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Fusing Multiview and Photometric Stereo for 3D
Reconstruction under Uncalibrated lllumination

Chenglei Wu, Yebin Liu, Qionghai Dai, Senior Member, IEEE, and Bennett Wilburn

Abstract—We propose a method to obtain a complete and accurate 3D model from multiview images captured under a variety of
unknown illuminations. Based on recent results showing that for Lambertian objects, general illumination can be approximated well
using low-order spherical harmonics, we develop a robust alternating approach to recover surface normals. Surface normals are
initialized using a multi-illumination multiview stereo algorithm, then refined using a robust alternating optimization method based on
the ¢, metric. Erroneous normal estimates are detected using a shape prior. Finally, the computed normals are used to improve the
preliminary 3D model. The reconstruction system achieves watertight and robust 3D reconstruction while neither requiring manual
interactions nor imposing any constraints on the illumination. Experimental results on both real world and synthetic data show that the
technique can acquire accurate 3D models for Lambertian surfaces, and even tolerates small violations of the Lambertian assumption.

Index Terms—Multiview stereo, photometric stereo, Lambertian reflectance, ¢, minimization.

1 INTRODUCTION

UTOMATIC and accurate modeling of objects and scenes

from multiple photographs or video clips is an
important goal in vision and graphics research. Applica-
tions range from creating realistic models for film, televi-
sion, and computer games, to recovering metric information
for scientific data analysis. Although still a challenging and
fundamental problem, image-based modeling techniques
have improved greatly in the last decade.

Multiview stereo (MVS) techniques acquire solid 3D
models from multiple calibrated photographs. Most MVS
approaches use stereo matching techniques [6], which work
well for textured Lambertian surfaces but often fail in the
presence of specular highlights or uniform textures. Alter-
natively, photometric stereo is a well-established shape
recovery technique that creates partial 2.5D reconstructions
from a single viewpoint. Photometric stereo measures
surface orientations, so the estimated surface normals must
be integrated to produce the final shape [18]. These two
techniques are complementary, and recent work has shown
the benefits of combining both methods to produce very
accurate surface models [35].

In this paper, we combine MVS and photometric stereo
for a scene imaged under multiple unknown illuminations to
produce watertight 3D reconstructions. State-of-the-art
multiview photometric stereo algorithms (see Section 2 for
an overview) either require accurate light calibration or
assume distant point light sources for any image. Calibrating
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many light sources can be troublesome, and ensuring that all
lights can be represented as distant point lights is not always
practical. Unlike the prior art, we impose no constraints on
the lighting conditions except for distant illumination. In
particular, we represent general illumination using spherical
harmonics. Basri et al. [21] use spherical harmonics lighting
representation for single-view photometric stereo method
and recover surface normals up to a transformation.
Additional information or manual intervention can resolve
this ambiguity; we resolve it using multiple views and a
coarse-to-fine approach. We propose a multi-illumination
MVS method, which we use to initialize the surface normals.
These normals are optimized by a robust alternating method
according to the ¢; metric. Our method computes the
normals, the reflectance, and the illumination. We explicitly
handle outliers (e.g., non-Lambertian reflectance, cast
shadows, and interreflections) using an ¢; error metric.
The specific contributions of this work are:

e ashape reconstruction method that combines multi-
view stereo and photometric stereo method, and
works with uncalibrated and relatively uncon-
strained (distant) active lighting,

e a robust normal recovery method based on an ¢
metric and a low-order spherical harmonic repre-
sentation for general illuminations, and

e an automatic outlier detection and correction ap-
proach based on a low-frequency shape prior.

We have developed a multicamera multilight 3D
acquisition system to test the proposed method on extensive
data sets. The experimental results validate the effectiveness
of the proposed method on both static objects and
quasistatic human actors. The multiview multi-illumination
data sets captured by our system and the corresponding
reconstruction results in this work are all available on our
webpage.' Recent high-quality free-viewpoint performance
capture systems [1], [2] use laser scanners to capture very

1. http:/ /media.au.tsinghua.edu.cn/mvml.jsp.
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accurate key models. By combining MVS and photometric
stereo, we hope to not only generate accurate key models,
but also capture reflectance information for high-quality 3D
relighting applications.

The paper is organized as follows: Section 2 reviews
related work in multiview and photometric stereo, and
Section 3 gives an overview of our method. Next, we explain
the three steps of the method: multi-illumination MVS
(Section 4), normal recovery (Section 5), and normal-based
geometry improvement (Section 6). We conclude with
results and discussions in Sections 7 and 8, respectively.

2 RELATED WORK

Our work draws ideas primarily from the fields of MVS and
photometric stereo. Both of these methods aim at obtaining
high-fidelity geometric models of complex 3D shapes from
multiple photographs. Here, we describe prior art in each
field individually and methods for combining both
approaches.

2.1 Multiview Stereo

MVS has achieved great success in recent years. The relative
reconstruction accuracies of the most advanced MVS
methods are about 1/400 (0.5 mm for a 20-cm wide object)
[6]. MVS techniques can be divided into multistage local
approaches and global optimization approaches. Multistage
local methods include depth map-based algorithms [11],
[12], [13] and feature growing approaches [14], while global
methods include surface volume extraction [7], [8], [9] and
surface evolution [10]. According to the Middlebury multi-
view stereo evaluation web cite [15], multistage local MVS
algorithms generally outperform global optimization meth-
ods. The higher accuracy of these methods are due to
advances in image matching and point-based graphics
techniques.

