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Abstract—This paper studies optimal sensor selection in dis- Optimal sensor selection problems have been studied ex-
crete event systems modeled by partially observed Petri netThe tensively in discrete event systems that can be modeled as
goal is to place a minimum number of sensors while maintainig finite state machines, e.g., [3]-[6]. In [3], a sequence of

structural observability, i.e., the ability to uniquely determine the tests | ided to obtai t of that h inimal
system state at any given time step based on sensor informari €sts 1S provided 1o obtain a Set of sensors that has minima

up to that time step, knowledge of the system model, and an COSt and ensures a given property (such as diagnosability).
arbitrary but known initial state. The problem is important  In [4], the problem of obtaining an optimal sensor configura-
because the majority of existing control schemes for Petri @ts tion of minimum cardinality is shown to be computationally
rely on complete knowledge of the system state at any givemie 4. (hy showing that the corresponding decision problem is

step. To simplify the problem, we consider two subproblems: - . . . .
the optimal place sensor selection (OPSS) problem and theNP-compIete) for several properties, including diagnosgpil

optimal transition sensor selection (OTSS) problem. The 0OBS normality, and observability. The authors of [5] discuse th
problem is shown to be computationally hard by establishing problem of sensor selection to achieve observability with

that the corresponding decision problem isA"P-complete. For  minimum cost and show that polynomial time algorithms to
this reason, we first reduce the problem to the linear integer find good approximate solutions to this problem most likely

programming problem, which can be solved optimally using . . . .
existing linear integer programming solvers (at least for sall do not exist (at least under certain complexity assump)ions

pr0b|em instances)’ and then propose two heuristic a|gori'tms to Minimall sensor Se|eCti0n to fu|f|” a desired fOI‘mal property
approximate its solution with polynomial complexity. Simuations is shown to be generallW’P-hard in [6]; for properties
suggest that the two proposed heuristics run faster and canrfd  that have mask-monotonic behavior (e.g., (co-)obseritgbil
reasonably good solutions when compared to optimal methods normality, state-observability, and diagnosabilitypptdown”
that are based on linear integer programming solvers. Unlile the w o " ' " .

| and “bottom-up” methods that have polynomial complexity

OPSS problem, the OTSS problem is solvable with polynomia - o ) -
complexity. and achieve a minimal sensor configuration are proposed

Index Terms—Discrete event systems, Petri nets, Structural in [6]. . . .
observability, Sensor selection, State-based control. In this paper, we focus on sensor selection in DESs that

can be modeled as Petri nets. Petri nets have certain advan-
tages over finite state machines, including a high language
complexity, a compact, structural, and graphical desoript
A DISCRETE event system (DES) is a dynamic systeg¥ the state space, and the ability to synthesize in a modular
that evolves in accordance with the abrupt occurrenGRay [7]. Formal properties (e.g., observability, diagrimkity)
at possibly unknown and irregular intervals, of physicaire relatively easy to define in Petri nets but difficult to
events [1], [2]. Such systems arise in a variety of contexigheck, partly because there is no practical algorithm teesol
ranging from manufacturing and robotics to vehicular teaffi the reachability problem of Petri nets [8]. There is only
computer systems, and communication networks. Applinatiojimited previous work on sensor selection problems when
that involve monitoring and controlling of such systemsy/relne underlying model is a Petri net. For example, in [9],
on information conveyed by various types of sensors that ajservability notions based on inputs and outputs are used a
available in the system. Usually it is impossible/unneaBs®  criteria when optimizing the selection of sensors in inteted
place sensors everywhere because sensors may be unavailadiri net models; in this case, genetic algorithms are used
or prohibitively expensive for certain state transitiomother g approximate the optimal sensor selection, but the method
tasks. Therefore, selecting a minimum number of Sensors dly applies to bounded Petri nets and the proposed algorith
a set of sensors of minimal cost that also meets the systeBhverges slowly to a suboptimal solution.
design requirements is critical and often mandatory. In the sensor selection problem we consider, we formu-
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based on sensor information up to that time step, knowledpee OTSS problem can be solved efficiently in time that is
of the system model, and an arbitrary but known initial statpolynomial in the number of places and transitions.

The requirement for uniquely determining the system state a The contributions of the paper include the following: i) to
any given time step is motivated by a number of applicatiomsir best knowledge, this is the first effort to systematycall
where complete knowledge of the system state is absolutélyestigate sensor selection problems in systems modsied b
necessary. Examples include the following: general Petri nets; ii) we formulate the concept of structural
eqbservability which is very important for implementing nyan
gg(isting state-based supervisor synthesis methods; @ies+
It]gblish two novel polynomial reductions, namely, the reituc

m MVC to OPSS and the reduction from OPSS to MIP;
we propose two approximation algorithms (namely, the

« In supervisory control, control policies for a large numb
of synthesis methods (e.g., [10]-[17]) are defined
a function from a reachable state to a control actio
Implicitly, these methods require that the system staEr

at any given time step is exactly known. There is only g » alorith d the “ton-down” alaorithm) th
limited number of supervisor synthesis methods that al ottom-up™ algorithm and the “top-down” algorithm) thatry

based on state estimates (e.g., [18]-[21]) because smﬂ%HCh faster and can get reasonably good solutions to the OPSS

control policies are difficult to formulate in an optimaIprOblem' and we also obtain an upper bound on the number

manner [19]. The problem is that algorithms based Oq_[gplace sensors in the solution generated by the “bottoim-up
orithm.

