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Abstract. We have introduced a low-cost at-speed BIST architecture that enables conventional microprocessors
and DSP cores to test their functional blocks and embedded SRAMs in system-on-a-chip architectures using their
existing hardware and software resources. To accommodate our proposed new test methodology, minor modifications
should be applied to base processor within its test phase. That is, we modify the controller to interpret some of
the instructions differently only within the initial test mode. In this paper, we have proposed a fuctional self-test
methodology that is deterministic in nature. In our proposed architecture, a self test program called BIST Program
is stored in an embedded ROM as a vehicle for applying tests. We first start with testing processor core using our
proposed architedture. Once the testing of the processor core is completed, this core is used to test the embedded
SRAMs. A test algorithm which utilizes a mixture of existing memory testing techniques and covers all important
memory faults is presented in this paper. The proposed memory test algorithm covers 100% of the faults under the
fault model plus a data retention test. The hardware overhead in the proposed architecture is shown to be negligible.
This architecture is implemented on UTS-DSP (University of Tehran and Iran Communicaton Industries (SAMA))
IC which has been designed in VLSI Circuits and Systems Laboratory.

Keywords: BIST architecture, DSP/microprocessor, UTS-DSP, bit/word-oriented memory, memory testing,
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1. Introduction

The ASIC industry, driven by ever increasing demands
for miniaturization, higher reliability, and greater
speeds, continuously introduces new product innova-
tions to the microelectronics market. As a result, the

density of semiconductor µP/DSP chips has been in-
creased dramatically. The manufacturing yield of sili-
con products strongly depends on the silicon area, and
their performance is directly related to the delays on the
critical paths. Thus, in order to build reliable and com-
petitive products, it is essential that the testing strategy
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provides high fault coverage, without increasing a sig-
nificant area overhead and degrading the performance.
With the increasing complexity, it has been recognized
that the testing of such µP/DSPs is a difficult problem,
and the test time and cost for such chips are very large.
To overcome the problem of large test time and cost,
self-test methods have been developed.

One of the most widely researched self-testing tech-
niques is Built-In Self-Test (BIST), which uses embed-
ded hardware test generators and test response analyz-
ers to generate and apply test patterns on-chip at the
speed of the circuit, thereby eliminating the need for
an external tester [1, 3]. Several self-test methodolo-
gies for testing microprocessors have been presented
in recent years. A native mode functional test gener-
ation for processors is proposed in [20]. The gener-
ated test program can be applied to both of design
validation and manufacturing test. The built-in self-
test method presented in [2] combines the execution
of microprocessor instructions randomly with on-chip
test hardware. The authors in [5] proposed a partially-
automated test program generation to test a processor
core. The method examines all processor instructions.
An instruction-based self-test methodology is proposed
in [11] to test embedded processor cores in a system-
chip based on the knowledge of its instruction set ar-
chitecture and register transfer level description. The
authors in [4] presented a software-based self-testing
methodology for processor cores which uses a software
tester embedded in the processor memory as a vehicle
for applying structural tests. The software tester con-
sists of programs for test generation and test applica-
tion. A low-cost BIST architecture based on modifying
instructions in the test mode is proposed in [21]. A full
functional testing of a processor core in a system-chip is
presented in [16]. The proposed method sends instruc-
tions serially and exercises them with a huge number
of executions, which is very time consuming.

Several self-test methodologies have been reported
in literature for testing DSP cores [10, 15, 18, 27]. DSP
cores mostly include larger arithmetic units such as
shifters and Muliply-Acumulators, compared to gen-
eral processors. A built-in self-test method is imple-
mented in a 24 bit floating point digital signal proces-
sor using pseudo-random patterns [18]. The number
of random test patterns applied to the DSP under test
is very large. Reference [10] presents a full scan with
a dual phase level sensitive scan design (LSSD) to be
implemented on a DSP core. An arithmetic BIST is pro-
posed in [15] in which all generation and compaction

functions are executed by basic building blocks such
as adders, ALUs, and multipliers. Testing datapath of
DSP cores based on self-test programs is proposed in
[27]. During the test random patterns are loaded into
the core, exercise different components of the core, and
then are loaded out of the core for observation under
the control of self-test program.