Bradley et al. [4] use multiview stereo to create a
temporally consistent parameterization of the geometry of
deforming garments. Popa et al. [5] capture smooth
geometry of garments using MVS, and then wrinkle the
surface based on the fold estimates to obtain a realistic
looking virtual garment modeling. Although traditional
MVS is designed for reconstructing Lambertian objects,
some researchers focus on explicitly handling specular
surfaces [16]. Jin et al. model unknown, fixed illumination
using ambient and distant point lights to improve multiview
reconstruction for Lambertian objects [17]. Due to the limited
reconstruction cues, recovering high-frequency detail for 3D
surfaces using fixed illumination is still challenging for MVS
algorithms. The space-time stereo methods of Zhang et al.
[29] and Davis et al. [30] use stereo images of objects under
multiple illuminations for more reliable feature matching.

2.2 Photometric Stereo

Photometric stereo recovers surface orientations using
images from a single viewpoint taken under different
illumination. For Lambertian materials, known illumination
from three nonplanar lighting directions suffices to recover
surface orientations [53]. Uncalibrated photometric stereo
methods estimate both the surface orientation and lighting,
but suffer from a generalized bas-relief (GBR) ambiguity
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[24]. For single point light sources, approaches to resolving
this ambiguity include iteratively estimating light positions
[27], [28], or using a rank constraint on the observation
matrix [23].

To model more general illumination conditions, Basri
and Jacobs [19], and Ramamoorthi and Hanrahan [20] treat
light reflection as a convolution and observe that the
Lambertian reflectance kernel acts as a low-pass filter which
preserves only the lowest frequency components of the
illumination. Thus, the illumination can be modeled well
using low-frequency spherical harmonics. Frolova et al. [26]
further analyze the accuracy of spherical harmonics
approximation for far and near illumination. Basri et al.
[21] use a spherical harmonic illumination model and a
factorization approach to recover surface orientation given
many images take under unknown, distant illumination.
Chen and Chen [22] use an iterative approach that requires
only four captured images. Ambiguities still exist for both
of these algorithms, requiring the normals for key pixels to
be set beforehand. Our work is motivated by the success of
spherical harmonic representations for general illumination
and focuses on combining it with multiview stereo. We
build on the work of Basri et al. [21] and Chen and Chen
[22] by incorporating multiple views and by explicitly
accounting for outliers, e.g., cast shadows.

2.3 Hybrid Techniques for Image-Based 3D
Modeling

Even with relatively accurate surface orientations, reliably
computing surface shapes for orientation alone is still
challenging. A major thrust of research has been to combine
multiview and photometric stereo. Some of this work
focuses on adding point light sources to traditional stereo
[31], [32], [33], [38], yielding higher quality but only partial
reconstructions. Other recent work combines MVS with
photometric stereo. For objects with piece-wise smooth
surfaces, Weber et al. [34] simultaneously estimate geome-
try and reflectance. The multiview photometric stereo
method of Hernandez et al. [36], [37] uses RANSAC to
estimate the positions of point light sources and then
reconstruct Lambertian objects. For calibrated light sources,
Birkbeck et al. [39] employ a variational method to evolve
the surface and handle specular reflections using a Phong
reflectance model. The marker-less human motion capture
system of Theobalt et al. [40] estimates surface reflectance
and time-varying normal fields of moving people using a
smooth shape template. Ahmed et al. [41] employ calibrated
illumination and multiview video to capture normal fields
and improve the geometry templates. Vlasic et al. [3]
develop a system for high-resolution capture of moving
objects using multiview photometric stereo. They use
carefully designed illumination to estimate the surface
normals. All of these algorithms require either accurate
light-source calibration or careful illumination design. In
contrast, our method imposes none of these constraints and
explicitly takes outliers into account.

In the context of shape recovery using spherical
harmonic representations for general illumination, Simakov
et al. [25] propose a correspondence metric for stereo
matching under unknown illuminations. Because the GBR
ambiguity prevents estimation of the surface normals,
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Fig. 1. Overview of the method. We first capture multiview, multi-illumination video. An initial model is computed using a multi-illumination,
multiview stereo method. After that, the surface orientations are recovered by alternatingly estimating the surface normals and the illumination.

Finally, the computed normals are used to refine the initial geometry.

textureless planar regions can not be resolved by this
algorithm. By contrast, our method explicitly recovers
surface normals in order to refine the geometry, enabling
good performance for textured as well as textureless
regions. Moreover, while Simakov et al. assume purely
Lambertian objects, our method can handle objects with
some non-Lambertian surface regions.

Other hybrid approaches acquiring high-quality geome-
try and reflectance, include that of Lensch et al. [43], who
apply structured lights and photometric stereo to estimate
spatial appearance and geometric detail. Ma et al. [42] use
polarized light to obtain diffuse and specular normals,
which are used to improve the geometry obtained from
triangulation structured lights. These methods require
special equipment to capture images under precisely
specified lighting, and scale poorly to large environments
because of the structured lights.

