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Abstract

Traders that operate in markets with multiple competing marketplaces must often choose
with which marketplace they will trade. These choices encourage marketplaces to seek
competitive advantages against each other by adjusting various parameters, such as the
price they charge, or how they match buyers and sellers. Traders can take advantage
of this competition to improve utility. However, appropriate strategies must be used to
decide with which marketplace a trader should shout. In this paper, we assess several
different solutions to the problem of marketplace selection by running simulations of
double auctions using the JCAT platform. The parameter spaces of these strategies are
explored to find the best performing strategies. Results indicate that the softmax strategy
is the most successful at maximising trader profit and global allocative efficiency in both
adaptive and non-adaptive markets. The ε-decreasing strategy performs well in adaptive
markets, while also showing greater stability in its parameter space than softmax. All
marketplace selection strategies outperform the random marketplace selection strategy.

Keywords: Double auction, Mechanism design, CAT Game, Reinforcement Learning

1. Introduction

Due to the analytical complexity, most modern economic theory only considers iso-
lated market institutions. However, in real markets, marketplaces compete against each
other for buyers and/or sellers. This competition encourages marketplaces to improve
their efficiency and reduce their prices to gain a larger market share, when compared to
a monopoly.
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Buyers and sellers can take advantage of competition between marketplaces by search-
ing out the marketplaces that provide them with the highest reward. For example, a buyer
may want to search out the lowest price for a given commodity. Having found a mar-
ketplace that attracts sellers willing to trade a particular commodity for less than other
marketplaces do, the buyer will continue to buy from that marketplace.

While some of the information that is relevant to the traders is publicly available,
such as price, other details may be private to the marketplace itself, such as the mecha-
nism used to match buyers with sellers. To find its preferred marketplace, a trader must
therefore explore the marketplaces a number of times to determine which marketplaces
provide the best return for the trader. It can then exploit the feedback obtained from this
sampling to improve its average future reward. Finding a balance between exploring and
exploiting is known as the exploration vs. exploitation trade-off.

In automated trading systems, marketplace selection must be automated, therefore,
algorithms are required to determine when to explore and when to exploit. Given a
choice of N marketplaces with which a trader will interact many times, the trader must
explore each of the N marketplaces several times to provide an estimate of its future
reward from those marketplaces. Such a problem fits well into the framework of the
well-known N-armed bandit problem (Sutton and Barto, 1998). The difference between
the classical N-armed bandit problem and marketplace selection is that the payoff from
different marketplaces are dynamic due to the fact that other traders in the market are
solving the same problem at the same time and marketplaces may adapt their mecha-
nisms over time.

Several solutions to the bandit problem have been proposed, however, it is not known
which solution is the most effective for the marketplace selection problem. Finding
efficient solutions to this problem has become more important in recent years as more
stock and commodity trades are performed automatically, and as more off-market trading
venues appear, giving traders more choice in marketplaces.

In this paper, we assess several of the most suitable algorithms for approaching the
dynamic N-armed bandit problem, and we explore the parameter spaces of these algo-
rithms to find the best solutions for the marketplace selection problem. This assessment
is performed using the JCAT double auction simulation platform (Niu et al., 2008), pre-
sented in Section 3.

The algorithms assessed in this paper are: 1) the ε-first algorithm; 2) the ε-greedy al-
gorithm; 3) the ε-decreasing algorithm; and 4) the softmax algorithm (Sutton and Barto,
1998). In addition, we assess a random choice algorithm as a baseline. These are dis-
cussed further in Section 4. We measure the profit that traders can make using each of
these algorithms, as well as general market measures such as allocative efficiency, to ex-
plore whether intelligent marketplace selection algorithms can improve overall market
performance on these aspects.

Two sets of experiments are run for each of these strategies: one in which the mar-
ketplaces attempt to adapt to the dynamics of the market by adjusting their fees across
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trading days (adaptive marketplaces); and one in which the marketplace fees are static
over all trading days (non-adaptive marketplaces). The selection strategies are homoge-
neous; that is, in each run, all traders employ the same strategy with the same parameters.
The experimental setup is described in Section 5.