Since the need for self testing is most acute for high
performance processors, we propose a self testing pro-
gram which is stored in embedded ROM and can be
used for applying the needed tests (Deterministic or
random). The hardware overhead in the proposed ar-
chitecture is shown to be negligible. To circumvent the
low fault coverage associated with random pattern test-
ing of processors, in this approach, we first determine
the structural test requirements of processor compo-
nents, which are usually much less complex than the
full processor, and hence more amenable to random
pattern testing. At the processor level, the instructions
of the processor are used to apply the tests to each
component at the speed of the processor.

Memory is an important part of a system chip. Many
RAM test algorithms based on different fault models
have been proposed during past years [6, 7, 12, 22].
With increasing complexity, the efficient testing of such
memories has been recognized as a difficult problem.
Almost all memories today tend to use BIST methodol-
ogy. Hence, core providers of embedded memory typ-
ically incorporate BIST wrappers in the memory core
design [28]. In this paper, we propose an efficient BIST
method for testing the embedded SRAM, and show
the feasibilty of fault model and test algorithm. In this
method, with increasing the size of RAMs, only the
test time is increased without any increasing hardware
overhead [22].

UTS-DSP includes complicated functional blocks
such as a fixed-point Arithmetic Logic Unit
(ALU), a Multiplier/Accumulator unit (MAC), Shifter,
Compare-Select-Store Unit (CSSU) and etc. [17]. With
such large units it becomes immensely time-consuming
to obtain test patterns having high fault coverage. The
proposed BIST architecture reduces BIST area, test
time and cost significantly. This BIST architecture is
implemented on UTS-DSP IC which has been designed
in VLSI Circuits and Systems Laboratory.

This paper is organized as follows. Section 2 de-
scribes an overview of the UTS-DSP. Section 3 dis-
cusses the testing of microprocessor and DSP cores
and provides a testable design for a general proces-
sor core. The embedded SRAM testing is decribed in
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Section 4. Section 5 describes practical results from
implementation of BIST on the UTS-DSP. The paper
ends with conclusions in Section 6.

2. The UTS-DSP Overview

Since our case study is performed on the UTS-DSP,
in this section we briefly describe the UTS-DSP struc-
ture. UTS-DSP core is compatible at instruction set
level with TI’s TMS320C54x [23, 24] DSP processor
family, which has CISC architecture [9]. The UTS-
DSP has been designed in VLSI Circuits and Systems
Laboratory [8, 17]. The UTS-DSP is a fixed-point dig-
ital signal processor (DSP). The UTS-DSP central pro-
cessing unit (CPU), with its modified Harvard architec-
ture, features minimized power consumption and a high
degree of parallelism. Also, the versatile addressing
modes and instruction set improve the overall system
performance. The UTS-DSP block diagram is shown in
Fig. 1.

Instruction sets and addressing modes have great in-
fluence on core design process, especially in pipeline
structures [17, 23]. There are 187 instructions in the
instruction set of the UTS-DSP core, which are com-
patible with the TI’s TMS320C54x family of the DSP
processors. Instructions are grouped in sub-categories
to simplify the modeling of each stage of the pipeline.
By grouping the instructions, each stage of the pipeline
is designed to perform similar operations on all mem-
bers of a group, not for each instruction individually.
Having 7 addressing modes, UTS-DSP core can per-
form many required operations as a DSP processor.
These addressing modes are as follows: (1) Immediate
addressing, (2) Absolute addressing, (3) Accumulator
addressing, (4) Direct addressing, (5) Indirect address-
ing, (6) Memory-mapped registers addressing, and (7)
Stack addressing. UTS-DSP core consists of a six-stage
pipeline. These stages are prefetch, fetch, decode, ac-
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Fig. 1. The UTS-DSP block diagram.

cess, read and execute stages, which shortly will be de-
scribed further. Then an overview of the suggested CPU
architecture, which comprises from ALU, Shifter, and
Multiplier/adder units is provided. We have designed
an emulator board to verify our design at structural
level. This board consists of one Flex10K250 and one
Flex10K100 FPGA ICs. It also contains four memory
banks to implement parallel RAM and ROM blocks of
UTS-DSP.

As shown in Fig. 1, the core consists of the pipeline
stages and CPU. Some other important blocks shown
are internal RAM and ROM, memory management
unit, HPI (for interfacing the processor to a host), dif-
ferent possible serial ports, and clock generator unit
[13, 17, 19].

