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Abstract—The sequential detection problem in wireless sensors
powered by energy harvested from the enviroment is considered.
Assuming that a unit of energy arrives with probability p at each
time instant, two different problem setups, namely minimizing
the weighted sum of detection delay and error probabilities
and minimizing the average detection delay subject to error
probabilities constraints, are studied. Optimal decision rules
including energy allocation, stopping rule and terminal decision
rules are derived for both setups. For both setups, we show that
the sensor will take samples immediately after energy arrives.
However, the numbers of samples that the sensor will take for
these two setups behave differently as p changes. For the first
setup, the number of samples increases as p increase. For the
second setup, the number of samples the sensor will take is the
same for different values of p.

I. INTRODUCTION

The green concept is a rapidly growing idea in a wide spread
of industrial and technological field. Energy harvesting wire-
less sensor network is a promising green solution in wireless
communication field. Rather than using batteries, these sensors
use energy harvester to convert the ambient energy, such as
solar, mechanical or thermal energy to electrical power [1].
Apart from their energy being cleaner, the energy harvesters
also reduce the cost associated with powering systems and
extend the life expectancy of wireless sensors. However, the
energy received in each time instant is a random variable,
which brings new optimization problems and challenges.
Signal detection is a basic application for wireless sensor
networks. It is widely used in structural health monitoring
(SHM) [2], environment monitoring [3], industrial monitoring
[4], cognitive radio, etc. Hence, it is critical to design optimal
detection schemes for sensors powered by random arriving
energies.

In this paper, we revisit the classic sequential detection
problem [5] in an energy harvester wireless sensor. The wire-
less sensor observes an independent and identically distributed
(i.i.d.) sequence generated by one of two distributions Q0

or Q1 and wishes to test hypothesis H1 that the sequence
generated by Q1 against hypothesis H0 that the sequence
generated by Q0. Each observation consumes a unit of energy
collected by the energy harvester. The whole system must be
operated under the causal energy constraint, namely energy
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cannot be spent before it arrives. We assume the random
energy arriving conforms to the Bernoulli distribution with
probability p at each time instant. Our goal is to minimize
a objective function related to detection delay and detection
errors by optimizing: 1) energy allocation schemes that decide
how to spend the energy; 2) stopping rules that determine
when to stop the test; and 3) terminal decision rules that make
final hypothesis decisions. We note that the classic sequential
detection problem is a special case of the problem considered
here with p = 1.

In this paper, we consider two setups for the objective
function. Each of them is motivated by many applications.
The first setup is to minimize a weighted sum of the average
detection delay and error probabilities. The second setup is
to minimize the average detection delay subject to constraints
on the error probabilities. Under both setups, we show that it
is optimal to immediately take samples once energy arrives.
Furthermore, we show that the celebrated SPRT algorithm is
optimal for both scenarios. However, the number of samples
the sensor will take respect to the energy arriving rate p
behaves differently for these two setups. For the first setup, the
optimal solution always makes a tradeoff between the cost of
average time delay and the cost of error probabilities. When
the p is small, the sensor tends to make a smaller number
of samples. This is due to the fact that if p is small, the
delay between two energy arriving (and hence two allowable
observations) is large, and hence the sensor tends to make a
smaller number observations to avoid excessive cost on the
delay. As p increases, the delay between two observations
decreases, and the sensor tends to take more samples to reduce
the decision errors. On the other hand, for the second setup,
the average number of samples that will take is determined
only by the error probability requirements but not the energy
arriving probability p. This is due to the fact that the number of
samples the sensor has to take to satisfy the error probability
constraints is independent of the energy arriving process.

The remainder of the paper is organized as follows. The
mathematical model is given in Section II. Section III presents
the solution for these two setups; and in Section IV, we
discuss the performance of these optimal solutions. Numerical
examples are given in Section V. Finally, Section VI offers
concluding remarks.
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II. MODEL

We consider a statistical sequence {Xi : i = 1, 2, . . .} that
consists of real and independent and identically distributed
(i.i.d.) random variables. We assume that the sequence is
generated from one of the two statistical hypotheses:

H0 : Xi ∼ Q0, i = 1, 2, . . .

versus
H1 : Xi ∼ Q1, i = 1, 2, . . .

where the index i is time instant, Q0 and Q1 are two
distinct but equivalent distributions on (R,B). We use P0

and P1 to denote the measure probability for Q0 and Q1,
respectively. We assume the null hypothesis H0 occurs with
prior probability 1−π0 and the alternative hypothesis H1 with
prior π0.