3 OVERVIEW

Fig. 1 illustrates the workflow of our reconstruction
approach. The input of our method consists of multiview
image sequences recorded under different illuminations.
Unlike previous methods, our method imposes no strict
constraints on the illuminations. We use the multiview
multi-illumination image sequences to compute an initial 3D
model using a multi-illumination MVS algorithm (Section 4).
Based on this initial 3D model, we estimate surface normals
and a spherical harmonic representation for the unknown
illumination (Section 5). As the low-dimensional subspace
approximation is valid only for Lambertian reflectance, we
introduce a robust optimization method based on the /;
metric to estimate normals in the presence of non-Lamber-
tian reflectance, cast shadows, and interreflections. Normals
estimated using photometric stereo are generally accurate
for high-frequency detail but may contain low-frequency
errors. We use these normals to refine the 3D model using a
variant of the method of Nehab et al. [35] (Section 6).

4 MuLTI-ILLUMINATION MVS

The space-time stereo methods of Zhang et al. [29] and
Davis et al. [30] both consider space-time matching
windows for stereo imagery of a fixed object under varying

illumination. Davis et al. performed experiments changing
illumination using a laser pointer and shadows cast by a
hand in front of a fixed light source. They found that the
best stereo matching results were obtained with a purely
temporal matching vector: a window with a 1 x 1 pixel
spatial extent and a temporal extent that includes all input
frames. They did not analyze this result in detail, other than
to say they believe it to be true in general for static scene
geometry and variable illumination. In this work, we also
use a purely temporal matching vector. Here, we pause
briefly to analyze the significance of the purely temporal
matching vector for photometric stereo.

4.1 Multi-lllumination Radiance Vector

We define the multi-illumination radiance vector as a vector
containing the radiances under multiple illuminations for a
surface point. Assuming orthographic projection under
distant illumination, and no shadows or interreflections, the
kth element in the multi-illumination radiance vector at a
surface point p can be described as

I = 0 65000 "

where 7, is the intensity of the kth illumination, and the
function f, is the bidirectional reflectance distribution
function (BRDF) of the surface at point p, specifying the
reflectance as a function of the incidence direction (0, ¢)
and the reflection direction (6, ¢,).

For view-independent BRDFs (e.g., Lambertian materi-
als), the reflection direction parameters (6,, ¢,) can be
omitted. The incidence angle (6, ¢1) can be also computed
from the surface normal and the incident light direction, so
(1) can be rewritten as

I;f = Nk fp(mp, bi), (2)

where n, and [, are the surface normal and the incident
direction of the kth illumination, respectively. Therefore, the
reflected radiance under the kth illumination at point p is
determined by the reflectance function f, and the surface
normal n,,.

Let I, and I, be the multi-illumination radiance vectors
for two points p and g¢. If the number of the illumination
conditions is large enough, then I), = I, implies n, = n, and
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fp = f;- As an example, the Lambertian BRDF for gray scale
images with fixed illumination has three degrees of free-
dom: one for the surface albedo, and two for the surface
normal. Therefore, for Lambertian objects, three nonplanar
illumination directions suffice to discriminate points with
different normals or albedos. For multiview photometric
stereo, even without casting high-frequency information
into the scene (as in the space-time stereo work), a matching
window using a multiradiance vector is more discrimina-
tive precisely because it encodes information about the
surface orientation as well as the albedo.

4.2 Multi-lllumination Photoconsistency Metric

Although the space-time stereo work used a sum of squared
distances (SSD) matching error, we can obtain better results
with a more robust error measure. We choose to measure
the angle between the multi-illumination radiance vectors
in homogeneous coordinates to account for differences in
both direction and magnitude of the original vectors. To
define the new photoconsistency metric, the multi-illumi-
nation radiance vector is extended into homogeneous
coordinates by appending a predetermined constant c,
giving I' = (I, ¢). The distance between two multi-illumina-
tion radiance vectors is measured using the angular
difference between the extended vectors
I I

(I, I;) = Tl = cos 0, (3)
where 0 is the angle between the extended vectors I, and I.
Incorporating a spatial neighborhood constraint, the multi-
illumination photoconsistency metric is defined as

S dL. 1), (4)

zeWsyeW;

E(s,t) =

where W, and W, are the spatial neighborhood window
around pixels s and t. Our experience has shown that for
nine or more different illumination conditions, a 1 x 1
spatial window works best. For fewer conditions, a larger
spatial window should be used to increase robustness.

4.3 Creating and Merging Multiview Depth Maps

We create a watertight mesh model using the multiview
MVS algorithm presented in [12], modified to take advan-
tage of the multiple illumination conditions. Depth maps
from each view are created using the photoconsistency
metric just described, then merged to create a single point
cloud. This cloud is down-sampled and refined using an
error and conflict cleaning procedure, then converted to a
mesh using Poisson surface reconstruction [44]. Vertices that
lie outside the visual hull are projected back to the visual
hull along their inward normal directions. See Liu et al. [12]
for more details about merging multiview depth maps to
obtain a watertight 3D mesh.

Fig. 2 shows example results from the multi-illumination
multiview stereo step for our system. 29 illumination
conditions were used with a 1x1 spatial matching
window. Our proposed angular multi-illumination photo-
consistency measure produces results with much better
detail than an SSD multi-illumination photoconsistency
measure. Reconstructions such as the one in this figure are
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Fig. 2. Experimental comparison of the effects of SSD and angular
photoconsistency metric on MVS reconstruction. (a) shows one of the
multiview multi-illumination images. The surface computed using SSD
multi-illumination photoconsistency (b) shows much less detail than the
result using our proposed angular multi-illumination photoconsistency
measure (c).

used as an initial 3D model for our method. In the next
section, we describe how we estimate the lighting and
surface normals to further improve the mesh quality.