2.1. CPU Structure

This section provides an overview of the suggested
CPU architecture, which comprises from ALU, Shifter,
and Multiplier/Accumulator (MAC) units. The CPU
can perform high-speed arithmetic operations within
one instruction cycle due to its parallel and combina-
tional architectural design. Fig. 2 is a functional block
diagram of the proposed architecture, which includes
the principal blocks and required input/output registers
[8, 17].

2.1.1. Arithmetic and Logic Unit (ALU). The 40-bit
ALU implements a wide range of arithmetic, logical,
and rotate operations [8]. The result is transferred to a
destination accumulator (A or B) or sent to the output
bus for memory writing. There are two input busses
to read dual words of memory in a cycle and write
the result back to the memory. The ALU contains two
separate adders to be able to perform dual 16-bit op-
erations. The ALU can operate in a special dual 16-bit
arithmetic mode that performs two 16-bit operations
(for instance, two additions or two subtractions) in one
cycle.

2.1.2. Shifter Unit. To maintain accuracy without
dealing with complexity of a floating-point data path,
fixed-point DSP processors have a good support for
shifting operations. To manipulate a wide range of left
and right shifts with an acceptable delay time, we use
a barrel shifter with range of −16 to 31 shift count
value [8]. The 40-bit shifter is fed through one of
the two 40-bit accumulators, D data and 16-bit left
shifted C data for a 16-bit data input operand, and
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Fig. 2. Block diagram of CPU architecture [7].

concatenated C data and D data for a 32-bit data in-
put operand. The output is connected to either one of
the ALU inputs or the E data bus to be sent to memory.

2.1.3. Multiplier and Accumulator Unit (MAC). The
CPU architecture has a 17-bit × 17-bit hardware mul-
tiplier coupled to a 40-bit dedicated adder. This mul-
tiplier/accumulator provides multiply and accumulate
(MAC) capability in one cycle. The multiplier can per-
form signed, unsigned, and signed/unsigned multipli-
cation [8]. The multiplier output can be shifted left by
one bit to compensate for the extra sign bit generated
by multiplying two 16-bit 2s-complement numbers in
fractional mode. The adder’s inputs come from the mul-
tiplier’s output and from one of the accumulators. Once
any multiply operation is performed in the unit, the re-
sult is transferred to a destination accumulator (A or B).
To maintain efficiency of the structure, instead of us-
ing adder/subtractor hardware, we have accomplished
a multiplier capable of producing X × Y and −X × Y
without any overhead.

3. Testing of Microprocessor and DSP Cores

Several BIST architectures have been presented for
testing µP and DSP cores. Area, performance and cost
overheads are important factors for BIST implemen-
tation. This section describes a BIST architecture for

testing µP and DSP cores. Implementation of one of the
BIST architectures on the general processors which has
been presented previously [16], is shown in Fig. 3. As
shown, a Test Control Register (TCR) is used for trans-
ferring opcodes from scan-in pin to instruction decoder
logic. LFSR and MISR (LFSR for the pseudo-random
pattern generator, MISR for signature analyzer) are
used as test generator and signature analyzer. BIST
controller generates clock and control signals. When
the processor is entered into the test mode, the test op-
codes (instructions opcodes) are transmitted into the
instruction decoder logic through TCR and MUX. The
instruction decoder logic transfers control signals for
executing of input instructions. LFSR is used when
test operand is required and MISR is used when the re-
sult of an operation is provided. The scan-in, scan-out,
clock and control, and test mode pins are added to the
microprocessor. In this architecture, BIST controller
performs the following control operations: transmit-
ing instruction opcodes to the microprocessor through
scan-in pin, receiving serial output of MISR from scan-
out pin, comparing outputs of scan-out with expected
results, and transmiting clock and control signals. This
method is very time consuming because the number of
execution cycles for each instruction is huge.

BIST controller transmits a variety of instructions to
processor. For reducing the number of instructions, the
input instructions should be applied in a program form
to scan-in pin in order to test each block within the
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Fig. 3. Implementation of a BIST architecture on the general structure of a
microprocessor.

core. BIST controller applies required clock and con-
trol signals for executing each instruction. For imple-
mentation of this architecture, we need to have enough
information of the internal structure and instructions
of the processor under test. It should be tried to avoide
the using of repeated intructions that have the same op-
erations. Thus, all instructions should be analyzed and
classified based on their operations.