We consider the sequential detection setup to determine
which hypothesis to be accepted. After making each obser-
vation, the system can take one of the following three actions:
1) To accept the H0. 2) To accept the H1. 3) To continue the
process by taking an additional observation. If decision 1) or
2) is made, the process is terminated. We use τ to denote the
stopping rule used by the sensor to decide whether the test
should be terminated or not, and δτ to denote the terminal
decision rule that will decide which Hi is true. For the wireless
sensor, each observation will consume a unit of energy. We
assume that the wireless sensor does not have energy at the
initial time i = 0, and all the energies needed are collected
by the energy harvester. We further assume that the energy
harvester works independently in each time instant, and the
energy arrives randomly which obeys Bernoulli distribution,
i.e., if we denote Si as the performance of the energy harvester
at time instant i, we have

Si =

{
0 with probability 1− p
1 with probability p

,

where Si = 1 represents the energy harvester collects a unit
of energy from the ambient environment, while Si = 0 means
the energy harvester gets nothing.

The wireless sensor can decide how to allocate these col-
lected energies. For example, the energy can be spent on taking
observation as soon as it is harvested; or the energy can be
stored in a rechargeable battery for future usage. However,
the energy allocation must obey the causality constraint, that
is the energy cannot be used before it is harvested. We denote
the energy allocation scheme as µi, whose value is taken from
{0, 1}. µi = 1 means that the wireless sensor spends a unit of
energy on taking observation at time i, while µi = 0 means
no energy is spent (or no observation is taken). The energy
constraint can be represented as

i∑
j=1

Sj ≥
i∑

j=1

µj i = 1, 2, . . . . (1)

The whole procedure is illustrated in Figure 1. The sequence
{al} denotes the time instants when energies arrive, i.e.,
Sal

= 1. The sequence {bl} denotes the time instants when

observations are taken, i.e., µbl = 1. The sequence observed by
the wireless sensor is denoted as

{
X

(al,bl)
l , l = 1, 2, . . . , k

}
,

which means the lth observation X
(al,bl)
l is taken at time bl

while the consumed energy arrives at time al.
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Fig. 1: A typical operation of the sensor powered by energy
harvested

Two different setups, referred as Setup I and Setup II, are
considered in this paper. In Setup I, we try to minimize a
weighted sum of average detection delay and error proba-
bilities. The cost caused by error decision making can be
represented as

R(δτ , τ) = (1− π0)c10P0(δτ = 1) + π0c01P1(δτ = 0),

where c01 and c10 denotes the cost of Type I error and Type
II error, respectively. There is a linear cost c > 0 for the time
delay. The problem under Setup I can be described as

inf
{µi},τ,δτ

{cE {τ}+R(δτ , τ)} ,

s.t.
i∑

j=1

Sj ≥
i∑

j=1

µj i = 1, 2, . . . . (2)

In Setup II, we try to minimize the average time delay
under given error probabilities. The optimization problem can
be stated as follows:

min
{µi},τ,δτ

E {τ} ,

s.t. P0(δτ = 1) ≤ α,

P1(δτ = 0) ≤ β,
i∑

j=1

Sj ≥
i∑

j=1

µj i = 1, 2, . . . (3)

III. THE OPTIMAL SOLUTIONS

A. The optimal energy allocation scheme

We first show that for both setups, the optimal power
allocation scheme is to use the energy as soon as they arrive.

Lemma 3.1: For the optimization problem (2) and (3), the
optimal energy allocation strategy is to spend the energy on
taking observation as soon as the energy is harvested, i.e. µi =
Si for any i = 1, . . . , τ or al = bl, l = 1, . . . , k.

Proof: We give the proof for Setup I. The proof for Setup
II follows a similar procedure, which we omit here. For any
{al} and {bl} we have the inequalities: al < al+1, bl < bl+1

and bl ≥ al.
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For an arbitrary but given {al}, we consider two different
sample sequences, say

{
X

(al,bl)
l

}
and

{
X

(al,al)
l

}
, produced

by different power allocation schemes. These two samples
have the same statistical property since they have the same
joint cumulative distribution function (cdf), i.e.,

Fb(X
(a1,b1)
1 ≤ x1, . . . , X

(al,bl)
l ≤ xl, . . .)

= Fa(X
(a1,a1)
1 ≤ x1, . . . , X

(al,al)
l ≤ xl, . . .), l = 1, 2, . . . ,

Therefore,
{
X

(al,bl)
l

}
and

{
X

(al,al)
l

}
can have the same

optimal stopping time k, which we will use in the following.
Further,

Pb(k = j) = Pa(k = j), j = 1, 2, . . . ,

where Pa and Pb are the probability measurement of k under
the samples

{
X

(al,bl)
l

}
and

{
X

(al,al)
l

}
, respectively. For a

given but arbitrary stopping time k ∈ K, it has been proved
the optimal terminal decision rule is

δok =

{
1 if πk ≥ c01

c01+c10
0 if πk ≤ c01

c01+c10

and the corresponding cost of error decision is

inf
δ∈D

R(k, δ) = E {min {c10πk, c01(1− πk)}} .