Our results, presented in Section 6, indicate that the softmax strategy obtains the
highest average daily trader profit and average global allocate efficiency in both adaptive
and non-adaptive markets. The ε-decreasing strategy performs well in adaptive mar-
kets, and shows greater stability in its parameter space than softmax. All marketplace
selection strategies outperform the random marketplace selection strategy.

2. Related Work

Our work is aligned with Niu et al. (2007) and Cai et al. (2008). Niu et al. (2007) is
the first of the kind to examine the competition between multiple marketplaces based on
simulations using JCAT. This work showed that solution concepts to the N-armed bandit
problem were effective in the scenario of marketplace selection and performed well even
when trading strategies or other configurations vary. Our work considers a broader range
of marketplace selection strategies and aims to explore the parameter spaces so as to
find the most effective algorithms in different settings. Cai et al. (2008) used the JCAT
platform to experiment with the economic effects that competition has in double auction
markets. A result that they demonstrated is that having multiple competing marketplaces
leads to a loss of global efficiency compared to a single marketplace containing the same
traders. This is largely due to the trader distribution becoming fragmented. However
allowing traders to migrate between marketplaces mitigates this loss of efficiency. This
important result motivated our work in particular, as it demonstrated the importance of
having effective marketplace selection strategies.

Sohn et al. (2009) discussed the effect of pricing policies on trader migration, and
presented a pricing policy that attracts high-value intra-marginal traders — that is, traders
that fall to the left of the equilibrium price of the market. Their results demonstrated that
traditional adaptive traders cannot take advantage of this policy, but that traders that
are aware of the policy can. The authors hypothesised that marketplace-specific trading
strategies should be employed that learn the best strategy per marketplace, rather than
an overall strategy.

In addition, the marketplace selection problem has been studied with formal ap-
proaches. For example, Rochet and Tirole (2003) and Shi et al. (2010) used game theory
to analyse market performance with traders adopting a uniform marketplace selection.
In contrast, our analysis is performed primarily from the perspective of the traders them-
selves — that is, which marketplace selection strategy should be used. Additionally, we
use empirical evaluation to answer this question, as a game-theoretic analysis would not
be suitable due to the complexity over the problem.

Marketplace selection or trading across multiple marketplaces have been studied
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in other scenarios as well. Ladley and Bullock (2005) studied the market dynamics
involving multiple marketplaces, but their work differed from ours on multiple aspects.
First, they were concerned with the information available to traders. Traders in their
analysis were each fixed to a certain location in a spatial network and could only trade
with and receive information from their neighbours, while traders in our work, though
spreading across multiple marketplaces in a similar way, have the capability of moving
between these marketplaces based on their desire to maximise their profits. Second,
Ladley and Bullock were concerned with how the different levels of traders’ accessibility
to market information affected the convergence of the whole market to the theoretical
equilibrium, while our work focuses upon how the methods that guide the movement of
traders perform differently from each other. Third, Ladley and Bullock constantly used
a single classic continuous double auction mechanism in their experiments, while our
work involves multiple marketplaces in direct competition that are each associated with
an auction mechanism.

Our work also has similarities to that of Greenwald and Kephart (1999). In their
work, shoppers choose between different merchants, and merchants set prices that de-
pend on the prices set by other merchants. While shoppers and merchants are respec-
tively analogous to traders and marketplaces in our work, the scenario we are considering
is considerably more complex. Traders in our scenario learn over time using their profits
as feedback in selecting marketplaces, while shoppers in Greenwald and Kephart’s sce-
nario either choose a merchant randomly or choose the merchant that offered the lowest
price. The expected return of choosing a marketplace in our work is non-deterministic
and hinges upon various factors that a trader has no way to know exactly about in ad-
vance or at all, e.g., other traders that go to the marketplace at the same time and the
mechanism adopted by the marketplace. In contrast, shoppers in the work of Greenwald
and Kephart know exactly about their utilities if they choose to buy from a particular
merchant in the retail market. Indeed, the transaction prices are set by the merchants
in this scenario, while in our case the prices are determined by the traders. As a result,
when traders pick a marketplace in our scenario, they do not know for sure if they will
even be able to trade, much less about the price at which goods will change hands.

