calls. Zamorano et al. [17,18] ported the Ada-based Open 
Ravenscar Kernel (ORK+) to run as a partition on Xtra- 
tuM, forming a software platform conforming to the 
ARINC 653 standard. Campagna et al. [19] implemented 
a dual-redundancy system on XtratuM to tolerate tran- 
sient faults like Single-Event-Upset, common on the 
high-radiation space environment. Three partitions are 
executed concurrently, two of them run identical copies 
of the application software, and the third checks consis-
tency of their outputs. The OVERSEE (Open Vehicular 
Secure Platform) Project [20] aims to bring the avionics 
standard to automotive systems by porting FreeOSEK, an 
OSEK/VDX-compliant RTOS, as a paravirtualized guest 
OS running on top of the XtratuM hypervisor [21]. While 
most ARINC-653 compliant virtualization solutions are 
based on para-virtualization, Han et al. [22] presented an 
implementation of ARINC 653 based on Type-2, full 
virtualization architectures, including VM-Ware and Vir- 
tualBox. 

Next, we briefly mention some virtualization solutions 
for safety-critical systems that are not specifically de- 
signed for the avionics domain, hence do not conform to 
the ARINC-653 standard. Authors from Indian Institute 
of Technology [23] developed SParK (Safety Partition 
Kernel), a Type-1 para-virtualization solution designed 
for safety-critical systems; an open-source RTOS uC/ 
OS-II and a customized version of saRTL (stand-alone 
RT Linux) are ported as guest OSes on SParK. Authors 
from CEA (Atomic Energy Commission), France [24] 
developed PharOS, a dependable RTOS designed for 
automotive control systems featuring temporal and spa-
tial isolation in the presence of a mixed workload of both 
time-triggered and event-triggered tasks. They adapted 
Trampoline, an OSEK/VDX-compliant RTOS, as a para- 
virtualized guest OS running on top of PharOS host OS 
to form a Type-2 virtualization architecture. To ensure 
temporal predictability, Trampoline is run as a time- 
triggered task within PharOS. Authors from PUCRS, 
Brazil [25] developed Virtual-Hellfire Hypervisor, a 
Type-1 virtualization system based on the microkernel 
HellfireOS featuring spatial and temporal isolation for 
safety-critical applications. The target HW platform is 
HERMES Network-on-Chip with MIPS-like processing 
elements [26]. 

3. Xen-Based Solutions 

Cherkasova et al. [27] introduced and evaluated three 
CPU schedulers in Xen: BVT (Borrowed Virtual Time), 
SEDF (Simple Earliest Deadline First), and Credit. Since 
the BVT scheduler is now deprecated, we only discuss 
Credit and SEDF here. 

The default scheduling algorithm in Xen is the Credit 
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Scheduler: it implements a proportional-share scheduling 
strategy where a user can adjust the CPU share for each 
VM. It also features automatic workload balancing of 
virtual CPUs (vCPUs) across physical cores (pCPUs) on 
a multicore processor. This algorithm guarantees that no 
pCPU will idle when there exists a runnable vCPU in the 
system. Each VM is associated with a weight and a cap. 
When the cap is 0, VM can receive extra CPU time un- 
used by other VMs, i.e., WC (Work-Conserving) mode; 
when the cap is nonzero (expressed as a percentage), it 
limits the amount of CPU time given to a VM to not ex- 
ceed the cap, i.e., NWC (Non-Work-Conserving) mode. 
By default the credits of all runnable VMs are recalcu- 
lated in intervals of 30 ms in proportion to each VM’s 
weight parameter, and the scheduling time slice is 10 ms, 
i.e., the credit of the running virtual CPU is decreased 
every 10 ms. 

In the SEDF scheduler, each domain can specify a 
lower bound on the CPU reservations that it requests by 
specifying a tuple of (slice, period), so that the VM will 
receive at least slice time units in each period time units. 
A Boolean flag indicates whether the VM is eligible to 
receive extra CPU time. If true, then it is WC (Work- 
Conserving) mode, and any available slack time is dis- 
tributed in a fair manner after all the runnable VMs have 
received their specified slices. Unlike the Credit Sched- 
uler, SEDF is a partitioned scheduling algorithm that 
does not allow VM migration across multiple cores, hence 
there is no global workload balancing on multicore pro- 
cessors. 

Masrur et al. [28] presented improvements to Xen’s 
SEDF scheduler so that a domain can utilize its whole 
budget (slice) within its period even if it blocks for I/O 
before using up its whole slice (in the original SEDF 
scheduler, the unused budget is lost once a task blocks ). 
In addition, certain critical domains can be designated as 
real-time domains and be given higher fixed-priority than 
other domains scheduled with SEDF. One limitation is 
that each real-time domain is constrained to contain a 
single real-time task. Masrur et al. [29] removed this 
limitation, and considered a hierarchical scheduling ar- 
chitecture in Xen, where both the Xen hypervisor and 
guest VMs adopt deadline-monotonic Fixed-Priority 
scheduling with a tuple of (period, slice) parameters 
(similar to SEDF, a VM is allowed to run for a maximum 
length of slice time units within each period), and pro- 
posed a method for selecting optimum time slices and 
periods for each VM in the system to achieve schedula- 
bility while minimizing the lengths of time slices. 