5 NORMAL RECOVERY

We present a new multiview photometric stereo algorithm
to recover surface orientations under general unknown
illuminations. We use a coarse to fine strategy, with coarse
normals initialized using the mesh produced by our MVS
algorithm. These estimated normals are refined by mini-
mizing the shading errors under multiple illuminations.
Because the illumination is also unknown, we must
iteratively estimate both normals and lighting.

This section is organized as follows: we briefly review
the spherical harmonic representation for general illumina-
tion in Section 5.1. In Section 5.2, we describe our
alternating constrained reweighted least absolute values
(ACRLAV) method for iteratively estimating illumination
and normals. ACRLAV assumes Lambertian reflectance but
uses an £; metric, so surface normals can often be accurately
estimated even in the presence of specularities or cast
shadows. However, some erroneous estimates for surface
normals in non-Lambertian regions could corrupt the
geometry in the next step. Section 5.3 explains how we
detect and correct erroneous orientation estimates using a
shape prior from the MVS algorithm.

5.1 Spherical Harmonic lllumination Representation

For Lambertian reflectance and convex objects, irradiance can
be approximated well by convolving a clamped cosine with a
low-order spherical harmonic representation of incident
illumination [19], [20]. Computing radiance using second-
order spherical harmonic representations for distant, iso-
tropicillumination accurately models more than 98 percent of
the reflected light. Using a first order approximation, the
accuracy still exceeds 75 percent. Moreover, empirical
evidence shows that this approximation remains valid even
for fairly near illumination [26].

We use the second-order approximation for greater
accuracy. Our MVS algorithm ensures that the projected
size of the facets is roughly one pixel in all views, and we
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use a single orientation and reflectance for each facet. The
reflected radiance at a mesh facet is described by

where [ is the 9D vector of spherical harmonic coefficients
describing the illumination, and Sy contains the irradiance
of that facet when illuminated by the nine spherical
harmonic lighting bases.

To estimate the surface normal on an object’s surface, we
first project multiview images onto the 3D model to obtain
the radiance of each facet for each captured illumination
condition. Similar to [47], the reflected radiance at each facet
is the weighted average of multiview radiances. The weight
is defined as

1

YT maxi (1/6;) + 1 — 1/0,)" (©)

where w; is the weight assigned to the camera view ¢ and ©;
is the angle between the facet normal and the viewing
vector toward the camera i. The weights are normalized to
sum to 1. The sharpness value a controls the degree to
which the largest weight is exaggerated.

Using the second-order spherical harmonic lighting
representation, the matrix / of measured surface radiances
for each illumination is

Insnr = LnxgSoxar- (7

Each row of I is the radiance on the object’s surface
corresponding to one of the illumination conditions. N is
the number of illuminations, and M is the number of facets.
Each row of L is the second-order spherical harmonic
coefficients for a certain illumination. Each row of S is a
harmonic image—the radiance on the object’s surface
corresponding to illumination by one of the spherical
harmonic basis functions. For distant illumination and
convex Lambertian objects, the nine harmonic images have
these forms:

51 =p,

S4 = pn,

82 = PNy, 53 = Py,
2
S5 = p(SnZ - 1), S6 = prgny, (8)
_ _ (2 2
7= pngn., sy =pnyn., so=p(ni —nl),

where [n,, n,, n.)" are the coordinates of the normal and p is
the albedo.

These harmonic images form a 9D linear space called
the 9D harmonic space. This subspace is described fully by
the reflectance and the normal. Therefore, if we can
recover the harmonic space S from the observation matrix
I, the surface normal and the reflectance can be recovered
as well.

5.2 Alternating Constrained Reweighted Least
Absolute Values

Matrix factorization is one approach to obtaining the
harmonic space from the reflected radiance. Traditionally,
one would use the SVD to extract the 9D subspace. This
method, however, can only recover the subspace up to a
linear ambiguity. Moreover, the SVD is optimal only when
the additional noise is Gaussian. The low-order spherical
harmonic approximation is only valid for Lambertian
surfaces with no cast shadows or interreflections. Violations
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of these assumptions cause outliers in the data, which we
will call outlier reflections. SVD solutions can be arbitrarily
far from the correct answer in the presence of these outliers.

Handling outlier reflections requires a new matrix
factorization method. We introduce an ACRLAV approach
for estimating the normals robustly. ACRLAV, inspired by
the nonparametric material representation in [48], is a
robust version of the alternating constrained least squares
(ACLS) algorithm. ACRLAV retains the benefits of ACLS,
such as its flexibility for including additional constraints,
and extends it by robustly handling outliers using an ¢;
minimization. Recent research demonstrates that the linear
equation can be solved exactly when the additional error is
sparse [49]. Section 5.2.1 describes how we use this to
estimate the illumination conditions.

Our matrix factorization algorithm uses a two-step
alternating optimization on (7). The first step optimizes the
illumination L while holding the 9D harmonic space S fixed;
the second step optimizes the harmonic space S while
holding the illumination L fixed. In practice, two to four
iterations are sufficient to significantly improve the estimated
normals. The following sections describe the illumination
estimation and the harmonic space optimization in detail.