3.1. Introduction of the Proposed BIST Architecture

In this paper, we introduce a BIST architecture based
on a testable design for processor cores (Subsection 3.2
describes a testable design for processors). In this ar-
chitecture, the hardware overhead for BIST controller
and elements are reduced without performance degra-
dation. Implementation of this architecture has been
treated on UTS-DSP. In this architecture, we can store
the test instructions and the expected results at the em-
bedded ROM. Thus, we do not need to enter them as
inputs. Instead of using some additional elements for
transfering instructions into instruction decoder logic,
we can use processor controller to read them from the
embedded ROM. The comparison of MISR value with
expected result is achieved internally. The expected re-
sults have been precomputed from a fault-free circuit.
With knowing the internal structure of each functional
block, a self-test program is provided for testing that
block. Operation of some instructions are modified for
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Microprocessor/DSP

Test/Normal
mode

Output flag

µP/DSP

Controller

S
R
A
M

On-chip ROM

BIST Program

Fig. 4. The proposed architecture.

test mode for Read or Write operations from LFSR
or to MISR. It requires no external BIST controller,
all of the control operations are performed internally.
This architecture is shown in Fig. 4. As shown, this
architecture requires no external hardware for testing
µp/DSP cores. Implementation of this architecture on
the general structure of a processor is shown in Fig. 5.

Since the main functional blocks such as ALU and
MAC are connected to the data bus, test data can be in-
put to or output from these blocks by connecting LFSR
and MISR to the data bus. By replacing some I/O reg-
isters such as Data Receive Register (DRR) and Data
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Fig. 5. Implementation of the proposed architecture on a general core.

Transmit Register (DXR) with the LFSR and MISR,
the functional blocks can be self-tested by normal in-
structions when the DSP enters into the BIST mode.
Since the I/O registers are the only registers that are
used in data communication for external devices, they
are chosen to be replaced. While in the BIST mode, data
movement is identical to that during normal operation
[21].

3.1.1. Test Sequence for the Architecture. This ar-
chitecture can be implemented on all general processor
cores. In this paper, this architecture has been imple-
mented on UTS-DSP. The test process for testing the
UTS-DSP is as follows (see Figs. 4 and 5 as well):
First, DSP is arrived into the test mode by asserting
test/normal mode pin, then the DSP is reset. DSP con-
troller jumps to boot routine at the on-chip ROM. The
operation mode is checked here. In the test mode, Pro-
gram Counter (PC) jumps to self-test program address
at the on-chip ROM. Self-test program is read by the
DSP controller and is executed by execution unit. The
needed tests are as deterministic or as provided by ran-
dom pattern generator (LFSR). The results of tests are
transmitted into test response analyzer (MISR). The
generated signature for each block by MISR is read by
BIST program and compared with the expected result
precomputed for a fault-free block.

3.1.2. BIST Controller for the Architecture. DSP
controller and BIST program perform the following

control operations: checking the test or normal mode,
reading the self-test program from the on-chip ROM,
executing the instructions of self-test program, reading
the test data from LFSR or operand, writing the results
into MISR, reading the content of MISR and comparing
with the pre-computed signature of a fault-free circuit,
transmitting the final result (pass/fail) to output flag.
BIST program and DSP controller perform all required
control operations. There is no need to use additional
hardware for BIST controller and thus, area and cost
overhead is significantly reduced.

3.2. Testable Processor Core Design

To accommodate our proposed test methodology, mi-
nor modifications should be applied to processor con-
troller and to some instructions within its test phase. In
that case, we will be able to generate and apply test pat-
terns at the speed of the processor under test. That is, we
modify the controller to interpret some of the instruc-
tions differently only within the initial test mode. The
VHDL code of UTS-DSP is available in VLSI Circuits
and Systems Laboratory and can be used for chang-
ing the instructions and DSP core controller. Because
the testing of DSP is performed in off-line mode, some
components such as Data Receive Register (DRR) and
Data Transmit Register (DXR) of DSP chip can be used
for self-testing. LFSR is used only for read operation,
which is used as test generator that is, an instruction
reads the contents of LFSR (a random pattern). MISR
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is used for Read/Write operations. When the MISR
is used as signature analyzer, the result of execution
of an instruction (which is in Accumulator) is loaded
into MISR (write operation). When the value of MISR
is compared with the expected results, the content of
MISR must be loaded into Accumulator (Read oper-
ation). Instructions for reading from LFSR/MISR and
writing to MISR are created (see Fig. 6). To avoide
defining some new instructions, the existing instruc-
tions can be modified for this purpose. Some instruc-
tions of DSP are not used in the test mode thus, we uti-
lize these instructions for the test purpose. In fact, we
change the interpretation of these instructions for the
test mode. For example, the normal instruction “LDM
DRR, Acc” is changed to “LDM LFSR, Acc” in test
mode. For this instruction, in normal mode, the con-
tent of DRR is loaded into Accumulator and when this
instruction is used in self-test program, first LFSR is
clocked and then the new content of LFSR is loaded
into Accumulator. The same operations are performed
for instructions of “LDM DXR, Acc” and “STLM Acc,
DXR.” These instructions are changed to “LDM MISR,
Acc” and “STLM Acc, MISR,” respectively. All of
these changes are applied in VHDL code of the UTS-
DSP. Fig. 6 shows the changes of instructions and DSP
controller.