The RT-Xen project [30,31] implemented a composi- 
tional and hierarchical scheduling architecture based on 
fixed-priority scheduling within Xen, and extensions of 
compositional scheduling framework [32] and periodic 
server design for fixed-priority scheduling. Similarly, 

Yoo et al. [33] implemented the Compositional Schedul- 
ing Framework [32] in Xen-ARM. Jeong et al. [34] de- 
veloped PARFAIT, a hierarchical scheduling framework 
in Xen-ARM. At the bottom level (near the HW), SEDF 
is used to provide CPU bandwidth guarantees to Do- 
main0 and real-time VMs; at the higher level, BVT 
(Borrowed Virtual Time) is used to schedule all non-real- 
time VMs to provide fair distribution of CPU time 
among them, by mapping all vCPUs in the non real-time 
VMs to a single abstract vCPU scheduled by the under- 
lying SEDF scheduler. Lee et al. [30], Xi et al. [31], Yoo 
et al. [33], Jeong et al. [34] only addressed CPU schedul- 
ing issues, but did not consider I/O scheduling. 

Xen has a split-driver architecture for handling I/O, 
where a special driver domain (Domain0) contains the 
backend driver, and user domains contain the frontend 
driver. Physical interrupts are first handled by the hyper- 
visor, which then notifies the target guest domain with 
virtual interrupts, handled when the guest domain is 
scheduled by the hypervisor scheduler. Hong et al. [35] 
improved network I/O performance of Xen-ARM by 
performing dynamic load balancing of interrupts among 
the multiple cores by modifying the ARM11 MPCore 
interrupt distributor. In addition, each guest domain con- 
tains its own native device drivers, instead of putting all 
device drivers in Domain0. Yoo et al. [36] proposed sev-
eral improvements to the Xen Credit Scheduler to im-
prove interrupt response time, including: do not de- 
schedule the driver domain when it disables virtual in-
terrupts; exploit ARM processor support for FIQ, which 
has higher priority than regular IRQ, to support real-time 
I/O devices; ensure that the driver domain is always 
scheduled with the highest priority when it has pending 
interrupts.  

Lee et al. [37] enhanced the soft real-time performance 
of the Xen Credit Scheduler. They defined a laxity value 
as the target scheduling latency that the workload desires, 
and preferentially schedule the vCPU with smallest laxity. 
Furthermore, they take cache-affinity into account for 
real time tasks when performing multicore load-balanc- 
ing to prevent cache thrashing. 

Yu et al. [38] presented real-time improvements to the 
Xen Credit Scheduler: real-time vCPUs are always given 
priority over non real-time vCPUs, and can preempt any 
non real-time vCPUs that may be running. When there 
are multiple real-time vCPUs, they are load-balanced 
across multiple cores to reduce their mutual interference. 
Wang et al. [39] proposed to insert a workload monitor 
in each guest VM to monitor and calculate both the CPU 
and GPU resource utilization of all active guest VMs, 
and give priority to guest VMs that are GPU-intensive in 
the Xen Credit Scheduler, since those are likely the in- 
teractive tasks that need the shortest response time. 

Chen et al. [40] improved the Xen Credit Scheduler to 
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have better audio-playing performance. The real-time 
vCPUs are assigned a shorter time slice, say 1 ms, while 
the non-real-time vCPUs keep the regular time slice of 
30 ms. The real-time vCPUs are also allowed to stay in 
the BOOST state for longer periods of time, while the 
regular Credit Scheduler only allows a vCPU to stay in 
the BOOST state for one time slice before demoting it to 
UNDER state. Xen provides a mechanism to pin certain 
vCPUs on physical CPUs (pCPUs). Chen et al. [41] 
showed that when the number of vCPUs in a domain is 
greater than that of pinned pCPUs, the Xen Credit Sche- 
duler may seriously impair the performance of I/O-in- 
tensive applications. To improve performance of pinned 
domains, they added a periodic runtime monitor in the 
VMM to monitor the length of time when each domain’s 
vCPUs go into the BOOST state, as well as the bus 
transactions with the help of HW Performance Monitor- 
ing Unit, in order to distinguish between CPU-intensive 
and I/O intensive domains. The former are assigned lar- 
ger time slices, and the latter are assigned smaller time 
slices to improve their responsiveness. 

Gupta et al. [42] presented a set of techniques for en- 
forcing performance isolation among multiple VMs in 
Xen: XenMon measures per-VM resource consumption, 
including work done on behalf of a particular VM in 
Xen’s driver domains; a SEDF-DC (Debt Collector) sched-
uler periodically receives feedback from XenMon about 
the CPU consumed by driver domains for I/O processing 
on behalf of guest domains, and charges guest domains 
for the time spent in the driver domain on their behalf 
when allocating CPU time; ShareGuard limits the total 
amount of resources consumed in driver domains based 
on administrator-specified limits.  

Ongaro et al. [43] studied impact of the Xen VMM 
scheduler on performance using multiple guest VMs con- 
currently running different types of application work- 
loads, i.e., different combinations of CPU-intensive, I/O- 
intensive, and latency-sensitive applications. Several op- 
timizations are proposed, including disabling preemption 
for the privileged driver domain, and optimizing the Cre- 
dit Scheduler by sorting VMs in run queue based on re-
maining credits to give priority to short-running I/O VMs.  

Govindan et al. [44] presented a communication-aware 
CPU scheduling algorithm and a CPU usage accounting 
mechanism for Xen. They modified the Xen SEDF 
scheduler by preferentially scheduling I/O-intensive VMs 
over their CPU-intensive VMs, by counting the number 
of packets flowing into or out of each VM, and selecting 
the VM with the highest count that has not yet consumed 
its entire slice during the current period. 

