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ABSTRACT sification framework. However, this method is high on its computa-

. o ) tional complexity. In this paper, an attempt is made to club subspace
Sparse representation based classification (SRC) is one of the megkihod and SRC by developing a projection map that maps the high
successful methods that has been developed in recent times for fagnensional face space to a lower dimension face subspace, without
recognition. - Optimal projection for Sparse representation basegompromising on the discriminatory nature of the data. The pro-
classification (OPSRC)[1] provides a dimensionality reduction map,ysed discriminative projection for SRC is low on computation, and
that is supposed to give optimum performance for SRC frameworkyigh on classification accuracy. Experimental results show that the
However, the computational complexity involved in this methodyroposed projection provides comparable performance as the of OP-
is too high. Here, we propose a new projection technique usingrc.
the data scatter matrix which is computationally superior to the  gection 2, introduces the sparse representation based classifica-
optlmal projection method with comparable classification accuracyion framework. Section 3, presents various subspace projections
with respect OPSRC. The perfgrmancg of the proposed approachgs, src including random projection, OP-SRC and the proposed
benchmarked with various publicly available face database. projection. The experimental results are presented in section 4 and

Index Terms— Sparse Representation, Subspace Projectiorf;onclusion in section 5.
Face Recognition

2. THE SPARSE REPRESENTATION FRAMEWORK
1. INTRODUCTION " .
In face recognition problems, each face is treated asann ma-
ix, reshaped into amn x 1 vector. Assume there adedistinct
lasses of face data. L& = [t;,1, ti,2, - - - ti,1,] be the collection of
ectors that represent th&' class. Assume, that there are sufficient
number of training vectors for all the classes. Given any new arbi-
trary sample vectoy of the i*" class, it can be approximated by a
inear combination of the training vectors.

Face recognition is one of the most inevitable parts of modern da
biometric identification systems, along with fingerprint identifica-
tion, iris based recognition etc. It has got wide spread application
in various military as well as civilian applications. There is a vast
plethora of research literature available on face recognition tec
niques [2][3].
With the advent of compressed sensing theory [4][5], sparse rep- L
resentation is being successfully used for face recognition. Wright y = Z ai jti (1)
et al. [6] introduced the concept of sparse representation based clas- =
sification (SRC) where, the test sample is represented as a sparse
linear combination of the training images. The sparsity structurevhere,a; ; represents the weight (coefficient) of basis training vec-
of the coefficients encodes the information about the identity of théor ¢; ;.
test vector. However, there is slight difference between compressed Now the problem in face recognition is to find the clas®
sensing and the sparse representation based classification suggestbéth the test vectoy actually belongs. For this we consider the
by Wright et al. In compressed sensing theory, the main aim is to resoncatenated dictionary matrix
cover a signal completely by sampling at a sub Nyquist rate. On the
other hand, in sparse representation based classification, the sparsity T=[MNT... Tk (2)
structure of the signal representation is used to decode the identiL?/ . .
of an unknown signal. he c_olumns of the matri¥’ forms the dictionary bases. Naywan
Before the introduction of SRC, the most popular face recogni-be written as
tion algorithms were based on subspace methods. Eigenfaces [7], y=Tz ®)
Fisherfaces [8] and Laplacianfaces [9] were the most popular amonghere,z = [0, 0, ...a;,1, a2, ..a;,1;, 0, 0....0]
them. These are dimension reduction techniques, which project the The solution vector: is expected to encode the identity of the
high dimension face data into a lower dimensfaize subspace. Fi- test vectory. Unlike the Nearest Neighbor (NN) classifier or the
nal classification is done in this subspace. Random Projection [10Ylearest Subspace (NS) [12] classifier, SRC uses the entire training
[11] combines the idea of SRC and subspace methods by projeciet at a time to solve for. The components of are zeros ex-
ing each face image into a random subspace. Lu [1] came up witbept for those associated with th#é& class. Now the entire prob-
a supervised dimension reduction algorithm that gives a projectiofem reduces to the most fundamental problem of linear algebra -
that is supposed to be optimum for sparse representation based cléizat of solving the system of equati@iz = y. In practice, (3) is