A minor modification for checking the test/normal
mode has to be made in the initialization of the µP/DSP
at the reset situation. For this purpose, if µP/DSP is
entered into normal mode, PC jumps to normal routine,
otherwise jumps to test routine for execution of self-test
program from the on-chip ROM.

3.3. BIST Program

Actually, the test program consists of the normal in-
structions that are executed by the system, while the
data are provided as deterministic patterns or random
patterns by the LFSR. In this step, tests are developed
for individual components of the processor, such as the
ALU and the Shifter. Structural faults are targeted dur-
ing component test generation. Component tests can be
provided as deterministic or random patterns. We use
only deterministic tests for Shifter unit and for other
blocks such as ALU both deterministic and random
tests are used. Deterministic tests are stored into the
embedded ROM and the random tests are provided by
the random generator (LFSR) and can be read by the
modified instruction “LDM LFSR, Acc.”

If random test set is chosen, we use the modified
instructions in our self test program to read random
tests from LFSR and create a signatur by output re-
sponse analyzer for each block. The number of needed
test patterns for each component relies on desired fault
coverage and test time overhead. To achieve a high fault
coverage, the number of random tests are intensively
increased, therefore the test time is increased. We have
considered the primitive polynomials for 16-bit LFSR
and MISR. A signature for each block has been ob-
tained from a fault free circuit and all signatures are
stored into the embedded ROM. If deterministic test
set is chosen, tests are loaded along with BIST program
into ROM. Note carefully that set of BIST data/program
consists of self-test program, deterministic tests and
expected signatures, that can be loaded into ROM as
shown in Fig. 7 and no external tester is required. As
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shown, there is no random pattern generation and sig-
nature analysis program stored in ROM because these
tasks are performed by the modified instructions. Un-
like random patterns, reading of the deterministic tests
are done by the normal instructions.

By targeting the structural test requirement of in-
dividual components, our methodology has the fault
coverage advantage of determiniatic structural testing.
Since component test application and response collec-
tion are performed with instructions instead of with
scan chains, it imposes no area and performance over-
head, and the test application is performed at the speed
of the processor. Based on the above, a complete self
test program has been written in UTS-DSP assem-
bly language. BIST program includes two parts: (1)
Self-Test program for testing core functional blocks
and (2) BIST controller program for controlling of
Read/Write/Compare operations on memories. BIST
program consists of 350 words for self test program
and signatures of functional blocks.

4. Embedded SRAM Testing

In this paper we show the feasibility of fault model
and test algorithm. Defects in the layout of memory
are modeled as faults in the corresponding transistor
diagram. The electrical behavior of each defect is ana-
lyzed and classified, resulting in a fault model at SRAM
cell level. Only spot defects are considered for memory
testing. These defects result breaks and shorts in the cir-
cuit. Word-oriented memories contain more than one
bit per word; i.e., B ≥ 2, that B represents the num-
ber of bits per word and usually is a power of two
[25]. Read operation reads the B bits simultaneously
and write operation writes data into the B bits of mem-
ory. Many different data backgrounds (DBs) are used
for testing of word-oriented memories [26]. Once the
testing of the processor core is completed, this core is
used to test the embedded SRAM. The proposed archi-
tecture is also implemented for testing an embedded
SRAM but there is no need in using LFSR, MISR and
modified instructions. The test vectors and the test al-
gorithm that are written in normal UTS-DSP assembly
language are stored at the on-chip ROM.