Another piece of related work is Ganchev et al. (2010), which presented an algorithm
for optimising the amount of trades to be placed over multiple competing dark pools. A
dark pool is a type of exchange in which the volume of orders and the identification of
the buyer and seller are not revealed. This allows traders to buy and sell large orders
without revealing their trade to the rest of the market. Given a large set of trades, the
trader must determine which proportion of trades to make in each pool at any time. If the
number of trades submitted by a trader to a pool is too small, the pool is underutilised by
that trader, and the trader cannot use the feedback to determine the maximum number of
trades possible on that day. If the number of trades is too large, the trader can accurately
determine the maximum number of trades, but some items will not be sold. The algo-
rithm proposed by Ganchev et al. is a standard reinforcement learning algorithm based
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on the R-MAX learning algorithm (Brafman and Tennenholtz, 2003). The algorithm is
empirically tested on data from a large trading firm, and is compared to both a naive
bandit algorithm, which appears to be a softmax algorithm, and a uniform allocation
algorithm — that is, one that places an even number of orders on each exchange. The re-
sults demonstrated that the proposed algorithm outperformed both the bandit algorithm
and the uniform algorithm, and also performed close to optimal. But different from our
focus, they were concerned about how much liquidity each marketplace has and how to
spread the request of trades in a way so as to maximise the volume of successful trades
regardless of the profit that is made in doing so.

3. Background

To experiment with multiple marketplaces, we used JCAT (Niu et al., 2008), the
software platform for the CAT Tournament (Niu et al., 2010), which allows marketplaces
to run in parallel and traders move between them. Each entrant in the game provides a
marketplace while traders are provided by the game organiser.

A CAT game lasts a certain number of days. Each entrant adopts various policies
to regulate its marketplace, including a charging policy that decides the fees to impose
on traders, and may adapt its policies over time so as to attract more traders and make
more profit. A trader needs to choose a single marketplace on each day to trade with
other traders that go to that same marketplace and may choose different marketplaces on
different days.

Each trader is assigned a private value for the traded good. The private values and
the number of goods to buy or sell determine the supply and demand of the market. The
private values remain constant during a day, but may change from day to day. Each
trader is also endowed with a trading strategy to decide how to make offers; e.g., the
well-known strategy in the literature that is known as zero intelligence with constraint
or ZI-C (Gode and Sunder, 1993); and a marketplace selection strategy to choose the
marketplace to make offers in. The second strategy is our focus in this paper. These two
tasks allow our traders to exhibit intelligence in two, orthogonal, ways.

4. Strategies for choosing marketplaces

This problem of marketplace selection can be formulated as a dynamic N-armed
bandit problem (Sutton and Barto, 1998). The problem is dynamic for two reasons:

1. the strategies for the marketplaces can be adaptive, meaning that the underlying
probability distributions can change over the course of a game; and

2. the rewards for marketplace selection are generated from distributions that are,
in part, determined by the behaviour of other traders in the marketplace. For
example, a buyer may choose a particular marketplace that has no sellers on that
day, making it impossible for the buyer to receive a match.

5



Such a problem is different to other dynamic N-armed bandit problems, such as
the restless bandit problem (Whittle, 1988), due to the fact that both the marketplaces
and the other traders can affect the underlying probability distribution, which cannot be
represented in a straightforward manner using a Markov decision process.

We assess four well-studied reinforcement learning algorithms for solving the N-
armed bandit problem to determine which solution is the most suitable for choosing a
marketplace, and what the parameters for these algorithms should be. In addition, we
compare them to the baseline of a random choice algorithm. Each of these learning algo-
rithms manages the exploration vs. exploitation problem using one or more parameters.
The parameter space is explored as part of our study.

4.1. Decision-making algorithms

The marketplace selection problem can be solved using reinforcement learning, and
is therefore split into two parts: the feedback, which determines how good the action
was at achieving its goal; and the decision making, which determines which action the
trader should choose next. In this section, we overview the decision making algorithms
that we assess.

4.1.1. ε-greedy
The ε-greedy strategy selects the best action with a probability of 1− ε, in which the

best action is based on prior experience (exploitation), and ε is a parameter provided to
the algorithm. For the remaining ε cases, the algorithm will randomly (with a uniform
distribution) choose between all of the other available actions (exploration).