an under-determined system, since the total number of training ve¢?], Linear Discriminant Analysis [8] and Locality Preserving Pro-
tors is much more than the size of the vector. In order to avoid thgections [9] are the extensively used dimension reduction techniques
anomaly of inconsistency of the system, we assume that the matrir face recognition.
T has full rank. Thus the system (3) gives an infinite number of  Various dimension reduction techniques which are suitable for
solutions. The conventional solution for the problem is given by:  Sparse Representation based Classification (SRC) have already ap-
peared in literature. Random projection [10] [11] is one of the well
T = arg min|z|2 subjecttol'z = y (4)  known method for SRC. Lu [1] proposed an optimal projection
) ) ) ) for SRC (OPSRC) and has proved superior to Principal Compo-
This system can easily be solved using the pseudo inverse of nent Analysis(PCA), Linear Discriminant Analysis (LDA), Sparsity
However the solution can tiense i.e, there can be a large number preserving Projection (SPP) and Sparse Representation Classifier
of non-zero entries corresponding to coefficients of other classes arsteered Discriminative Projection (SRCDP). This is a supervised
hence, may not be of much use in getting the identity.dfilencel>  dimension reduction technique. The classification criterion for SRC
solution is not suitable for this kind of problem. Since the test vectolis hased on the reconstruction error corresponding to each class. The
is represented using the training vectors from the same class onlyjentity of a test image is the one that gives the minimum recon-
we are looking for aparse solution, i.e., a solution with minim@  stryction residual. The projection matrix for OPSRC is obtained by
norm. ThougH, norm do not follow the strict definition of anorm, it minimizing the within class reconstruction error and simultaneously
of y is determined by the sparsity structurezofThus the problem OPSRC is heavy on its computational complexity. For each vec-
is redefined as: tor in the dictionary, it computes a within class and between class
reconstruction error. For a dictionary of sizé x N, computational
z = arg minj|z[|o subjecttol'z =y (5)  complexity for a singlel; minimization isO(M?N?3/?). During
Theoretically, if the sparsity of the solution is less than/2,  training, thel; minimization problem has to bersolvéHNQ) times.
this is the most optimum sparse solution which one can obtain [13]Thus the total complexity increases@{M>N®/2). In this paper,
But this is an NP hard problem. However if the solution is suffi- @ method that requires minimal computation, at the same time that
ciently sparse, the solution is equal to that of the followingnini- gives comparable discrimination as that of OPSRC is presented. This
mization problem that can be solved in polynomial time [14, 6]:  approach, motivated by the concept of Linear Discriminant Analy-
sis, minimizes a linear objective function that minimizes the within
class scatter of the data, at the same time, maximizes the between
Z = arg mir|z||; subjecttol'z =y class scatter. Unlike LDA, which uses the same principle, a differ-
6) ent objective function is used which reduces the time complexity
These can now be solved using standard techniques like linear prby half. This method has a computational complexityQufM/®),
gramming, homotopy [15] etc. whereM < N is the dimension of test vector. Results are presented
to illustrate the performance of the proposed method. A brief de-
scription of random projection, OPSRC and the proposed projection
is presented.
The solution to (6) provides a sparse representation of the test vector
y in terms of the columns of the dictionary matfix In practice, (3) 3.1. Random Projection
might be corrupted due to measurement noise or occlusion. So the

Classification using Sparse Representation

model can be modified as : In random projection, the high dimensional face data is projected on
to a lower dimensional random subspace. A theorem due by Johnson
y=Tzo+ 2 (7)  and Lindenstrauss [17] states that for any set of points ofrsire

) ) ] ) RP, there exist a linear transformation of the data 4 where
wherezx is _tht_a sparse solution andis du_e to the noise factor. q > O(e2log(n)) that preserves distance up to a factot ife. Itis
So the new optimization problem can be written as computationally superior to PCA, LDA and LPP. Forming a random
matrix of sized x M and projectingV vectors of dimensiod/ to
a lower dimensionl takes onlyO(MN) computations. A condition

@8 on the matriXI" that i i i
R CoN N gaurentees a unique solution of (6) is called the
where||z||]2 < e. For each class defined; : R™ — RY asthe | qiicted isometery property(RIP):

characteristic function that selects the coefficients' bfclass only.
i.e,d;(x) contains the coefficients afcorresponding to thé" class (1 —8)||zl2 < ITzll2 < (1 + 6)[|z|2 )
only. Definer;(y) = |ly — T'6:(z)||2 as the reconstruction residual - -

of y w.r.t thei" class. Using this function, the test vector is recon-nere § is a small constant. In general, it is difficult to find deter-
structed w.r.t each class. Finally the identityofs determined by ministic matrices that satisfy this property. However, matrices with