4.1. The SRAM Fault Model

A widely used fault model for RAM devices is the one
presented in [12]. In this model, a RAM circuit is di-

vided into three blocks, i.e., memory cell array, address
decoder circuit and the sense amplifier or the read-write
circuit. These blocks differ in structure hence they are
analyzed separately. Defects in the address decoder and
the R/W logic are mapped onto functionally equivalent
faults in the memory array. This method has the ad-
vantage that all faults can be considered to be in the
memory array.

A cell may have stuck-at-1/0 or coupling with other
cells faults. In the decoder circuit, a decoder may not
access the addressed cell; it may access a nonaddressed
cell or multiple cells. The read-write circuit may have
stuck-at-1/0 faults, which appear as memory cell stuck-
at faults. Actual fault mechanism based upon physical
defects in memory devices have been investigated. The
proposed fault model with the addition of state transi-
tion and data retention faults could cover all faults in
the memory [7].

4.1.1. Memory Array. Some defects can occur in the
layout schematic (manufacturing process). Defect anal-
ysis is done in two steps. The first step is the translation
of defects in the layout to defects in the transistor cir-
cuit. The second step is classifying defects at transistor
level based on equivalent faulty memory cell behav-
ior. This implies a fault model at SRAM cell level.
Thus a more general fault model for SRAMs includes:
(1) Memory cell stuck-at-1/0 faults, (2) Memory cell
stuck-open fault, (3) Memory cell state transition 1-to-0
and 0-to-1 faults, (4) Memory cell state coupling faults
to another cell. (5) Memory cells multiple access and
wrong addressing faults. (6) Data retention faults. Cor-
responding defects of faults at the transistor diagram
of a memory cell are shown in Fig. 8.

4.1.2. Address Decoder and R/W Logic. A general
fault model for the address decoder is: (1) More than

R R

Vss

Vdd

Word line

BT BT
bit lines

Data retention
fault

State
coupling

Stuck open

Transition fault

Fig. 8. Examples of circuit defects for several fault classes.
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Table 1. DB and DBbar for 16-bit SRAMs.

No. of DB Normal (DB) HEX Inverse (DBbar) HEX

1 0000 0000 0000 0000 0000 1111 1111 1111 1111 FFFF

2 0101 0101 0101 0101 5555 1010 1010 1010 1010 AAAA

3 0011 0011 0011 0011 3333 1100 1100 1100 1100 CCCC

4 0000 1111 0000 1111 0F0F 1111 0000 1111 0000 F0F0

5 0000 0000 1111 1111 00FF 1111 1111 0000 0000 FF00

one cell is accessed by one address (multiple access),
(2) An address accesses no cells (stuck-open). All faults
in the address decoder can be converted as memory
array faults. A general fault model for R/W logic has
been introduced, namely: (1) One or more of the m bits
is stuck-at, (2) One or more of the m bits is stuck-open,
(3) A pair of bits is state coupled. All faults in the R/W
logic can be viewed as faults in memory array.

4.2. Test Algorithm and Fault Model
for Word-Oriented SRAMs

Several innovative test algorithms for RAMs have been
reported in the recent years. In this paper, marching 1/0
test algorithm is used as a basis of test method. With the
slight modifications in this algorithm, very high fault
coverage can be obtained. The fault models for word-
oriented memories can be divided into the following
classes.

4.2.1. Single-Cell Faults. this class can be included
the following faults: (a) Stuck-at faults, (b) Transition
faults, (c) Data retention faults.

4.2.2. Fault Between Memory Cells. this class of
faults consists of coupling faults.

March tests for bit-oriented memories can be con-
verted to march tests for word-oriented memories by
taking into account that in the bit-oriented memory

Address Initialization March element1 March element2 March element3 March element4 Wait March element5 

0 Wr0  Rd0Wr1 Rd1Wr0             Rd0Wr1            Rd1Wr0  Rd0 

1    Wr0   Rd0Wr1   Rd1Wr0       Rd0 Wr1        Rd1Wr0 Disable      Rd0 

2       Wr0     Rd0Wr1      Rd1Wr0    Rd0 Wr1     Rd1Wr0 RAM          Rd0 

        

N             Wr0           Rd0Wr1            Rd1Wr0 Rd0Wr1 Rd1Wr0                  Rd0 

Fig. 9. The 9N test algorithm for SRAMs. A data retention test is added.

tests, the ‘Rd0’, ‘Rd1’, ‘Wr0’ and ‘Wr1’ operations are
applied to a single bit. In case of word-oriented memo-
ries, an entire word of B bits has to be read or written;
the data value of this word is called Data Background
(DB). Word-oriented SRAMs introduce the problem
of state coupling faults between two cells at one ad-
dress. To detect these faults all states of two arbitrary
cells at the same address must be checked. This is only
possible if several data backgrounds are used. A min-
imum of K data backgrounds will be needed where
K = [log2 B] + 1. In many memories B is power of
two, then the formula simplified to: K = log2 B + 1.