Hu et al. [45] proposed a method for improving I/O 
performance of Xen on a multicore processor. The cores 
in the system are divided into 3 subsets, including the 
driver core hosting the single driver domain, hence it 

does not need VMM scheduling; fast-tick cores for han- 
dling I/O events, which employs preemptive scheduling 
with small time slices to ensure fast response to I/O events; 
and general cores for computation-intensive workloads, 
which use the default Xen Credit Scheduler for fair CPU 
sharing.  

Lee et al. [46] improved performance of multimedia 
applications in Xen by assigning higher fixed-priorities 
to Domain0 and other real-time domains than non-real- 
time domains, which are scheduled by the default credit 
scheduler. 

4. KVM-Based Solutions 

KVM is a Type-2 virtualization solution that uses Linux 
as the host OS, hence any real-time improvements to the 
Linux host OS kernel directly translate into real-time 
improvements to the KVM VMM. For example, real- 
time kernel patches like Ingo Milnar’s PREEMPT_RT 
patch, can be applied to improve the real-time perform-
ance and predictability of the Linux host OS.  

Kiszka [4] presented some real-time improvements to 
KVM. Real-time guest VM threads are given real-time 
priorities, including the main I/O thread and one or more 
vCPU threads, at the expense of giving lower priorities to 
threads in the host Linux kernel for various system-wide 
services. A paravirtualized scheduling interface was in- 
troduced to allow task-grain scheduling by introducing 
two hypercalls for the guest VM to inform the host 
VMM about priority of the currently running task in the 
VM, as well as when an interrupt handler is finished 
execution in the VM. Introduction of these hypercalls 
implies that the resulting system is no longer a strict full- 
virtualization system as the conventional KVM. Zhang et 
al. [47] presented two real-time improvements to KVM 
with coexisting RTOS and GPOS guests: giving the 
guest RTOS vCPUs higher priority than GPOS vCPUs; 
use CPU shielding to dedicate one CPU core to the 
RTOS guest and shield it from GPOS interrupts, by set- 
ting the CPU affinity parameter of both host OS pro- 
cesses and interrupts. Experimental results indicate that 
the RTOS interrupt response latencies are reduced. Based 
on the work of [47], Zuo et al. [48] presented additional 
improvements by adding two hypercalls that enable the 
guest OS to boost priority of its vCPU when a high-  
priority task is started, e.g., like an interrupt handler, and 
deboost it when the high-priority task is finished. 

Cucinotta et al. [49] presented the IRMOS scheduler, 
which implements a hard reservation variant of CBS 
(Constant Bandwidth Server) on top of the EDF sched- 
uler in Linux by extending the Linux CGroup interface. 
When applied in the context of KVM, inter-VM sched- 
uling is CBS/EDF, while intra-VM task scheduling is 
Fixed-Priority. While Cucinotta et al. [49] only addressed 
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CPU scheduling, Cucinotta et al. [50] addressed I/O and 
networking issues by grouping both guest VM threads 
and interrupt handler threads in the KVM host OS kernel 
into the same CBS reservation, and over-provisioning the 
CPU budget assigned to each VM by an amount that is 
dependent on the overall networking traffic performed by 
VMs hosted on the same system. Cucinotta et al. [51] 
improved the CBS scheduler in the KVM host OS for a 
mixed workload of both compute-intensive and network- 
intensive workloads. In addition to the regular CPU CBS 
reservation of (Q, P), where the VM is guaranteed to re- 
ceive budget Q time units of CPU time out of every P 
time units, a spare CPU reservation of (Qs, Ps) is attached 
to the VM and dynamically activated upon a new packet 
arrival. The spare reservation (Qs, Ps) has much smaller 
budget and period than the regular reservation (Q, P) to 
provide fast networking response time. Checconi et al. 
[52] addressed real-time issues in live migration of KVM 
virtual machines by using a probabilistic model of the 
migration process to select an appropriate policy for me- 
mory page migration, either based on a simple LRU 
(Least-Recently Used) order, or a more complex one 
based on observed page access frequencies in the past 
VM history. 

RESCH (REal-time SCHeduler framework) [53] is an 
approach to implementing new scheduling algorithms 
within Linux without modifying the kernel. In contrast to 
typical user-level schedulers [54], RESCH consists of a 
loadable kernel module called RESCH core, and a user 
library called RESCH library. In addition to the built-in 
Fixed-Priority (FP) scheduling algorithm in Linux, 4 new 
real-time FP-based scheduling algorithms have been im-
plemented with RESCH, including: FP-FF (partitioned 
scheduling with First-Fit heuristic for mapping tasks to 
processors), FP-PM (when a task cannot be assigned to 
any CPU by first-fit allocation, the task can migrate 
across multiple CPUs with highest priority on its allo- 
cated CPU), G-FP (Global FP scheduling, where tasks 
can freely migrate among different processors, and the 
task with globally highest priority is executed), FP-US 
(global FP scheduling, where tasks are classified into 
heavy tasks and light tasks, based on their utilizations 
factors. If the CPU utilization of a task is greater than or 
equal to m/(3m−2), where m is the number of processors, 
it is a heavy task. Otherwise, it is a light task. All heavy 
tasks are statically assigned the highest priorities, while 
light tasks have the original priorities). Other scheduling 
algorithms can also be implemented. Asberg et al. [55] 
applied RESCH to KVM to implement a real-time hier- 
archical scheduling framework in a uni-processor envi- 
ronment, where RESCH is used in both the host OS and 
guest OS to implement FP scheduling. Asberg et al. [56] 
used RESCH to implement 4 variants of multi-core glo- 
bal hierarchical scheduling algorithms in Linux.  