Z1 = arg mir|z||; subject to]| Tz — yl|2 < €

the class that gives the minimal reconstruction residual. i.i.d Gaussian columns, Bernoulli matrices etc. have been proven to
satisfy RIP with a very high probability [16]. So in this method, each
3. SUBSPACE METHODS FOR SRC face is projected on to a random subspace and this representation is

used in the SRC framework.
Subspace based face recognition methods have had significant im-
pact in the recent past. Usually then dimension spaces of face 35 Optimal Projection for SRC
vectors are too difficult to handle. The most common way to han-
dle this curse of dimension is to reduce the dimension to a leveDptimal Projection for Sparse Representation based Classification
which can be comfortably handled. Principal Component Analysi{OPSRC) [1] is a supervised dimension reduction method designed



for classification in the SRC framework. OPSRC gives a discrimi- Table 1 Time Taken i ds f lculating Proiection Matri
native projection, such that SRC attains optimum performance in the'@°'€ - 1IM€ Taken in SEconds Tor caicu’ating rojection Matrix

transformed low-dimensional space. i Time in sec
The optimal projectiorP is obtained by maximizing the follow- Data Size | Random | OPSRC | Proposed
ing objective function Projection Method
1024 x 90 0.0018 17919 | 0.54
J(P) = tr(P"(BRy — Ru)P) (10) 1024 x 160 | 0.0092 | 8785.4 | 1.32
1024 x 245 | 0.0045 12856.7 | 1.74

where,R, andR,, are the between class and within class recon-
struction residual matrices respectively, as defined in [1]. The solu-
tion of this optimization problem are the eigen vectors correspond-
ing to the largest eigen vectors of the matrigR, — R.,. The final
classification is done by doing SRC on the reduced dimension spac;
The computational complexity of this algorithm@ A2 N°/2).

subject top’p =1
The total scattes, is the sum of within clas$’, and between

assS, scatter matrix. Hence effectively it maximises the within

class component of the scatter as well. In the proposed method, a

weighted difference of between class scatter and within class scat-

3.3. Anew projection for SRC ter matrix is maximized (11). This maximises the between class

The amount of computation involved in computing the optimal pro_scatter, at the_ same time minimizes the with_in c_Iass scatter. This en-
hances the discriminatory power of the projection. The results pre-

jection for SRC is very high. For each column of the dictionary . ) X
matrix, a set of sparse coefficients needs to be computed. This dra%ented in the next section shows that the proposed method achieves

tically increases the computation involved in finding the projectionc.ornr’arabIe performance, to that of OPSRC, with significant reduc-

; PP P on in computation. This method has a computational complexity
matrix. Here, a new subspace projection is suggested, which is corH- 3 . . . .
putationally efficient and achieves comparative performance to th qf o( .).' Unlike OPSRC, which uses the reconstruction residual
of OPSRC. We define a linear function, similar to OPSRC, excep or obtaining the projection, the proposed method uses the scatter

that instead of reconstruction residuals, we use the scatter matrix dg}_atr_lx. Comput!n_g t_he \.N'thm class reconstruction reS|dua_I involves
fined in LDA. The objective function is: solving thel; minimization problem of the form (7P(N) times,

whereN is the total number of dictionary elements. Computing the
arg maXpT(osz — BSw)p; @B >0 (11) be_twgen class reconSQtrU(_:tion residual involves solving_lthaini-
» mization problemO(N*) times. Thus the total complexity of OP-

. T SRC algorithm increases @(M?>N°/?),
subjecttop” p =1

where o, 8 are weighting parameters afgandS,, are the between

class and within class scatter matrix as defined in (12) and (13): 4. EXPERIMENTAL RESULTS
¢ ) . The performance of the proposed method is bench marked against
Sp=> ni(a” —z)(a" —z)" (12)  random projection and OPSRC. The results are presented on
i=1 YALE database[18], AT&T database[19], TEXAS database[2(][21
c i _ _ _ YALE database exhibit high degree of variation in illumination.
Sw= @9 -2 — )T (13)  AT&T database exhibit variation in lighting, expression, slight pose
i=1 j=1 variation and other variation like with/without glasses,open/closed

h @ is th f the'" cl @ is the it | eyes etc. TEXAS database exhibit expression variations. In each
where,z+= 1S the mean of the™ class,z;~ 1S the; ™ samplé 556 the face image was resized2ox 32 resolution, i.e a vector

of thei*" class. z is the global mean of the entire datasets the  of dimension 1024. This is reduced to smaller dimensions vary-
number of distinct classes amd is the number of training images jng from 10 to 100 using the projection methods discussed above.

in thei"" class. The classification percentage is recorded against various reduced

To solve the optimization problem in (11), we define Lagrangedimension values. In all the cases the data sets were partitioned into

multiplier as follows: non overlapping test and train data sets. Further, table 1 compares
T T the time taken to build the projection matrix for random projection,

L(p,A) = p" (aSy = BSuw)p + A1 = p"p) (14)  OPSRC and the proposed method for various data sizes. Random

projection is the fastest, since the it only needs to create a random
matrix. The time taken for OPSRC is much larger compared to the
other two.