For a memory with B = 16, the DBs of Table 1 could
be used; it can easily be verified that for any two cells
all 4 states occur. In this case state coupling between
any of two cells in the same address is checked.

4.3. The 9N Test Algorithm

A length 9N test algorithm is presented, where N is the
number of addresses. A data retention test is added to
this algorithm that is shown in Fig. 9. A Rd0 instruction
represents reading from the memory array and expect
the logical 0 from the addressed cell. A Wr0 instruction
represents writing a logical 0 to an addressed cell. The
address is indicated in the first column of the Fig. 9. The
proposed wait-time in the data retention test depends
on the nodal capacitance and the leakage current in
a memory cell. In the Philips 8K8 memory, a wait-
time of 100 msec was estimated. Other cell designs
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or processes may result in other wait-times. It can be
proven that the 9N test algorithm detects all faults of
the fault model. The test algorithm detects all stuck-at,
transition, state coupling, multiple access and stuck-
open faults [6].

4.4. BIST Structures

The 9N test algorithm is written in assembly language
program only with normal instructions. Although, we
used the 9N algorithm, any memory test algorithm can
be used for this purpose. When the processor is en-
tered into test mode, the embedded RAM is tested by
BIST program. The 9N test algorithm is implemented
on the 32K word 16-bit memory of the UTS-DSP. In
this method, there is no additional hardware overhead
and it covers all important memory faults. There is no
need to hardware BIST controller. A complete test for a
word-oriented SRAM will thus proceed in the follow-
ing way: First run the test algorithm with data back-
ground 1, then run it again with data background 2 and
etc. Finally the data retention test is run (only once).
There is no need to run the data retention test for all data
backgrounds. The BIST program and DSP controller
are used for controlling the test process like the pro-
cessor core testing. BIST program and DSP controller
perform the reading of deterministic tests, writing of
test data into memory cells, reading back test data from
memory cells, and comparison between the read data
from memory and the written data into it. In this method
using separate hardware as BIST controller is not nec-
essary. In BIST program, Read instruction is used to
read data from memory, Write instruction is used to
write data into memory and Compare instruction is
used to compare between the content of addressed
memory space and the correct value. The read, write
and compare process in the BIST program is performed
for each memory space. BIST program can detect the
fail-bit locations. Hence, the diagnosis capability is also
provided.

4.4.1. The Flow of BIST Program. BIST program
implements the 9N test algorithm for word-oriented
memories. This algorithm is written in processor as-
sembly language. The flow of BIST program for B =
16 is shown in Fig. 10. This algorithm can be imple-
mented on all RAM cores on a system-on-a-chip. This
program consists of only normal instructions which
allocates 88 words (each 16 bits wide) of embedded
ROM.

As shown in Table 1, the number of DBs for B = 16
is 5. The initialization step from 9N algorithm is shown
in lines of 7 to 14. The march elements 1 and 2 are
shown in lines of 15 to 32. These steps cover all single
faults. The march elements 3 and 4 are shown in lines
of 33 to 48. These steps cover all coupling faults. For

Fig. 10. The flow of BIST program.
(Continued on next page.)
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Fig. 10. (Continued).

each DB, lines 3 to 49 are repeated to detect all single
and coupling faults. A data retention test is added to
BIST program to cover the data retention faults. The
BIST program covers all of the single and coupling
faults. This program is written in UTS-DSP assembly
language [8, 17].