Lin et al. [54] presented VSched, an user-space im-
plementation of EDF-based scheduling algorithm in the 
host OS of a Type-2 virtualization system VMware GSX 
Server. The scheduler is a user-level process with highest 
priority, and Linux SIGSTOP/SIGCONT signals are used 
to implement (optional) hard resource reservations, hence 
it does not require kernel modification, but carries large 
runtime overhead due to excessive context-switches be- 
tween the scheduler process and application processes 
compared to RESCH. (Although VSched is not imple- 
mented on KVM, we place it here due to its similarity to 
RESCH.) 

5. MicroKernel-Based Solutions 

L4 is a representative microkernel operating system, ex- 
tended to be a Type-1 virtualization architecture. There 
are multiple active variants of L4. Figure 1 shows the 
evolution lineage of L4 variants.  

Authors from Avaya Labs [57] implemented a para- 
virtualized Android kernel, and ran it alongside a para- 
virtualized Linux kernel from OK Labs, L4Linux, on an 
ARM processor. Iqbal et al. [58] presented a detailed 
comparison study between microkernel-based approach, 
represented by L4, and hypervisor-based approach, rep- 
resented by Xen, to embedded virtualization, and con- 
cluded that L4-based approaches have better perfor- 
mance and security properties. Gernot Heiser [59], foun-
der of OKL4, argued for microkernel-based virtualization 
for embedded systems. Performance evaluation of OKL4 
hypervisor on Beagle Board based on 500 MHz Cortex 
A8 ARMv7 processor, running netperf benchmark shows 
that the TCP and UDP throughput degradation due to 
virtualization is only 3% - 4%. Bruns et al. [60] and 
 

 

Figure 1. L4 evolution lineage (from Acharya et al. [57]). 

Copyright © 2012 SciRes.                                                                                 JSEA 



A State-of-the-Art Survey on Real-Time Issues in Embedded Systems Virtualization 282 

Lackorzynski et al. [61] performed performance evalua- 
tion of L4Linux. Using L4/Fiasco as the hypervisor, 
L4Linux as the guest OS, an ARM-based Infineon X- 
GOLD618 processor for mobile phones, Bruns et al. [60] 
compared thread context-switching times and interrupt 
latencies of L4Linux to those of a stand-alone RTOS 
(FreeRTOS), and demonstrated that L4-based system has 
relatively small runtime overhead, but requires signifi- 
cantly more cache resources than an RTOS, with cache 
contention as the main culprit for performance degrada- 
tions. 

One important application area of L4 is mobile phone 
virtualization. A typical usage scenario is co-existence of 
multiple OSes on the same HW platform, e.g., have a 
“rich” OS like Android or Windows for handling user 
interface and other control-intensive tasks, and a “sim- 
ple” real-time OS for handling performance and timing- 
critical tasks like baseband signal processing. Another 
goal is to save on hardware bill-of-material costs by hav- 
ing a single core instead of two processor cores. Open 
Kernel Labs implemented the first commercial virtua- 
lized phone in 2009 named the Motorola Evoke QA4, 
which runs two VMs on top of L4 hypervisor, one is 
Linux for handling user interface tasks, and the other is 
BREW (Binary Runtime Environment for Wireless) for 
handling baseband signal processing tasks on a single 
ARM processor. 

The company SysGo AG developed PikeOS, which 
evolved from a L4-microkernel, designed for safety- 
critical applications. Kaiser et al. [62] described the sche- 
duling algorithm in PikeOS, which is a combination of 
priority-based, time-driven and proportional share sche- 
duling. Each real-time VM is assigned a fixed-priority 
decided by the designer, hence a time-driven VM can 
have lower or higher priority values than an event-driven 
VM. Non real-time VMs execute in the background 
when real-time VMs are not active. Yang et al. [63] de- 
veloped a two-level Compositional Scheduling Architec- 
ture (CSA), using the L4/Fiasco microkernel as a VMM 
and L4Linux as a VM. 

The NOVA Hypervisor [64] from Technical Univer- 
sity of Dresden is a Type-1 hypervisor focusing on secu- 
rity issues that shares many similarities with L4, but it is 
a full-virtualization solution based on processor HW sup- 
port that does not require modification of the guest OS. 

6. Other Virtualization Frameworks for 
Embedded Systems 

Authors from Motorola [65] argued for the use of Type-1 
hypervisors as opposed to Type-2 hypervisors for mobile 
phone virtualization for their security benefits due to a 
small TCB (Trusted Computing Base). Representative 
mobile virtualization solutions include MVP (Mobile Vir- 

tualization Platform) from VMWare [3,66], VLX from 
Red Bend [67,68], Xen-ARM from Samsung [69], etc. 
L4, VLX and Xen-ARM are all Type-1 hypervisors. 
VMWare MVP is a Type-2 virtualization solution with 
Linux as both host and guest OSes implemented on 
ARMv7 processor. It adopts a lightweight para-virtuali- 
zation approach: 1) the entire guest OS is run in CPU 
user-mode; most privileged instructions are handled via 
trap-and-emulate, e.g., privileged coprocessor access in- 
structions mcr and mrc; other sensitive instructions are 
replaced with hypercalls; 2) all devices are para-virtua- 
lized; especially, the paravirtualized TCP/IP is different 
from traditional para-virtualized networking by operating 
at the socket system call level instead of at the device 
interface level: When a guest VM calls a syscall to open 
a socket, the request is made directly to the offload en- 
gine in the host OS, which opens a socket and performs 
TCP/IP protocol processing within the host OS kernel.  