5.2.1 [lllumination Estimation

Normals initialized from the coarse MVS geometric model
give a roughly correct approximation to the harmonic
space. We compute the second-order spherical harmonic
coefficients for each illumination by solving the following
linear equation:

I;=1'S te. (9)

Here, S is the harmonic space, I; represents the ith row of
the observation matrix I, l; is the unknown illumination,
and e is an error.

Conventionally, this equation would be solved in the
least squares sense, assuming that the noise e is gaussian.
Given outlier reflections, ¢, minimization can lead to a
solution arbitrarily far from the correct answer. ¢; mini-
mization is more robust in the presence of outliers.
Moreover, Candes and Tao [49] show that when e is sparse
but arbitrary, the illumination /; can be recovered exactly by
solving the following ¢; minimization problem:

min || I; =75 ||; . (10)
LER?

The globally optimal solution of (10) can be found using
linear programming [46]. We assume that the outlier
reflections only account for a small portion of the whole
surface, so the error e in (9) should be sparse. Therefore, the
illumination conditions can be robustly estimated by linear
programming.

After obtaining a good initial estimation of the illumina-
tion, we calculate the weight of each facet and use weighted
least absolute values to reestimate the illumination coeffi-
cients. The weighted ¢; minimization problem is

i L-US\W. 11
min || (i =L S)W | (11)
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Fig. 3. Estimating illumination. Here we show examples of actors imaged under different lighting conditions and the results of our lighting
estimation. We visualize the computed lighting by using it to render a uniform Lambertian sphere, then remapping the surface of the sphere to 2D
polar coordinates relative to a zenith pointing out of the page. The top row used directional illumination, and the bottom used multiplexed illumination.

Here, W is a diagonal matrix with each diagonal element

equal to
1 I; —1'8;)?
wjj;_ﬂp(_( L ) )
ol o

(12)
where v is a normalization constant such that ) ©; w;; = 1,and
S is the jth column of the matrix S. The value o is estimated
using median absolute deviation (MAD) [45], defined as

o = 1.4826 median; || I; — 1] S; |1 - (13)

We solve (11) using linear programming.

To review, we obtain an initial estimate of the lighting by
solving (10), then use a weighted least absolute values
algorithm to refine the initial estimate by solving (11).
Equation (10) can be seen as a weighted least absolute values
problem with uniform weights, so our illumination acquisi-
tion approach can be viewed as a two-step reweighted least
absolute values approach. In this way, we robustly and
accurately estimate each illumination. Fig. 3 shows examples
of illumination conditions estimated using this method.

5.2.2 Harmonic Space Optimization

Given the estimated illumination conditions, the normal
and albedo for each facet can be computed from the
following equation:

I = Ls;j, (14)

where I is a column vector containing the multi-illumina-
tion radiance of each facet, L is the estimated illuminations,
and s; is the radiance of the facet under the nine spherical
harmonic illumination bases. We would prefer to use an /;
minimization to solve this equation robustly in the presence
of outlier reflections due to cast shadows and interreflec-
tions. The quantities s;, however, are not linear with respect
to the normal and the albedo (8), so the ¢; norm
minimization problem cannot be recast into an efficient
linear programming problem. Instead, we use a reweighted
{5 minimization. Similar to the illumination estimation
approach, we formulate a generalized weighted least
squares problem as

min || (I; — Ls)W |3
P (15)
subject to || m ||2=1,

where n is the normal, p is the albedo, s; has the form in (8),
and W is a diagonal matrix defining the weight of each
illumination.

We solve this constrained nonlinear least squares
problem using the Levenberg-Marquardt algorithm to
efficiently acquire the normal and the albedo for each facet.
We use normals computed from the multi-illumination
MVS geometry to initialize the optimization of (15). Similar
to the illumination estimation, a two-stage reweighted
strategy is applied to estimate the normal. In the first stage,
an initial estimate of the normal and the albedo is obtained
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by setting the diagonal of W to be all ones. Then, the new
weight for each illumination is recomputed using (12).
Equation (15) is optimized again using the new weights to
derive more accurate normals and albedos.

5.3 Shape-Prior-Based Outlier Detection and
Correction

The spherical harmonic illumination estimate is quite
robust due to the ¢; metric, but the computed normals
and reflectances are more susceptible to errors. Our method
does suppress effects of cast shadows and interreflections
on Lambertian surfaces, but for very non-Lambertian
regions, the low-order spherical harmonic approximation
is invalid. Trying to refine the object geometry using
erroneous orientation estimates in these regions will corrupt
rather than improve our results.

We use the MVS geometry as a prior to detect and correct
erroneous orientation estimates. Although the fine detail
may be suspect, the low-frequency shape from the multi-
illumination MVS should be quite accurate. The low-
frequency orientation calculated by differentiating the
geometry (we call this the “geometric normal”) should also
be accurate. We assume that the low-frequency component
of the surface orientations recovered by ACRLAV (the
“photometric normals”) should match the low-frequency
component of the geometric normals. To filter out erro-
neous normal estimates, we define the low-frequency
orientation consistency as the angle between the low-
frequency components of the geometric and photometric
normals normal:

6; = arccos (¢(n) o (nf)),

where nf and n! represent the geometric and photometric
normal, respectively, and ¢(-) is a function that extracts the
low frequency of the normal (we use a Gaussian filter).

We assume that this angle follows a Gaussian distribu-
tion with the standard deviation computed median absolute
deviation, and consider estimated normals to be outliers if
their low-frequency consistency ¢; is  times larger than the
standard deviation. To obtain the final surface normal, we
fuse the photometric normal with the geometric normal
according to the following metric:

g

_J "y
n;, = g
ni,

where ¢, is the standard deviation of ¢;. Fig. 4 gives an
example of detecting and correcting outliers based on the
shape prior.

