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Thereations between the Fibonacci and the Lucas numbers

Leonardo Fibonacci of Pisawas mathematican in the 13 th century, Italy. By charting the
population of rabbits, he discovered a number series from which one can derive the
Golden Mean. Here' sthe beginning of the sequence:

1,1,23,5,8,13,21, 34,55, ....

Each number is the sum of the two proceeding numbers

F(n+2)=F(n+1)+F(n)

where

FQ) =1 F(6)=8

F(2) =1 F(7) =13
F() =2 F(@8) =21
F(4)=3 F(9 =34
F(5 =5 F(10) =55
etc.

We shall now introduce operator of thefinite differences that associates the function

Hy(x) = y(Xx+1) = y(X)

with the function

y=1(x)
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It is easy to verify that

or

Dk

2

where D isthe operator of differentation

+h)-
oye9 = fim YY) |y
h-0 h

and where
H"=(-1+eP) =3 (-1 ()€"

If we prefer operator of the finite differencesin the formulafor the Fibonacci numbers,
than hereis another form

(L+H) F(n) =@+ H)F(n) + F(n)

or

(L+H) =@+H)+1
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It may be noted that it is possible to derive operator’ s formulas for the Fibonacci

numbers.

Aswill be seen,we usually dea with this operator’ s equations for the Fibonacci and

Lucas series

and

1+H="
H
Here,we have the operator’ s equation

H’+H=1

which is analog with the well known equation

X>+x=1

The solution of this equationsis the value of the Golden Mean

. _(+5-))
phl—T

Here we have the indentity

phi=H
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Aswe know, the general formulafor the n-th degree of the Golden Mean, is

(=D™(phi)*" +L(n) phi" =1

where L(n) are the Lucas numbers.
The Lucas numbers are formed in the same way as the Fibonacci numbers — by adding

the latestwo to get the next but instead of starting at 1 and 1 ( the Fibonacci numbers),
then start with 1 and 3 ( the Lucas numbers).
Each Lucas number is the sum of the two proceeding numbers :

L(n+2)=L(n+1)+L(n)

L(6) =18
L(7) =29
L(8) = 47
L(9) =76
L(10) =123

where
L(1) =1
L(2) =3
L(3) =4
L(4)=7
L(5) =11
etc.

Now, setting

In the general formulafor the n-th degree of the Golden Mean, we get formula

phi=H

(_1)n+1H 2n + L(n)H n :1
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As

We get, for the Fibonacci series, thisrelation

(=)™ F(x—=2n)+ L(N)F(x—n) = F(X)

Thisisthe relation between the Lucas and Fibonacci numbers

F(X)+(-D"F(x—2n)
F(x—n)

L(n) =
In case x=2n,we get relation

F(2n)
F(n)

L(n) =

For the Lucas series, we get this relation

L(X) +(-1)"L(x—2n)
L(X—n)

L(n) =

In case x=n, we have relation

L(-n) = (-1)"L(n)

In case x=2n, we have relation
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L(2n) = L2(n) - 2(-1)"

We can find aformulafor F(n) which involves only n and does not need any other
Fibonacci values. Binet’s formula involves the Golden Mean number phi and its
reciprocal Phi.

JBF(n) = Phi" = (-1)" phi"
If we start with the Binet’s formulain form

|[2phi™ + phi"|F (n) =1~ (=1)" phi"

and if we put in it the identity

phi =

1+H

we get the operator’s equation

1 1 0O, , .« 1
FOR v ey O iy

For the Lucas numbers we have the relation

F(n)[2L(x-n-1) +L(x-n)] = L(x) - (-1)"L(x - 2n)

Now , we get the relation between the Fibonacci and Lucas numbers

L(X) = (=D"L(x—2n)

F(n)= 2L(x—-n-1)+L(x—n)

Radoslav Jovanovic Page 6 06/12/01



The relations between the Fibonacci and the Lucas numbers

For the Fibonacci series we get thisrelation

F(X)—(-D)"F(x—-2n)

F ) = o F(x=n=1+ F(x=n)

In case x=n we have relation
F(-n)=(-D)™F(n)

In case x=2n we haverelation

F(2n) = F?(n) + 2F (n)F (n-1)
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