SPUMONE (Software Processing Unit, Multiplexing 
ONE into two or more) [70,71] is a lightweight Type-1 
virtualization software implemented on a SH-4A proces- 
sor with the goal of running a GPOS (General-Purpose 
OS) like Linux and an RTOS like TOPPERS (an open 
source implementation of the ITRON RTOS standard 
[72]) on the same HW processor. It can either use fixed- 
priority scheduling, and always assign the RTOS higher 
priority than GPOS, or adopt task-grain scheduling [73], 
where each task can be assigned a different priority to 
allow more fine-grained control, e.g., an important task 
in the GPOS can be assigned a higher priority than a less 
important task in the RTOS. Inter-OS communication is 
achieved with IPI (Inter-Processor Interrupts) and shared 
memory. Aalto [74] developed DynOS SPUMONE, an 
extension to SPUMONE to enable runtime migration of 
guest OSes to different cores on a 4-core RP1 processor 
from Renesas. Lin et al. [75] presented a redesign of 
SPUMONE as a multikernel architecture. (Multikernel 
means that a separate copy of the kernel or VMM runs on 
each core on a multicore processor.) Each processor core 
has its private local memory. To achieve better fault iso- 
lation, the VMM runs in the local memory, while the 
guest OSes run in the global shared main memory; both 
run in kernel mode. To enhance security, Li et al. [76] 
added a small trusted OS called xv6 to run a monitoring 
service to detect any integrity violations of the large and 
untrusted Linux OS. Upon detection of such integrity 
violations, the monitoring service invokes a recovery 
procedure to recover the integrity of the data structures, 
and if that fails, reboot Linux. 

SIGMA System [77] assigns a dedicated CPU core to 
each OS, to build a multi-OS environment with native 
performance. Since there is no virtualization layer, guest 
OSes cannot share devices and interrupts among them, 
hence all interrupts are bound and directly delivered to 
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their target OSes, e.g., for the Intel multiprocessor archi- 
tecture, APIC (Advanced Peripheral Interrupt Controller) 
can be used to distribute I/O interrupts among processors 
by interrupt numbers.  

Gandalf [78,79] is a lightweight Type-1 VMM de- 
signed for resource-constrained embedded systems. It is 
called meso-virtualization, which is more lightweight and 
requires less modification to the guest OS than typical 
para-virtualization solutions. Similar to SIGMA, inter- 
rupts are not virtualized, but instead delivered to each 
guest OS directly. 

Yoo et al. [80] developed MobiVMM, a lightweight 
virtualization solution for mobile phones. It uses preemp- 
tive fixed-priority scheduling and assigns the highest 
priority to the real-time VM (only a single real-time VM 
is supported), and uses pseudo-polling to provide low- 
latency interrupt processing. Physical interrupts are stored 
temporarily inside the VMM, and delivered to the target 
guest VM when it is scheduled to run. Real-time sche- 
dulability test is used to determine if certain interrupts 
should be discarded to prevent overload. Yoo et al. [81] 
improved I/O performance of MobiVMM, by letting the 
non-real-time VM preempt the real-time VM whenever a 
device interrupt occurs targeting the non real-time VM. 

Li et al. [82] developed Quest-V, a virtualized mul- 
tikernel for high-confidence systems. Memory virtualiza- 
tion with shadow paging is used for fault isolation. It 
does not virtualize any other resources like CPU or I/O, 
i.e., processing or I/O handling are performed within the 
kernels or user-spaces on each core without intervention 
from the VMM. vCPUs are the fundamental kernel ab- 
straction for scheduling and temporal isolation. A hie- 
rarchical approach is adopted where vCPUs are sche- 
duled on pCPUs and threads are scheduled on vCPUs [83] 
Quest-V defines two classes of vCPUs: Main vCPUs, 
configured as sporadic servers by default, are used to 
schedule and track the pCPU usage of conventional 
software threads, while I/O vCPUs are used to account 
for, and schedule the execution of, interrupt handlers for 
I/O devices. Each device is assigned a separate I/O vCPU, 
which may be shared among multiple main vCPUs. I/O 
vCPUs are scheduled with a Priority-Inheritance Band- 
width-Preserving (PIBS) server algorithm, where each 
shared I/O vCPU inherits its priority from the main 
vCPUs of tasks responsible for I/O requests, and is as- 
signed a certain CPU bandwidth share that should not be 
exceeded.  

7. OS Virtualization 

OS virtualization, also called container-based virtualiza- 
tion, allows to partition an OS environment into multiple 
domains with independent name spaces to achieve a cer- 
tain level of security and protection between different 
domains. Examples include FreeBSD Jails [84], OpenVZ  

[85], Linux VServer [86], Linux Containers LXC and 
Solaris Zones. The key difference between OS virtualiza- 
tion and system-level virtualization is that the former 
only has a single copy of OS kernel at runtime shared 
among multiple domains, while the latter has multiple 
OS kernels at runtime. As a result, OS virtualization is 
more lightweight, but can only run a single OS, e.g., 
Linux. Commercial products that incorporate OS virtua- 
lization technology include: Parallels Virtuozzo Con- 
tainers [87] is a commercial version of the open-source 
OpenVZ software; the MontaVista Automotive Techno- 
logy Platform [88] adopts Linux Containers in combina- 
tion with SELinux (Security Enhanced Linux) to run 
multiple Linux or Android OSes on top of MontaVista 
Linux host OS.  