For example, if ε = 0.1, the best action will be chosen approximately 90% of the
time.

4.1.2. ε-first
The ε-first strategy chooses a random action each time for the first ε · A actions

(exploration), where A is the total number of times that an action must be chosen (the
number of trading days in a CAT simulation). The best action is chosen for the remaining
(1 − ε) · A actions (exploitation).

For example, if ε = 0.1 and A = 1000, a random action will be chosen, with uniform
distribution, for the first 100 actions. Following this, the action that performed the best
over those 100 trials will be chosen the remaining 900 times.

4.1.3. ε-decreasing
The ε-decreasing is similar to the ε-greedy strategy, except that the value of ε de-

creases over time. That is, the amount of exploration decreases as the agent learns more.
This requires a second parameter, α, which specifies the rate of decay of ε, such that after
each action, the value of ε becomes ε0 · α, in which ε0 is the value of ε in the previous
round, until a preset minimum is reached.
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For example, if ε = 0.1 and α = 0.9, then after the first action, ε will be 0.09,
meaning that there will be a 9% chance of exploration, and a 91% of exploitation. After
the second action, ε will be 0.081.

4.1.4. Softmax
Softmax is a probability matching strategy, meaning that the probability of an action

being chosen is dependent on the utility it has generated in previous rounds relative to
all other available actions.

Our implemented softmax algorithm using a Gibbs (or Boltzman) distribution to
select the next action:

eQ(a)/τ∑n
b=1 eQ(b)/τ ,

in which Q(a) is the value of an action based on feedback from previous applications
of that action, and τ is the temperature, a positive number that dictates how much of an
influence the past data has on the decision. A high temperature causes the probabilities
of actions to be closer to each other, while a low temperature causes them to be close to
their Q(a) values.

A second parameter, α, can be used to specify a rate of decay for τ, such that after
each action, the value of τ becomes τ0 · α, in which τ0 is the value of τ in the previous
round, until a preset minimum is reached.

4.1.5. Random
The random strategy simply chooses between all marketplaces using a uniform dis-

tribution. No feedback is incorporated into the algorithm, and therefore, no exploitation
phase is considered.

4.2. Feedback
The feedback mechanism employed is constant over all of the strategies consid-

ered. The algorithm used is an adapted version of the Widrow-Hoff learning algorithm
(Widrow and Hoff, 1960), where the input regarding a certain marketplace is a weighted
average of the previous profits the trader made in the marketplace, with the most recent
days weighted heavier, and the output is the estimated profit that the trader can make on
the current day if it chooses to trade in this marketplace. Given the potential dynamic
behaviours of both traders and marketplaces, the use of the weighted average of daily
profits helps to update the knowledge the trader has on marketplaces in a timely manner.

5. Experimental setup

We use JCAT 0.171 to run CAT games to simulate competing marketplaces with
traders moving between them, so as to examine the effectiveness of the marketplace

1http://jcat.sourceforge.net/.
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selection strategies we described in the previous section. In particular, we are interested
in comparing these strategies and finding out how they be configured to perform most
effectively in terms of, for instance, the profits of traders and the social welfare.

5.1. Marketplaces

In our experiments, each marketplace runs the continuous double auction or CDA
(Friedman, 1993) and adopts one of the following charging policies that were introduced
and explored by (Niu et al., 2010, 2007):2

• Fixed charging (GF): charges a fixed portion of profit of trader in each transaction,
where the profit is defined as the difference between the price offered by the trader
and the transaction price.

• Bait-and-switch charging (GB): lowers its charge on the profit of a trader to attract
more traders to trade in its marketplace whenever its market share is below a pre-
fixed threshold and then gradually increases the charge to make more profit until
the market share falls below the threshold again.

• Charge-cutting charging (GC): sets its charge to a fraction of the lowest charge
imposed by other marketplaces based on information from the previous day if the
marketplace is not charging the least among all the marketplaces. Unlike GB, GC
never tries to increase charges.