(16)

5’i S ﬁ Oa

5 > 3 00, (17)

6 NORMAL-BASED GEOMETRY IMPROVEMENT

The high-frequency content of the photometric normal is
generally much more accurate than that of the geometric
normal from the original MVS shape estimate. Nehab et al.
[35] propose an elegant method to fuse normals and
position to improve the geometry. We use a variant of their
full-mesh optimization approach to refine our MVS
geometry. In their algorithm, each vertex is assigned a
normal, and the polygon formed by the vertex’s neighbors
is used as an approximation of its tangent space when
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(a) (b)

Fig. 4. Outlier detection and correction using a shape-based prior.
(a) An actor rendered with uniform albedo and normals computed using
ACRLAV. The estimated surface orientation for much of the hair is
incorrect. We detect these outliers based on the low-frequency prior of
the MVS geometry, and replace them with normals from the MVS shape.
(b) The result after outlier correction.

imposing a surface normal constraint. By contrast, we
assign a normal to each facet of the mesh and optimize the
geometry by enforcing the normal constraint on each facet.

To refine the geometry, we optimize an error function
consisting of a position error E” and a surface normal
error E":

E=\E" + (1 — \)E". (18)

The parameter A € [0, 1] controls the relative influence of the
positions and normals in the optimization. E” is defined the

same with [35]. E" in our algorithm is defined on each facet
and has the following form:

E" = Z [nf : (pu _pu:)]27

u,weFy

(19)

where v and w are the vertices belonging to the facet F'y, and
ny is its normal. Based on the normals estimated in Section 5,
we optimize the vertices’ positions by minimizing the error
function. In this way, high-frequency details can be added to
the original MVS geometry. Fig. 5 shows an example of the
geometry improvement using our approach.

7 EXPERIMENTAL RESULTS

In this section, we test our algorithm on synthetic and real-
world data. The real-world experiments allow a subjective
evaluation of our algorithm, e.g., visual quality, rendering,
and relighting quality. Due to the differing acquisition
setups and input data, it is difficult to compare our method
with other state-of-the-art approaches. Instead, we use
synthetic data to validate our algorithm quantitatively
against a ground truth model. The parameters used for all
experiments are listed in Table 1.

7.1 Multicamera Multilight Dome System

Testing our algorithm on real-world data requires a multi-
view acquisition system. As we impose no constraints on
the illumination type or light position, we can use
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Fig. 5. Refining geometry using the photometric normals. (a) the
initial mesh, (b) the estimated normal field, and (c) the improved mesh.

traditional multicamera systems with varying illuminations
to capture the multicamera multi-illumination images. Liu
et al. [12], [13] have established a multicamera dome system
for free-viewpoint video capture. To test our algorithm
under a variety of illuminations, we added hundreds of
LEDs on the surface of the dome. The multicamera and
multilight acquisition system is shown in Fig. 6. Our
algorithm is not limited to this system and can be applied
to any multicamera system with several light sources. This
system can produce a wide range of illuminations by
controlling the LEDs, allowing us to comprehensively test
our algorithm.

For completeness, we briefly describe our acquisition
platform. The schematic figure of our system is shown in
Fig. 6. The dome system is a hemisphere 6 m in diameter,
with 20 low-speed FLEA2 cameras (30 fps) mounted on a
ring roughly at head height. 290 Luxeon K2 LEDs are spread

(@)
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TABLE 1
Parameters Used for All Experiments
Parameters Value Section
Const c in the photo-consistency metric 25 4.2
Other MVS parameters the same with [12] 4.3
Sharpness value a 2 5.1
Threshold B for outlier detection 2.5 5.3
Weighting parameter A 0.1 6

evenly over the whole hemisphere. The camera resolution is
setto 1024 x 768. Neighboring sets of 10 LEDs are configured
as a single area light source to provide enough lumens to
illuminate the scene. Custom control circuitry synchro-
nously triggers the lights and camera. Individually calibrat-
ing 290 LED:s is nontrivial, making our alternative approach
using uncalibrated illumination appealing.

We tested our algorithm using two types of illumination
patterns. The first turns on each individual area light source
one at a time. The dome system provides 29 different
illuminations. We refer to this illumination pattern as
directional illumination. The other illumination pattern uses
multiplexed illumination, simultaneously activating several
area lights according to a Hadamard sequence with 29
patterns [54].

7.2 Experiments on Real-World Data

The first experiment reconstructs an actor sitting with legs
crossed. Some of the captured images are shown in Fig. 7a.
Although the resolution of our camera is 1,024 x 768, to
capture the entire actor from all views, the resolution of the
bounding area of the actor had to be limited to 300 x 400.
We used 29 different directional illuminations. The frame
rate of the camera is 30 fps, so the multiview multi-
illumination image sequences can be captured in only one
second. It is possible that even during this short time
interval, a cooperative actor may not be able to hold
absolutely still. Empirically, we saw no ill effects from any
small motion of the actor.

The initial 3D geometric model produced by our MVS
algorithm is shown in Fig. 7b. The normals recovered after
decomposing the observation matrix into illumination
coefficients and the harmonic space are shown in Fig. 7c.