Resource control and isolation in OS virtualization are 
often achieved with the Linux kernel mechanism CGroup. 
For example, Linux VServer [86] enforces CPU isolation 
by overlaying a token bucket filter (TBF) on top of the 
standard O(1) Linux CPU scheduler. Each VM has a 
token bucket that accumulates incoming tokens at a spe- 
cified rate; every timer tick, the VM that owns the run- 
ning process is charged one token. The authors modified 
the TBF to provide fair sharing and/or work-conserving 
CPU reservations. CPU capacity is effectively partitioned 
between two classes of VMs: VMs with reservations get 
what they have reserved, and VMs with shares split the 
unreserved CPU capacity proportionally. For network 
I/O, the Hierarchical Token Bucket (HTB) queuing dis- 
cipline of the Linux Traffic Control facility is used to 
provide network bandwidth reservations and fair service 
among VMs. Disk I/O is managed using the standard 
Linux CFQ (Completely-Fair Queuing) I/O scheduler, 
which attempts to divide the bandwidth of each block 
device fairly among the VMs performing I/O to that de- 
vice. 

OS virtualization has been traditionally applied in ser- 
ver virtualization, since it is essentially a name-space se- 
paration technique, but has limited support for I/O device 
virtualization (typically only disk and network devices). 
Recently, Andrus et al. [89] developed Cells, an OS vir- 
tualization architecture for enabling multiple virtual An- 
droid smart phones to run simultaneously on the same 
physical cell phone in an isolated, secure manner. The 
main technical challenges is to develop kernel-level and 
user-level device virtualization techniques for a variety 
of handset devices like GPU, touch screen, GPS, etc. 

8. Task-Grain Scheduling 

Conventional VMM schedulers view each guest VM as 
an opaque blackbox and unaware of individual tasks 
within each VM. This is true for both full-virtualization 
solutions like KVM and para-virtualization solutions like 
Xen. This opacity is beneficial for system modularity, 
but can sometimes be a impediment to optimal perform- 
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ance. Some authors have implemented task-grain sched- 
uling schemes, where the VMM scheduler has visibility 
into the internal task-grain details within each VM. This 
work can be further divided into two types: one approach 
is to modify the guest OS to inform the VMM about its 
internal tasks via hypercalls in a paravirtualization ar- 
chitecture; another approach is to let the VMM infer the 
task-grain information transparently without guest OS 
modification in a full-virtualization architecture. 

8.1. Approaches That Require Modifying the 
Guest OS 

Augier et al. [90] implemented task-grain scheduling al- 
gorithm within VirtualLogix VLX, by removing the 
scheduler from each guest OS and letting the hypervisor 
handle scheduling of all tasks.  

KimD et al. [91] presented a guest-aware, task-grain 
scheduling algorithm in Xen by selecting the next VM to 
be scheduled based on the highest-priority task within 
each VM and the I/O behavior of the guest VMs via in- 
specting the I/O pending status.  

Kiszka [4] developed a para-virtualized scheduling in- 
terface for KVM. Two hypercalls are added: one for let- 
ting the guest OS inform the VMM about the priority of 
currently running task in the guest OS, and the VMM 
schedules the guest VMs based on task priority informa- 
tion; another for the guest OS to inform the VMM that it 
has just finished handling an interrupt, and its priority 
should be lowered to its nominal priority. 

Xia et al. [92] presented PaS (Preemption-aware Sche- 
duling) with two interfaces: one to register VM preemp- 
tion conditions, the other to check if a VM is preempting. 
VMs with incoming pending I/O events are given higher 
priorities and allowed to preempt the currently running 
VM scheduled by the Credit Scheduler. Instead of adding 
hypercalls, the PaS interface is implemented by adding 
two fields in a data structure which is shared between the 
hypervisor and guest VM. 

Wang et al. [93] implemented task-grain scheduling 
within Xen by adding a hypercall to inform the VMM 
about the timing attributes of a task at its creation time, 
and using either fixed-priority or EDF to schedule the 
tasks directly, bypassing the guest VM scheduler. 

Kim et al. [94] presented a feedback control architec-
ture for adaptive scheduling in Xen, by adding two hy-
percalls for the guest VMs to increase or decrease the 
CPU budget (slice size) requested per period based on 
CPU utilization and deadline miss ratios in the guest 
VMs. 

8.2. Approaches That Do Not Require 
Modifying the Guest OS 

To avoid modifying the guest OS, the VMM attempts to 

infer graybox knowledge about a VM by monitoring cer- 
tain HW events. Kim et al. [95] presented task-aware 
virtual machine scheduling for I/O Performance by in- 
troducing a partial boosting mechanism into the Xen 
Credit Scheduler, which enables the VMM to boost the 
priority of a vCPU that contains an inferred I/O-bound 
task in response to an incoming event. The correlation 
mechanism for block and network I/O events is best- 
effort and lightweight. It works by monitoring the CR3 
register on x86 CPU for addressing the MMU, in order to 
capture process context-switching events, which are cla- 
ssified into disjoint classes: positive evidence, negative 
evidence, and ambiguity, to determine a degree of belief 
on the I/O boundedness of tasks. Kim et al. [96] pre-
sented an improved credit scheduler that transparently 
estimates multimedia quality by inferring frame rates 
from low-level hardware events, and dynamically adjusts 
CPU allocation based on the estimates as feedback to 
keep the video frame rate around a set point Desired 
Frame Rate. For memory-mapped display, the hypervi-
sor monitors the frequency of frame buffer writes in or-
der to estimate the frame rates; for GPU-accelerated dis-
play, the hypervisor monitors the rate of interrupts raised 
by a video device, which is shown to exhibit good linear 
correlation with frame rate.  