• Learn-or-lure-fast charging (GL): sets its charge based on its belief about the ex-
ploration of traders in choosing marketplaces. If the traders are spread among
marketplaces more or less evenly, just as what happens at the beginning of a game,
the marketplace adjusts its charge towards 0 to lure the traders that are believed
to be still exploring. On the contrary, if the traders appear to have concentrated
in one or two marketplaces, it is assumed that traders have learned enough in-
formation and would be reluctant to leave the marketplace they found the best,
so the marketplace, instead of luring traders, adjusts its charge towards that of
the most profitable marketplace. The adjustment is made gradually, following the
Widrow-Hoff rule that traders use to learn their expected utilities.

These charging policies are used in our experiments to provide market mechanisms that
differ from each other.

Broadly, we perform two distinct sets of experiments, with five marketplaces in each
experiment. In the first set of experiments, all marketplaces are non-adaptive. That is, all
traders use GF and charge at different levels (0%, 20%, 40%, 60%, and 80% respectively
on the profit of traders). In the second set of experiments, all marketplaces are adaptive,

2In our experiments, we only consider the charges on the profit of traders, although JCAT allows a
marketplace to charge traders in various ways.
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using one of the three adaptive charging policies (two with GB,3 two with GC,4 and one
with GL,5 imposing charges initially in the same way as the non-adaptive ones do). These
two compositions allow us to explore how marketplace selection strategies perform in
different scenarios.

5.2. Traders

We run 100 trading agents in each CAT game, which are evenly split between sellers
and buyers. All the traders use the zero-intelligence constrained (ZI-C) strategy in mak-
ing offers. In this strategy, traders randomly choose a shout price, with the exception
that they will not make a loss; e.g. a buyer will not place a bid that is above its private
value. The naı̈vety of ZI-C allows us to discount the effects of the shout strategy on the
results.

The traders homogeneously use one of the marketplace selection strategies that we
described earlier to choose a marketplace — that is, in each experimental run of the
simulation, all traders are using the same marketplace selection strategy with the same
parameters. These are the independent variables in our experiment. To investigate the
optimal values of the parameters used by these marketplace selection strategies, we pick
a set of discrete values in the range of each parameter and, for each strategy, we run
two experiments with each combination of its parameter values, one with non-adaptive
marketplaces and the other with adaptive marketplaces. Table 1 lists all the parameters
in the marketplace selection algorithms, their ranges, and the intervals we choose to
determine the discrete values for these parameters. Taking into account all combinations,
we run a total of 1,642 experiments.6

Each experiment runs 30 CAT games and each game lasts 400 days. That is, for each
of the 1642 cases, 30 independent games are run. The results to be presented in the next
section are averaged over the total 12,000 days. Traders are each allowed to trade one
unit of goods each day and their private values are drawn from the uniform distribution
between 50 and 100.

5.3. Measures

In these experiments, we record several measures, of which two are of particular
interest.

First, we measure the mean trader profit, which is the mean daily profit over all
simulations of all traders for all days. This provides us with a way to measure the

3GB sets the threshold on market share to 0.3 and the cut ratio — the speed of decreasing the charge —
to 0.9 in our experiments.

4GC scales down from the lowest charge imposed on the previous day by a factor of 0.8 in our experi-
ments.

5GL uses the so-called single day exploring monitor in JCAT with a threshold of 0.6 to decide whether
the population of traders are still exploring or not.

61642 = 2 × (20 + 20 + 400 + 380 + 1), see the last column in Table 1.
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Table 1: Values of parameters in the experiments.

Strategy Parameter Min Max Interval Cases

ε-greedy ε 0.00 0.95 0.05 20

ε-first ε 0.00 0.95 0.05 20

ε-decreasing∗ ε 0.00 0.95 0.05 400
α 0.00 0.95 0.05

softmax† τ 0.01 1000.0 exponential 380
α 0.05 0.95 0.05

random − − − − 1

∗ In our experiments, the minimum value of ε is fixed at 0.
† In our experiments, the minimum value of τ is fixed at 0.01.

effectiveness of a marketplace selection strategy over a long period of trading. The daily
profit for a trader i is:

pri =

{
|vi − pi| − fi (where pi > 0)
− fi (where pi = 0)

(1)

in which vi is the private valuation of trader i, pi is the price of the trade made by
trader i, and fi are the fees paid by trader i. In the case that a trader does not make a
successful trade that day, they lose the fees charged by the marketplace, which would be
0 in the case that the only fees are a cut of the profit, as is the case in our experiments.