Equating the partial derivative df(p, A) with respect top to
zero, we get:
% =2(aSp — BSw)p —2Ap =0
= (s = 35u)p = Ap ALE-B Face Datab
Thus the solution are the eigenvectors corresponding to the lead/ALE-B Face Database
ing d eigenvectors{p: ... pa} of the matrix(aSy — 5Sw). TUS  The Yale-B face database [18] consists of 64 distinct illumination
P = [p1...pa] is the required projection. It can be seen that there,atterns of 10 subjects. Figure 3(a) shows sample images from Yale-
is only one simple eigenvalue problem involved. Solution of LDA g gatabase. Five images of each subject with minimal illumination
includes solution of generalized eigenvalue problem, which involvegariation was used for training and the remaining was used for test-
twice the computation as that of this. In PCA, the quadratic forming Test images were randomly chosen from the remaining 59 sam-
corresponding to the total scatter matrix of the data is maximizeghjes for each subject. The performance is averaged over 20 rdns an
subject to unit norm constraint: is presented in table 2. Figure 4 gives a graphical plot of the same. It
T can be seen that the proposed algorithm performs better than OPSRC
argmaxp’ 5;p (15)  and random projections.
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Fig. 1. Classification using Random Projection,OPSRC and proFig. 4. Classification using Random Projection,OPSRC and pro-

posed method for SRC AT&T Database posed method for SRC Yale-B Database
100
& o5t .
o Table 2. Classification results for Yale-B Database
g oo | | Reduced Dimension
2 af Subspace Method | 40 | 60 | 80 | 100
s Jps— OPSRC 70.1| 70.3| 68.0 | 69.8
%, Proposed Projection Rand, PI‘OJeCtIOI’] 494 556 562 588
R A REE It Random Pr o] ecti on Proposed Projection 71.6 | 70.1 | 68.7 | 71.5
70 . . . .
o % Rediced Dimension % Table 3. Classification results for AT&T Database
| | Reduced Dimension
Fig. 2. Classification using Random Projection,OPSRC and pro- Subspace Method | 40 | 60 | 80 | 100
posed method for SRC TEXAS Database OPSRC 86.5| 89.8| 90.0 | 89.0

Rand, Projection 76 78.8| 81.3| 83.8
r} Proposed Projection 87.8 | 90.8 | 89.3 | 90.0
| g - | ;’ = g .
mmg. b = Table 4. Classification results for TEXAS database
- ¥ A rN ? [ | Reduced Dimension |
E \= Al @' Subspace Method [ 40 | 60 | 80 | 100 |
@

®) OPSRC 953 | 100 | 100 | 100
Rand. Projection 92.8| 98.7| 97.2 | 98.4
Fig. 3. (a) Sample images from Yale Database B (b) Sample images Proposed Projection 95.8 | 99.1 | 98.9 | 100
from AT&T database

AT&T Database rithm gave comparable performance with OPSRC. In this database,
there is not much illumination, pose variations and other noises.

AT&T (ORL) database [19] has ten different images of 40 distinctThus the degree of scatter is less compared to other databases. Due

subjects. The images were taken at different times, varying the lighto this reason, OPSRC tends to perform slightly better.

ing, facial expressions (open/ closed eyes, smiling / not smiling) and

facial details (glasses / no glasses). Figure 3(b) shows some images

from AT&T database. For each subject, 4 images were used for train-

ing and the remaining for testing. Figure 1 and table 3 show the per- 5. CONCLUSION

formance of the proposed algorithm against random projection and

OPSRC. The proposed algorithm gives a near optimal performanc&parse representation based classification for face recognition has

At certain reduced dimensions, the proposed algorithm gives bett@roven to outperform conventional face recognition techniques.

classification performance than OPSRC. However, the curse of dimension still remained a challenge for SRC.
Various projection methods have been proposed to reduce the dimen-
TEXAS Database sion of the test vector for SRC framework. OPSRC is supposed to

give an optimal projection that suites SRC framework. In this paper,
The proposed algorithm was tried on the greyscale images d new projection is introduced that gives a near optimal projection
TEXAS 3D Face database [20] [21]. Though TEXAS databasdor SRC. Experimental results shows that the proposed algorithm
has images of 118 distinct subjects, only 18 subjects were used gave comparable performance as that of OPSRC, with a much re-
this experiment. This is because, out of these 118 subjects, only X8iced computational complexity. Since the proposed method uses
subjects have got sufficient number of distinct samples for testinghe data scatter matrices, it was found to perform better when there
and training. Five samples per subject were used for training. Tablis variation in the data. The results for Yale database justifies this.
4 shows the performance of the algorithm. Figure 2 gives a graphicalhe amount of computation associated with the proposed method is
representation of the same. For this database, the proposed algdso much less compared to OPSRC.
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