Tadokoro et al. [97] implemented the Monarch sched- 
uler in the Xen VMM, which works by monitoring and 
manipulating the run queue and the process data structure 
in guest VMs without modifying guest OSes, using Vir- 
tual Machine Intraspection (VMI) to monitor process 
execution in the guest VMs, and Direct Kernel Object 
Manipulation (DKOM) to modify the scheduler queue 
data structure in the guest VMs.  

9. The Lock-Holder Preemption Problem 

Spinlocks are used extensively in the Linux kernel for 
synchronizing access to shared data. When one thread is 
in its critical section holding a spinlock, another thread 
trying to acquire the same spinlock to enter the critical 
section will busy-wait (spin in a polling loop and con- 
tinuously check the locking condition) until the lock- 
holding thread releases the spinlock. Since the typical 
critical sections protected by the spinlocks are kept very 
short, the waiting times are acceptable for today’s Linux 
kernels, especially with real-time enhancements like the 
PREEMPT_RT patch. However, in a virtualized envi- 
ronment, Lock Holder Preemption (LHP) may cause ex- 
cessively long waiting times for guest OSes configured 
with SMP support with multiple vCPUs in the same 
guest VM. A VM is called overcommitted when its num-
ber of vCPUs exceeds the available number of physical 
cores. Since the VMM scheduler is not aware of any 
spinlocks held within the guest OSes, when thread A in a 
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guest OS holding a spinlock being waited for by an- 
other thread B on a different vCPU in the same guest OS 
is preempted by the VMM scheduler to run another 
vCPU, possibly in a different guest OS, Thread B will 
busy-wait for a long time until the VMM scheduler 
switches back to this guest OS to allow thread A to con- 
tinue execution and release the spinlock. When LHP oc- 
curs, the waiting times can be tens of milliseconds in- 
stead of the typical tens of microseconds in the Linux 
kernel without virtualization. 

There are two general approaches to addressing the 
LHP problem: preventing it from occurring, or mitigating 
it after detecting that it has occurred.  

Pause Loop Exit (PLE) is an HW mechanism built-in 
the latest Intel processors for detecting guest spin-lock. It 
can be used by the VMM software to mitigate LHP after 
detection. It enables the VMM to detect spin-lock by 
monitoring the execution of PAUSE instructions in the 
VM through the PLE_Gap and PLE_Window values. 
PLE_Gap denotes upper bound on the amount of time 
between two successive executions of PAUSE in a loop. 
PLE_Window denotes upper bound on the amount of 
time a guest is allowed to execute in a PAUSE loop. If 
the amount of time between this execution of PAUSE 
and previous one exceeds the PLE_Gap, then processor 
consider this PAUSE belongs to a new loop. Otherwise, 
processor determines the total execution time of this loop 
(since 1st PAUSE in this loop), and triggers a VM exit if 
total time exceeds PLE_Window. According to KVM’s 
source code, PLE_Gap is set to 41 and PLE_Window is 
4096 by default, which means that this approach can de-
tect a spinning loop that lasts around 55 microseconds on 
a 3GHz CPU. AMD processors has similar HW support 
called Pause-Filter-Count. (Since these HW mechanisms 
are relatively new, the techniques discussed below ge- 
nerally do not make use of them.) 

Uhlig et al. [98] presented techniques to address LHP 
for both fully virtualized and para-virtualized environ- 
ments. In the paravirtualization case, the guest OS is 
modified to add a delayed preemption mechanism: before 
acquiring a spinlock, the guest OS invokes a hypercall to 
indicate to the VMM that it should not be preempted for 
the next n microseconds, where n is a configurable pa-
rameter depending how long the guest OS expects to be 
holding a lock. After releasing the lock, the guest OS in- 
dicates its willingness to be preempted again. In the full 
virtualization case where the guest OS cannot be modi- 
fied, the VMM transparently monitors guest OS switches 
between user space and kernel space execution, and pre- 
vents a vCPU from being preempted when it is running 
in kernel space and may be holding kernel spinlocks. 
(The case when a user-level application is holding a spin- 
lock is not handled, and it is assumed that the application 
itself is responsible for handling this case.) The imple- 

mentation is based on a L4-ka microkernel-based virtu- 
alization system with a paravirtualized Linux as guest OS, 
although their techniques do not depend on the specific 
virtualization software. 

Friebel [99] extended the spinlock waiting code in the 
guest OS to issue a yield() hypercall when a vCPU has 
been waiting longer than a certain threshold of 216 cycles. 
Upon receiving the hypercall, the VMM schedules an- 
other VCPU of the same guest VM, giving preference to 
vCPUs preempted in kernel mode because they are likely 
to be preempted lock-holders. 