The mean daily profit of all traders on a single day is:

P =
∑N

i pri

N
(2)

in which N is the number of traders.
Second, we measure the global allocative efficiency, which measures how close the

entire market is to trading at the equilibrium price, where the equilibrium price is defined
as the price at which demand equals supply when all traders offer to buy or sell at their
private value, assuming that all traders in the market can trade with each other. The
global allocative efficiency is calculated using:

E =

∑
j
∑

i |v
j
i − p j

i |∑
j
∑

i |v
j
i − p0|

(3)
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(b) Adaptive marketplaces.

Figure 1: Five-number summaries of mean daily profit over all simulations for each
strategy.

in which p0 is the equilibrium price of the market, v j
i is the private value of trader i

in marketplace j, and p j
i is the price paid by trader i in marketplace j.

These two measures, trader profit and global efficiency, allow us to assess how mar-
ketplace selection strategies affect the individual traders as well as the global market.
Trader profit is of interest to individual traders, while global allocative efficiency is of
interest to people designing a competitive market. Global allocative efficiency is also of
interest to designers creating a market-based solution to resource allocation in a closed
system.

6. Results

In this section, we present the results of the experiments outlined in Section 5.

6.1. Trader profit
Figure 1 shows the five-number summaries of mean daily trader profit for each strat-

egy; that is, each data point is the mean of an explored parameter value. For the random
strategy, which has no parameters, outlier markers (‘+’) are used to represent the 95%
confidence interval for the random samples. These summaries provide an overview of
the “stability” of a strategy. While the optimal parameter settings demonstrate the “best”
choice for the 30 iterations we have run, the stability may allow us to generalise the
performance over more iterations, and different experimental parameters.

From these figures, one can see that softmax returns the highest trader profit for
both adaptive and non-adaptive marketplaces. Figure 1 demonstrates that ε-first is the
least consistent, with large intervals in the five-summary spread. ε-decreasing is a highly
consistent strategy in which the parameters have minimal impact. The high number of
outliers is due to the small interval between the first and third quartile values.
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The most notable result from this data is that the random strategy achieves a lower
mean payoff than almost all combinations of strategies and parameters, making it evident
that an intelligent marketplace-selection strategy is beneficial for traders.

The figures in Appendix A provide a more detailed view of the parameter space for
each of the strategies assessed, except for the random strategy, which has no parameters.

Figure A.3 plots the ε parameters against mean daily trader profit for the ε-first and ε-
greedy algorithms. The 95% confidence intervals are plotted as error bars. Figures A.4
and A.5 plot the profit results for ε-decreasing and softmax, which both contain two
parameters. Figures A.5 shows the data in a 3D plot, while Figure A.4 shows the same
data, except from one dimension only – that is, the average profit for α over all values
of ε in Figure A.4a, and the average profit for ε over all values of α in Figure A.4b. The
error bars show the average of all of the 95% confidence intervals of these parameters.

For ε-first and ε-greedy, in both types of market, the mean profit peaks with the
parameters in the range 0.05–0.2, and then steadily decreases as ε approaches 1.0, which
is consistent with expectations that only a small amount of exploration is required Sutton
and Barto (1998). A large value for ε increases the probability that a random action is
chosen, and our results indicate that a random strategy provides a poor payoff for this
problem. Additionally, there is a large reduction in profit for ε-first at ε = 0.55, which is
consistent across all iterations of our experiments. We have no explanation for this.

In non-adaptive markets, ε-first achieved a high trader profit when ε was in the range
0.05–0.2, which is to be expected, as it learns the optimal choice in the first ε×A rounds,
and then exploits this for the remainder of the game. ε-greedy achieves less profit be-
cause it continues to explore even after the optimal marketplace is clear.

As expected, ε-first and ε-greedy return lower trader profit in the adaptive market,
relative to ε-decreasing and softmax. This is due to the different ways of handling the
exploration vs. exploitation problem. ε-first returns a lower profit because it does not
explore after ε × A rounds, and therefore cannot adapt to changes in the market. ε-
greedy returns a lower profit because it continues to explore late in the game, even when
the optimal choice is clear. In contrast, both ε-decreasing and softmax will adapt by
continuing to explore late in the game, but will exploit the optimal choice far more often
than ε-greedy.