Therefore,
{
X

(al,bl)
l

}
and

{
X

(al,al)
l

}
have the same

infδ∈D R(k, δ).
Now, we consider the total cost of these two different energy

power allocation schemes. The average time delay caused by{
X

(al,bl)
l

}
is

E(τb) = E(bk) =
∞∑
j=1

E(bj |k = j)Pb(k = j)

≥
∞∑
j=1

E(aj |k = j)Pa(k = j) = E(ak) = E(τa),

which is larger than the average time delay caused by{
X

(al,al)
l

}
. But the cost of decision error

inf R(δ, τb) = inf R(δ, bk) = inf R(δ, k)

= inf R(δ, ak) = inf R(δ, τa)

are the same. Therefore, the average cost of
{
X

(al,bl)
l

}
is no

less than that of
{
X

(al,al)
l

}
. The equality holds only when

bl = al, or equivalently µi = Si for any i. This completes the
proof.

According to the above lemma, we can omit the upper index
of
{
X

(al,bl)
l

}
and denote it as

{
X̃l

}
.Obviously, if X̃k is the

last observation to taken by wireless sensor, the time delay τ
for decision making is τ = ak.

Denote Nl = al − al−1 as the time interval between two
successive observations, the probability mass function of Nl

P (Nl = n) = (1− p)n−1p,

and the average time delay between two successive observa-
tions is

E(N) =
∞∑

n=1

n ∗ P (N = n) =
1

p
.

Therefore, the average time delay can be represented as

E(τ) = E(ak) = E

(
k∑

l=1

(al − al−1)

)

= E

(
k∑

l=1

Nl

)
=

1

p
E(k), (4)

The last equality is the well known Wald Equation. Therefore,
to study the average time delay τ is equivalent to study the
stopping time k.

B. The problem under Setup I: total cost minimization

Using the conclusion of Lemma 3.1 and (4), the objective
function (2) can be rewritten as

inf
k∈Kδk∈D

{
c

p
E(k) +R(δk, k)

}
. (5)

This problem is a canonical sequential problem, which has
been solved in [6]. For the completeness of this paper, we cite
the important expressions and conclusions. This problem can
be converted to a Markov optimal stopping problem:

Jl(πl) =

min

{
min {c01πl, c10(1− πl)} ,

c

p
+ E {Jl+1(πl+1)|πl}

}
,

where Jl(πl) is the minimum expected cost at the lth obser-
vation and πl is the posterior probability that the sequence is
generated by Q1 after observing

{
X̃1, . . . , X̃l

}
. The optimal

stopping rule is described in the following theorem:
Theorem 3.2: For the sequential detection problem de-

scribed in (5), the optimal stopping time is

kopt = inf
{
k > 0 : πk ̸∈

[
πL, πU

]}
, (6)

where πL and πU can be decided by

πL = sup {0 ≤ π ≤ 1/2 : c01π = J0(π0)}
πU = inf {1/2 ≤ π ≤ 1 : c10(1− π) = J0(π0)}

C. The problem under Setup II: average time delay minimiza-
tion

By Lemma 3.1, the problem (3) can be rewritten as

minE {k} ,
s.t. P0(δk = 1) ≤ α

P1(δk = 0) ≤ β, (7)

which is a canonical problem studied in [6]. The optimal
solution is the well known sequential probability ratio test
(SPRT). The optimal stopping rule is given as

kopt = inf {k > 0 : Λk ̸∈ [A,B]} , (8)
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where, Λk = Πk
l=1

q1(X̃l)

q0(X̃l)
is the likelihood ratio of the first

k observations received by the wireless sensor. The boundary
A and B are approximately given as A ≈ β/(1 − α) and
B ≈ (1− β)/(α).

IV. PERFORMANCE ANALYSIS

In the previous section, we developed the optimal power
allocation, the optimal stopping strategies and decision rules
for both setups. It is easy to see that their performances depend
on the energy harvesting probability p. In this section, we
study their performances with respect to p.

We first consider the performance of the problem under
Setup II. Its error probabilities are fixed, and the average time
delay can be represented as

Ei(τopt) =
1

p
Ei(T ), i = 1, 2, (9)

where, Ei(·) denotes the average under the hypothesis Hi,
i = 1, 2, and T is the stopping time when p = 1. The
expression of Ei(T ) is studied in [6]. From (9), the average
time delay is inversely proportional to p. Because the system
needs sufficient observations to satisfy the error probability
requirements, the smaller p is, the more difficult it is to take
an observation, the longer, therefore, the average time delay
is needed.