5. Practical Results

5.1. The UTS-DSP Core Testing

A complete self-test program for CPU testing of UTS-
DSP has been provided. To evaluate the fault coverage
of a test program on the processor under test, we have
established the test evaluation framework shown in
Fig. 11. The compiler takes the code of the test program
written in processor assembly language and prepares a
.lst file. A convertor program (written in C language)
converts .lst to .dat file (memory readable format). This
file containing the initialized instruction memory and
data memory which is used as a test bench for VHDL
simulator. The VHDL simulator takes the design de-
scription, run the test bench and captures the input
signals to the processor. The fault injection into core
VHDL code [14] is done by a C program. The fault cov-
erage is determined by a comparator. For practical test-
ing of BIST program and determining the actual test-
time, a DSP emulator can be used. The TMS320C548
DSP (Texas Instruments) has been used on the exam-
ined emulator board. After running the BIST program
on the DSP emulator, the obtained test time from exe-
cution of the self-test programs for different functional
blocks and CPU are shown in Table 2. The total area
overhead is comprised of one 16-bit LFSR, one 16-bit
MISR, 3 MUX (2 × 1) and 350 words of ROM. This
area overhead in contrast to the size of processor core
is negligible. Table 2 also lists the size of each block
and CPU (equivalent NAND gates) and the size of each
functional block self-test program. As shown in the ta-
ble, the CPU fault coverage, 87%, is less than the fault
coverage of functional blocks, 95%, because the con-
troller blocks in the CPU are hard to test by random
patterns. They need to be tested by higher number of
deterministic patterns extracted by ATPG to achieve

Table 2. Practical results.

No. of patterns
No. of deterministic No. of Fault
gates & random words coverage

ALU 4105 32 × 103 130 >93.7

MAC 3756 40 × 103 87 >92.3

Shifter 663 1.6 × 103 59 =99.2

CSSU 383 4.4 × 103 31 =95.5

Functional blocks 8907 78 × 103 307 >95%

CPU 10110 81 × 103 350 >87%
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Code of the test
program written in
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Processor
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.lst file to .dat file
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C54x
software
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.lst file .dat file
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(gate level)

.out file

.out file

Fault Coverage
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Injection

Fig. 11. Test evaluation framework.

a higher fault coverage. The overall test time for ex-
ecuting the test program is 2.5 msec in the working
frequency f = 65 MHz. Increasing the number of ran-
dom test patterns increases the fault coverage and the
test time as well, but the size of the test program is
fixed.

5.2. The Embedded SRAM Testing

The same process is also performed for embedded
SRAM testing with a BIST program and the fault model
as has been described in Section 4. The BIST program
that is written in assembly language allocates 88 words
of embedded ROM. Additionally, only 10 test patterns
need to be stored in the ROM. The achieved results from
implementation of this algorithm and their comparison
with other methods are shown in Table 3. The table also
includes the total number of words occupied by each
algorithm in ROM. The 9N test algorithm covers all sin-
gle and coupling faults. However, the other methods as

Table 3. Comparison between several methods (n = Number of bits).

State Decode State 32K SRAM No. of
Test method Complexity Stuck-at transition address coupling ( f = 65 MHz) words

GALPAT algorithm 4n2 Yes Yes Yes Yes 16 hr 68

Checker pattern 4n Yes 50% Yes No No 51 msec 49

Marching 1/0 6n Yes Yes Yes No 72 msec 72

9N algorithm 9n Yes Yes Yes Yes 81 msec 88

shown in Table 3, cannot cover all the faults under the
defined fault model [22]. In the proposed method, with
increasing the size of RAMs, only the test time is in-
creased without any increasing the hardware overhead
or self-test program size.

6. Conclusion

This paper presents a low cost BIST architecture. This
architecture is an efficient method for testing of all pro-
cessor and embedded SRAMs in system-on-chip. This
architecture has been implemented on UTS-DSP. A
complete self-test program has been written in proces-
sor assembly language and it is stored at the embedded
ROM. There is no need of additional hardware for BIST
controller. DSP controller and BIST program control
the BIST process. This test method covers >95% faults
of the functional blocks of UTS-DSP in a very small
test time, test cost and negligible hardware overhead.

As well, a systematic approach for construct-
ing marching test (9N algorithm) for word-oriented
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memories has been presented in this paper. The 9N test
algorithm is an efficient method for testing the embed-
ded SRAMs. The test algorithm covers 100% of faults
under the defined SRAM fault model. The proposed test
algorithm shows excellent performance in test time and
fault coverage, and it is independent of row, column and
cell arrangements in the memory array. The given test
algorithms are both suitable for bit and word-oriented
SRAMs and there is no additional hardware overhead.
This algorithm has been implemented on 32K word
SRAM of UTS-DSP. With increasing the size of RAMs,
only the test time is increased without any increasing
hardware overhead.
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