There is also a marked difference in profit between adaptive and non-adaptive mar-
ketplaces, even for the random marketplace selection traders. This is because non-
adaptive marketplaces do not change their fees, while adaptive marketplaces do. As
a result, adaptive marketplaces will drive down their fees to attract traders, providing
more profit to the traders.

Figures A.4 and A.5 show that, for the ε-decreasing, higher values of both ε and τ
return higher profit for non-adaptive marketplaces, and the small spike at these points
in Figure A.5a demonstrates that the combination of high values for these is the most
profitable for traders. However, the effect of the parameters is small. For adaptive mar-
ketplaces, neither parameter has a major effect on profit.
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(b) Adaptive marketplaces.

Figure 2: Five-number summaries of mean global efficiency over all simulations for
each strategy.

For softmax, one can see that high values for α and τ return higher trader profit, more
so in non-adaptive than adaptive markets. The combination of higher values implies a
close-to-random exploration strategy for the initial days, then slowly moving towards a
strategy of exploitation for the remainder.

To maximise trader profit overall, the results suggest that in both markets, a softmax
strategy should be chosen. In a non-adaptive market, the profit peaked at α = 0.95 and
τ = 10. In an adaptive market, the profit peaked at α = 0.8 and τ = 10.

6.2. Global market efficiency

Figure 2 shows the five-number summaries of mean global efficiency for each strat-
egy. The data points are the same as for Figure 1, except the measurement is global
market allocative efficiency instead of trader profit.

From this figure, one can see that ε-decreasing achieves the highest median efficiency
for either adaptive or non-adaptive markets, but that softmax achieves the highest single
average. In fact, there is little difference in scores between the adaptive and non-adaptive
markets for all strategies. This is contrast to the trader profit measures, which show a
higher profit in adaptive markets. The same effect is not seen in the global efficiency
measure because the calculation outlined in Section 5 does not consider fees in their
calculation — only prices. Thus, competition between marketplaces does not lead to
higher global efficiency in these experiments. In this figure, we see the same outliers as
in Figure 1 for softmax and ε-decreasing.

The figures in Appendix Appendix B provide a more detailed view of the parameter
space. Figure B.6 plots the ε parameters against mean efficiency for the ε-first and
ε-greedy algorithms. From this figure, one can see that in both types of market, the
efficiency peaks at low values of ε in both algorithms, and then demonstrate a clear
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trend downwards, which is consistent with the profit results in Section 6.1.
Figures B.8 and B.7 plot the efficiencies for the ε-decreasing and softmax algorithms,

with the former as a 3D plot, analogous to the plots in Section 6.1. These plots provide
little indication of the most efficient parameters for ε-decreasing, but for softmax, higher
values of τ and α are preferred for softmax.

To maximise efficiency, the results suggest that a softmax strategy should be used
in both adaptive and non-adaptive markets. In a non-adaptive market, efficiency peaked
for the softmax algorithm at α = 0.85 and τ = 5. The softmax algorithm achieves the
top 10 highest scores in non-adaptive markets. In adaptive markets, efficiency peaked at
α = 0.6 and τ = 500.

6.3. Threats to Validity
We identify two major threats to validity in our experimental approach.
The first major threat is that we have used homogeneous marketplace selection strate-

gies. That is, in each experiment run, all traders used the same strategy with the same
parameters. In an open market, this is unlikely to be the case, and the interplay between
these different strategies may result in some algorithms performing better or worse under
certain parameter settings than in the homogeneous case. However, for system design-
ers attempting to efficiently allocate resources in a closed system, it is possible that a
homogeneous strategy will be used.

The second major threat is the small parameter space explored in the experiments.
While the parameter spaces of the strategies were explored systematically and thor-
oughly, other possible market setup parameters were held constant, such as the number
of marketplaces, the traders’ shouting strategies, the number of traders, and the number
of days in a CAT game. It is clear that changing such parameters can impact individ-
ual traders’ profit and the market in general. However, the results are in-line with our
expectations that adaptive strategies increase trader profit and global efficiency, and that
the exploration phase should be small compared to the exploitation phase. Furthermore,
the strategies are implemented as general N-armed bandit solutions, so we are confident
that the results generalise for other market setups.