Coscheduling, also called Gang Scheduling, is a com- 
mon technique for preventing the LHP problem, where 
all vCPUs of a VM are simultaneously scheduled on phy- 
sical processors (PCPUs) for an equal time slice. Strict 
co-scheduling may lead to performance degradation due 
to fragmentation of processor availability. To improve 
runtime efficiency, VMWare ESX 4.x implements re- 
laxed co-scheduling to allow vCPUs to be co-scheduled 
with slight skews. It maintain synchronous progress of 
vCPU siblings by deferring the advanced vCPUs until 
the slower ones catch up. Several authors developed va- 
rious versions of relaxed co-scheduling, as we discuss 
next. 

Jiang et al. [100] presented several optimizations to 
the CFS (Completely Fair Scheduler) in KVM to help 
prevent or mitigate LHP. Three techniques were pro-
posed for LHP prevention: 1) add two hypercalls that 
enable the guest VM to inform the host VMM that one of 
its vCPU threads is currently holding a spinlock or just 
released a spinlock. The host VMM will not de-schedule 
a vCPU that is currently holding a spinlock; 2) add two 
hypercalls for one vCPU thread to boost its priority when 
acquiring a spinlock, and resume its nominal priority 
when releasing it; 3) implement approximate co-sched-
uling by temporarily changing a VM’s scheduling policy 
from SCHED_OTHER (default CFS scheduling class) to 
SCHED_RR (real-time scheduling class) when the VM 
has high degree of internal concurrency, and changing it 
back a short period of time later. Two techniques were 
proposed for LHP mitigation after it occurs: 1) Add a 
hypercall yield() in the vCPU thread source code to let it 
give up the CPU when it has been spin-waiting for a 
spinlock for too long, by adding a counter in the source 
code to record the spin-waiting time; 2) implement co- 
descheduling by slowing down or stopping all other 
vCPUs of the same VM if one of its vCPUs is desched-
uled, since if a vCPU thread requires a spinlock, it is 
possible for the other vCPUs to require the same spinlock 
later. 

Weng et al. [101] presented a hybrid scheduling frame-
work in Xen by distinguishing between two types of 
VMs: the high-throughput type and the concurrent type. 
A VM is set as the concurrent type when the majority of 
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its workload is concurrent applications in order to reduce 
the cost of synchronization, and otherwise set as the 
high-throughput type by default. Weng et al. [102] im-
plemented dynamic co-scheduling by adding vCPU Re-
lated Degree (VCRD) to reflect the degree of related- 
ness of vCPUs in a VM. When long waiting times occur 
in a VM due to spinlocks, the VCRD of the VM is set as 
HIGH, and all vCPUs should be co-scheduled; otherwise, 
the VCRD of the VM is set as LOW, and vCPUs can be 
scheduled asynchronously. A monitoring module is added 
in each VM to detect long waiting times due to spinlocks, 
and uses a hypercall to inform the host VMM about the 
VCRD values of the guest VM. 

Bai et al. [103] presented a task-aware co-scheduling 
method, where the VMM infers gray-box knowledge 
about the concurrency and synchronization of tasks with- 
in guest VMs. By tracking the states of tasks within guest 
VMs and combining this information with states of 
vCPUs, they are able to infer occurrence of spinlock wait-
ing without modifying the guest OS.  

Yu et al. [104] presented two approaches: Partial Co- 
scheduling and Boost Co-scheduling, both implemented 
within the Xen credit scheduler. Partial Co-scheduling 
allows multiple VMs to be co-scheduled concurrently, 
but only raises co-scheduling signals to the CPUs whose 
run-queues contain the corresponding co-scheduled VCPUs, 
while other CPUs remain undisturbed; Boost Co-sched-
uling promotes the priorities of vCPUs to be co-sched-
uled, instead of using co-scheduling signals to force them 
to be co-scheduled. They performed performance com-
parisons with hybrid co-scheduling [101] and co-de-sch- 
eduling [100] and showed clear advantages. 

Sukwong et al. [105] presented a balance scheduling 
algorithm which attempts to balance vCPU siblings in 
the same VM on different physical CPUs without forcing 
the vCPUs to be scheduled simultaneously by dynami- 
cally setting CPU affinity of vCPUs so that no two vCPU 
siblings are in the same CPU run-queue. Balance sched- 
uling is shown to significantly improve application per- 
formance without the complexity and drawbacks found 
in co-scheduling (CPU fragmentation, priority inversion 
and execution delay). Balance scheduling is similar to 
relaxed co-scheduling in VMWare ESX 4.x [106], but it 
never delays execution of a vCPU to wait for another 
vCPU in order to maintain synchronous progress of 
vCPU siblings. It differs from the approximate co-sche- 
duling algorithm in [100] in that it does not change 
vCPU scheduling class or priorities. 

SPUMONE [71] adopts a unique runtime migration 
approach to address the LHP (Lock-Holder Preemption) 
problem by migrating a vCPU away from a core where 
LHP may occur with another co-located vCPU: if vCPUs 
of a GPOS and an RTOS share the same pCPU core on a 
multicore processor, and the thread running on the vCPU 

of GPOS issues a system call, or when an interrupt is 
raised to the vCPU of GPOS, the vCPU of GPOS is im- 
mediately migrated away from to another core that does 
not host any RTOS vCPUs, thus achieving the effect of 
co-scheduling on different cores. This is a pessimistic 
approach, since the migration takes place even when 
there may not be any lock contention. 

10. Conclusion 

In this paper, we have presented a comprehensive survey 
on real-time issues in embedded systems virtualization. 
We hope this article can serve as a useful reference to 
researchers in this area. 
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