The performance of the problem under Setup I is difficult
to evaluate by a close form formula. Here, we illustrate the
relationship between p and its performance by a numerical
calculation. In the numerical calculation, we adopt the equal
priors and uniform costs, i.e., π0 = 0.5 and c01 = c10 = 1. The
statistical sequence is generated from Gaussian distribution
N(0, σ2) and we want to test the hypothesis H0 : σ2 = 1
against the hypothesis H1 : σ2 = 5. We choose c = 0.01.

Fig. 2: The minimized total cost vs energy harvesting proba-
bility

Figure 2 illustrates the relationship between the minimized
total cost and the energy harvesting probability p. As we
expected, the total cost is a decreasing function of p. In
order to gain a better understanding of the interaction between
average time delay and error probabilities, we simulate their
relationship with p separately. In Figure 3, the red dot line and
the green dot-dash line represent E0(τopt) and E1(τopt) under
Setup I. In Figure 4, the red dot line and the green dot-dash line

Fig. 3: The average time delay vs energy harvesting probability

Fig. 4: The error probability vs energy harvesting probability

represent the Type I and Type II error probabilities under Setup
I, respectively. Generally speaking, the average time delay is
an increasing function of p, while the error probabilities are
decreasing. From (5), the cost of each observation is c/p.
When p is small, the cost of the average time delay dominates
the total cost. In this case, the optimal solution tends to bear a
larger error and to adopt a small sample size. Specially, when
p is close to zero, the system makes a random guess at the first
time instant i = 1 without taking any observations. In contrast,
when p is large, the cost of each observation is relative small.
To increase the sample size tends to reduce the cost of error
decision. The overall effect is to achieve a decreasing function
of the total cost. To make a tradeoff between error probability
and average time delay is the most obvious feature of the
optimal solution under Setup I. Figure 3 and Figure 4 also
show the average time delay and error probabilities under
Setup II. The blue solid and the black dash lines in these two
figures are the simulation results. These two figures show that
the error probabilities are maintained in constant levels for all
p ∈ (0, 1], but the average time delay increasing unboundedly
when p goes to zero. This is a significant difference from the
Setup I. To maintain qualified error probabilities regardless of
the cost of average time delay is the feature of the solution
under setup II. These two figures also show these two problem
setups have the same performance when p = 1.

V. NUMERICAL SIMULATION

In this section, we give a numerical example to illustrate
the results in previous section. In this example, we assume
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that under H0, the observations are i.i.d. Gaussian random
variables with mean 0 and variance σ2. Under H1, the obser-
vations are i.i.d. Gaussian random variables with mean 0 and
variance σ2 + P . We fixed the p = 0.7, and we examine the
performance of these two setups under different SNR.

Fig. 5: Ei(τ) vs SNR when c = 0.01 under Setup I

Fig. 6: Ei(τ) vs SNR when c = 0.003 under Setup I

Fig. 7: Ei(τ) vs SNR when α = 0.001, β = 0.005 under Setup
II

Figure 5 and 6 show the simulation results under the Setup
I. In the simulation, we adopt the equal priors and uniform
costs, and we choose c = 0.01. Figure 5 shows the relationship
between the average time delay and SNR. The function
generally decreases when the SNR goes higher. Hence the
higher SNR is, the easier it is to distinguish between different
distributions. However, it is not a monotonic function. This is a
phenomenon of taking tradeoff between error probabilities and

average time delay. Specifically, this can be explained as when
the SNR is very low, the information provided by taking more
observation does not justify the cost required to take these
observation. Figure 6 shows the relationship between average
time delay and SNR when c = 0.003, as we find that the
average time delay is generally larger than that in Figure 5,
and the function is monotonic decreasing in the present SNR
scale. This is mainly due to the reason that the cost of taking
more observations is smaller here.

Figure 7 is a simulation for the problem under Setup II,
which shows the relationship between the average time delay
and the SNR. In the simulation, we choose α = 0.005 and
β = 0.01. The function is a monotonic decreasing function
of p, and we should notice when the SNR is low, average
time delay is very large. This is because the wireless sensor
need a considerable sample size to meet the error probability
requirements when the two distributions are very close to each
other.

VI. CONCLUSION

We have considered the sequential detection problem in
energy harvested wireless sensor. The energy arriving is mod-
eled as Bernoulli distribution with probability p. Motivated by
various applications, we considered two setups in this paper.
The first one is to minimize the total cost caused by the average
time delay and the error decision. The second setup is to
minimize the average time delay subjected to the constrains
on error probabilities. We have shown that the optimal power
allocation scheme for both setups is to spend the energy on
taking observation as soon as it is harvested. The performance
of these two setups have been shown to be quite different,
especially when p is small or SNR is low. The optimal solution
for the first setup always makes a tradeoff between average
time delay and error probabilities. In the small p or low SNR
case, it tends to bear larger error probabilities rather than
to wait longer time. However, the solution for the second
setup always keeps a proper sample size to make the error
probabilities within the acceptable levels.
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