6.4. Discussion
From the results, it is clear that the softmax strategy is preferred from an individual

trader perspective and a global perspective. We attribute the success of the softmax
strategy to the Boltzman distribution used to select the next action. This distribution
increases the amount of exploration in a balanced market, but has two properties:

1. the best marketplace is still chosen more than any other marketplace; and

2. when choosing a “non-optimal” marketplace, the exploration is more likely to
choose marketplaces in which the agent has been successful in the past, rather
than a random selection.
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One interesting discussion point is the relative ranking of strategies between trader
profit and global efficiency. These two measures are both related to the price of traders,
with the difference being that trader profit has fees subtracted.

Figures 1a and 2a show an interesting difference between trader profit and efficiency
in non-adaptive markets. For trader profit, ε-decreasing is the third-ranked strategy for
both the best value and the median value. However, for global efficiency, ε-decreasing
ranks the highest for median, and is the most stable over its parameter space.

These results indicate that in comparison with other strategies, for the ε-decreasing
strategy, the high global allocative efficiency is not to the benefit to the individual traders,
whose profits are low in comparison to other strategies. This implies that the market-
places themselves are making higher profits (relative to other strategies) via fees. There-
fore, the ε-decreasing strategy is good for resource allocation in non-adaptive markets,
but not for the individual traders in these markets. This result is not found in adaptive
markets due to the competition driving prices down.

7. Conclusion

In this paper, we assess several N-armed bandit algorithms for solving the prob-
lem of marketplace selection in double-auction markets with competing marketplaces.
The algorithms assessed are: 1) the ε-first algorithm; 2) the ε-greedy algorithm; 3) the
ε-decreasing algorithm; and 4) the softmax algorithm (Sutton and Barto, 1998). In addi-
tion, we assess a random choice algorithm as a baseline.

Overall, the results indicate that the softmax strategy is the most successful at max-
imising trader profit and global allocative efficiency in both adaptive and non-adaptive
markets. The ε-decreasing strategy performs similarly well in adaptive markets, and is
more stable than softmax over its parameters space. Furthermore, ε-decreasing achieves
high and stable global allocative efficiency in non-adaptive markets, but this is not to the
benefit to the individual traders, whose profits are low in comparison to other strategies.
This implies that the efficiency leads to higher profits for marketplaces (relative to other
strategies) via fees.

The results also indicate, for both trader profit and efficiency, that the exploration
phases of the learning algorithms should be relatively small compared to the exploitation;
around 5%–15% of all actions, which is consistent with previous work on reinforcement
learning (Sutton and Barto, 1998). This holds whether the exploration phase is at the
start of the trading game (as in ε-first) or throughout the game.

By comparing the results of the strategies to random marketplace selection, the re-
sults demonstrate that an intelligent marketplace selection strategy is better for both
trader profitability and market efficiency. This extends the work of Cai et al. (2008),
who demonstrated that allowing traders to migrate improved the efficiency of a mar-
ket. Our results demonstrate that choosing the right marketplace selection strategy and
parameters can lead to higher market efficiency, as well as increasing trader profit.

15



In future work, we will address the issue on heterogeneous strategies; that is, cases
in which traders are employing different marketplace selection algorithms. In addition,
we aim to build on the work of Sohn et al. (2009) by investigating marketplace-specific
trading strategies, which integrate the marketplace selection strategy with the trading
strategy itself.
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Appendix A. Trader Profit Results
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Figure A.3: Mean trader profit for the ε-first and ε-greedy algorithms.
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Figure A.4: Plots of mean trader profit of the ε, τ, and α parameters for the ε-decreasing
and softmax algorithms.
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Figure A.5: 3D plots of mean trader profit for the ε-decreasing and softmax algorithms.
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Appendix B. Global Efficiency Results
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Figure B.6: Mean global efficiency for the ε-first and ε-greedy algorithms.
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Figure B.7: Plots of mean global efficiency of the ε, τ, and α parameters for the ε-
decreasing and softmax algorithms.
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Figure B.8: 3D plots of mean global efficiency for the ε-decreasing and softmax algo-
rithms.
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