FLOOR

(b)

Fig. 6. The multicamera, multilight dome. Our capture system, shown on the left, uses 20 low-speed FLEA2 cameras mounted in a ring. The
hemisphere is divided into 29 lighting areas, each comprised of 10 evenly spaced LEDs. The schematic on the right shows the distribution of the

cameras (green triangles) and lights (red circles).
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(d

Fig. 7. Reconstructing a sitting actor. This actor is reconstructed
using 20 views with 29 different illuminations. Some of the input images
are shown in (a). (b) The multi-illumination MVS results. (c) The
recovered normal field. (d) The geometry of the improved mesh.

The final 3D model refined using the derived photometric
normals is shown in Fig. 7d. Relative to the multi-illumination
MVS results, the final result does not exhibit surface noise yet
captures fine details such as wrinkles.

Our second experiment tests our algorithm on extensive
data sets including both static objects and quasistatic
human actors. The captured images and the reconstructed
models are shown in Fig. 8. We reconstructed three
different static scenes. One is of the objects on a desk
covered by a ruffled tablecloth, captured by 20 cameras
under 29 directional illuminations. The other two are
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replicas of the statues “Dying Slave” and “Brutus”. These
statues have approximately uniform albedo without salient
texture, which is challenging for traditional MVS algo-
rithms. We reconstruct the two statues only using 12
cameras and 31 multiplexed illumination conditions. These
results show that our method can give satisfactory
reconstructions with only 12 cameras. The images with
human actors demonstrate that we can reconstruct people
with a variety of clothing and poses.

7.3 Ground Truth Evaluation Using Synthetic Data

We analyzed the performance of our method quantitatively
using a 3D model of the stanford bunny [52] with uniform
albedo and Lambertian reflectance, rendered from 20
viewpoints under 20 different illuminations. The generated
images are of 800 x 600 pixel resolution. To create 20
different illuminations, we used 20 distant point light
sources, illuminated one at a time. The renderings contain
cast shadows, which are interpreted as outliers by our
algorithm. We also added zero-mean Gaussian noise with
standard deviation o = 0.01 to each pixel to simulate sensor
noise. Several of the synthetic images are shown in Fig. 9a.
The surface normals reconstructed by our method are
shown in Fig. 9b, and the final improved geometric model
of the bunny is shown in Fig. 9c. For comparison, Fig. 9d
shows the ground truth model.

We also compared the result of our algorithm to the
ground truth surface by measuring the distance from each
point on our model to the closest point in the ground truth
model. Table 2 lists the mean, median, and standard
deviation of the error. They are normalized by the longest
diagonal of the bounding box volume, so the results in
Table 2 mean that if the biggest diagonal of the bounding
box is 1 m, the mean error is 0.85 mm, and the median error
is only 0.65 mm. Traditional MVS methods cannot achieve
this accuracy.

7.4 Reconstruction under Varying Numbers of
llluminations

Intuitively, the reconstruction quality of our method
depends on the number and distribution of cameras and
illuminations. We explored this relation by testing our
algorithm using from three to 28 directional illuminations.
We use directional instead of multiplexed illumination to
facilitate analyzing the dependence of our results on the
illumination conditions. Although we refined the geometry
using varying numbers of illuminations, we used the same
initial MVS geometry (obtained under 14 illuminations) for
each trial to reduce the influence of the starting geometry
model. The difference in reconstruction quality is deter-
mined solely by the normal recovery.

Fig. 10 shows the reconstruction results and the illumina-
tion distributions. The 3D model detail improves with more
illuminations, but the 10-illumination case appears to be an
outlier. In the illumination pattern shown in Fig. 10b, we see
that in the 10-illumination case the different illuminations
were generated by moving the lights in a 2D plane, while in
the six-illumination case the light positions are not coplanar
and are distributed better in 3D space. This particular six-
illumination case leads to better results than the 10-illumina-
tion one, demonstrating that the illumination distributionis a
key factor for the normal estimation and that the illumination
position should be well distributed in 3D space. This
experiment also shows that as few as six illuminations are
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Fig. 8. Results using our method for a variety of data sets. These images show the quality of the models our system produces for a variety of
people with different outfits and poses. We also show three reconstructions of completely static objects.

needed to obtain the normal field on the whole surface if the
illumination distribution is adequate.

7.5 Reconstructions with Varying Numbers of
Views

In this experiment, we investigated how the final recon-
struction quality is affected by the number of camera

views. We used 14 directional illuminations distributed as
shown in Fig. 10b, and ran our algorithm using 8, 10, 12,
16, and 20 camera views. The results are shown in Fig. 11.
We see that more views lead to a better initial multiview
stereo reconstruction. We also see, however, that the final
models are very similar, indicating that the photometric
stereo refinement produces good quality results even with
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Fig. 9. Evaluation using synthetic ground truth data. The images on (a) show example multiview multi-illumination input images synthetically
generated using a 3D computer model. (b) The estimated normal map for the bunny, along with a ground truth sphere for reference. The final
reconstructed model (c) and the ground truth (d) show that our algorithm correctly reproduces much of the fine detail of the bunny.

a rough initial mesh. Combined with the experimental
results in Section 7.4, this experiment leads us to conclude
that as long as the initial mesh is roughly correct, the
performance of our method is more strongly related to
the number and distribution of the illuminations than the
number of camera views.

7.6 Rendering and Relighting

We experimented with relighting one of the captured
human 3D models shown in Fig. 8. We relight the 3D
model with our computed albedo maps using the method of
Ramamoorthi and Hanrahan [50]. The irradiance environ-
ment maps are represented using the first nine spherical
harmonic illumination coefficients. For the illumination
environment maps, we used a light probe of the Grace
Cathedral, Eucalyptus Grove, and St. Peter’s Basilica [51].
Fig. 12 shows the relighted 3D model rendered from
different viewpoints. Although the method is only valid
for diffuse objects, the relighting results in Fig. 12 are
consistent with the illumination.

7.7 Complexity

The complexity of our algorithm depends on the number
of cameras and illuminations. Using 12 cameras and 15
illuminations, and running on a 2.66 GHz PC with 2 GB of
RAM, typical execution times of the steps in the pipeline
are 8 minutes for the multi-illumination MVS, 30 minutes
to run three iterations of the surface normal estimation,
and 5 minutes for the geometry refinement. The code has
not been optimized or parallelized, so this execution time
could be significantly reduced.

7.8 Limitations

The low-order spherical harmonic approximation is only
valid for Lambertian objects with no cast shadows. Thus,

TABLE 2
Quantitative Results of Synthetic Data
Accuracy[%]
mean med std
0.085 0.065 0.072

our method fails when the object’s surface is totally non-
Lambertian, when some parts of the object are constantly in
cast shadows, and in deep concavities with strong
interreflections. Fig. 13 illustrates the influence of cast
shadows. There is a deep groove in the statue marked by a

28 illuminations 14 illuminations 10 illuminations 7 illuminations

e

6 illuminations

4 illuminations

6 illuminations

5 illuminations 4 illuminations 3 illuminations

(b)

Fig. 10. Reconstructions with varying numbers of illuminations.
(a) The reconstruction results using different numbers of illuminations
(from 28 illuminations to three illuminations). (b) The illumination
distributions in the dome system used for the different reconstructions.
As in Fig. 6, red dots denote the illumination areas we used.
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(a) 8 views (b) 10 views

(c) 12 views

(d) 16 views (e) 20 views

Fig. 11. Reconstructions with varying numbers of camera views. The first row gives the initial multi-illumination MVS models produced using
different numbers of camera views. The second row shows the final models after refinement using photometric stereo. Although the quality of the
initial model is poor for small numbers of views, the refined models are all very similar, implying that the method only requires a roughly accurate

model to produce good results.

red rectangle in Fig. 13a. This groove is shadowed for most
of the illumination conditions, and as shown in Fig. 13b,

1
i
/i

Fig. 12. Relighting a human actor. We represent the irradiance
environment maps using the first nine spherical harmonic coefficients of
the illumination as in [50]. The environment maps are shown in the first
column of the figure, and the relighted models rendered from different
viewpoints are shown on the right.

(@) (b) ©

our algorithm does not accurately reconstruct the sha-
dowed geometry.

Another limitation of our method is the reliance of the
photometric stereo normal estimation on the initial MVS
mesh. Although using the multi-illumination radiance
vector leads to better MVS results compared to MVS with
a single illumination condition, in the worst case where our
system fails to obtain a reasonable initial mesh, the
photometric stereo and geometry refinement will also fail.
This may happen due to specularities or a limited number
of cameras. Fig. 14 shows an example result applying our
method to a synthetic non-Lambertian object. Due to

(b)

Fig. 13. The influence of cast shadows. (a) A deep groove, outlined in
red. Due to the cast shadows, our method was unable to recover the
geometry in this area, as shown in (b).
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(b) (© (d

Fig. 14. Experiment using a non-Lambertian synthetic object. An
example rendered input image is shown in (a). Because the initial MVS
mesh (b) is inaccurate, the improved mesh (c) is not as good as the
reconstruction (d) from Section 7.3.

specularities, the multi-illumination MVS computed a fairly
inaccurate initial mesh. Because the initial mesh is
corrupted, the model refined using photometric normals
also shows little improvement.

8 CoNcLUSION AND FUTURE WORK

We present a 3D modeling algorithm to reconstruct objects
filmed from multiple views, with each view captured under
multiple unknown illuminations. The unique characteristic
of our algorithm is that we assume neither calibrated
illumination nor single point light sources. Instead, we use
spherical harmonics to model general lighting conditions.
We also present ACRLAV, an algorithm for iteratively
estimating the illumination and surface normals. ACRLAV
robustly computes the illumination conditions despite
regions of non-Lambertian reflectance, cast shadows, and
interreflections. It steadily refines surface normals using the
estimated illumination, then the illumination using the
improved normals. Experiments on a wide range of data
sets demonstrate the ability of the algorithm to capture
detailed geometry.

In the future, we plan to extend this method to
performance capture. Aguiar et al. [1] deformed static
laser-scanned key models to frames of a captured perfor-
mance. We hope to use our system to capture these key
models, removing the need for a laser scanner. We would
also like to directly extend our algorithm to reconstructing
dynamic scenes. Vlasic et al. recently demonstrated a
system with high-speed cameras that film dynamic scenes
with a different controlled illumination for each frame, then
use optical flow to warp the images to key frames captured
under uniform illumination. We could use similar techni-
ques to apply our method to dynamic environments. The
experiments in Sections 7.4 and 7.5 show that 12 cameras
and 15 illumination conditions are enough to produce good
quality reconstructions, and the execution time is tractable
for performance capture.
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