state estimates may also be forced to prevent transiti® i i , ,
firings that lead the system from one admissible state t_o'n the next section, we introduce Petri net notation and de-

another admissible state. More importantly, the use gpe partially observed Petri nets. In Section Ill, we foratel

state estimates may significantly reduce the performaridg OPtimal sensor selection problem while in Section 1V,
of the closed-loop system and, in particular, it may leaj€ give existence conditions for both the OPSS and OTSS
to a deadlock [22]. problems. In Section V, we show that the OPSS problem

« In user-interface design of safety-critical systems, e is computationally hard by showing that the corresponding
ggcision problem igV"P-complete; the problem can be solved

event systems which model such interfaces must . T
immediately observable in order to be “good” interfaceé),pt'ma"y by transforming it into an MIP problem as shown

i.e., interfaces that can accurately represent the uridgrly'" Section VI, or suboptimally using the approximation algo

system to the user, so that the user will not be misled §MS We propose and analyze in Section VII. In Section Vil
confused [23]. the OTSS problem is shown to be solvable with polynomial

B _ ~complexity. In Section IX, we compare the solutions provide
Structural Observablllty requires that the current systéate IS by these different a|gorithms using a flexible manufacwrin

determined uniquely without delay for an arbitrary but kmowce|| example. Finally, conclusions are drawn in Section X.
initial state. As shown later in the paper, even if one allows

a finite delay in the definition of structural observabilitiye

requirements for the two notions (non-delayed and delayed

structural observability) remain essentially the same. In this section, we review basic definitions of Petri netg|[24
After we formulate and analyze structural observabilitg, wand partially observed Petri nets [25].

consider the_ placement of a minimum number of Sensors e wion 1 A Petri

the system in order to enforce this property. Unlike sens

selection problems for DES modeled as finite state machin

we allow _t\_/vo types of §_ens.ors (in order to_ mpdel both pla C (PxT)U(T x P)is a setof arcs : F — {1,2,3, ...}

and transmpn observ_ablhty). place Sensors |_nd|cat€mlrmber is a weight function? N\ T = § and P U T # 0.

of tokens in a particular place (e.g., vision sensors), and

transition sensors indicate the firing of a transition inegi A markingis a functionM : P — N, that assigns to

subset of transitions (e.g., motion sensors). To simplifg t each place a nonnegative integer number of tokens, where

problem and gain a better understanding for it, we considsf denotes the set of nonnegative integdr&p) denotes the

two subproblems: the optimal place sensor selection (OPS&imber of tokens in plage Pictorially, places are represented

problem and the optimal transition sensor selection (OTSBY circles, transitions by bars, and tokens by black dots, as

problem. The paper first establishes that the OPSS problshown in Fig. 1. APetri net G = (N, M,) is a Petri net

is computationally hard by showing that the correspondirggructureN with an initial markingM,.

decision problem isN“P-complete (this is done by reduc- A transitiont is said to beenabledat markingM if each

ing, with polynomial complexity, the minimum vertex covelinput placep of ¢ (i.e., each place such that(p,t) € F) is

(MVC) problem to this decision problem). We also show thaharked with at leastV(p, t) tokens; this is denoted by/[t).

the OPSS problem can be reduced with polynomial complexityhe firing of enabled transition removesW (p,t) tokens

to the minimum{0, 1}-integer programming (MIP) problemfrom each input place and addsWW(¢,p’) tokens to each

which can be solved optimally using existing linear integesutput placep’ (i.e., each place’ such that(¢,p’) € F),

programming solvers (at least for small problem instancesgsulting in a marking)’; this is denoted byM[t)M’. In

As an alternative to the linear integer programming-baséus paper, we assume that at most one transition can fire

approach, we also propose two approximation algorithms @ any instant. NotationS = ¢, ts,---ts, captures ak-

approach the optimal solution. Unlike the OPSS problertength firing sequencefrom marking M if t,, € T and

Il. PRELIMINARIES

net structureis a 4-tuple N =
[3, T,F,W) where P = {p1,p2,...,pn} is a finite set ofn
Faces;T = {t1,t2,...,t,n } IS a finite set ofm transitions;
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Mlts,YMi[tsy)Ma---[ts,)M’; this is denoted byM[SYM’. in this paper, we focus on structural properties that are
Marking M’ can also be written as independent of\{,. |

r_
M’ =M + Do, 1) I1l. PROBLEM FORMULATION

where (i) D is the n x m incidence matrixof N satisfying In order to formulate sensor selection problems, we define
D(i,j) = =W (pi, t;) + W(tj,pi) (if W(p;,t;) or W(t;,p;) the notions of place sensor configuration and labeling fanct

is not defined for a specific plage and transitiont;, it is A place sensor configuratioll is a vector(vy vs ... v,,)7,
taken to bed), and (ii) o is them x 1 firing vectorof S with wherev; = 0 if no place sensor exists on plageandv; = 1

its ith entry being the number of times transitionappears otherwise||V|| := "', v; < n; denotes the total number of
in S. In this paper, we assume that the Petri net is pure, i.place sensors in the place sensor configurakion

it has no self-loops. A labeling functionL : T — X U {e} assigns a label to
each transition and satisfidgt) = ¢ for anyt¢ € T,,. Here,

Y is the set of labels andlis the empty label. We defing so
that, for eache € ¥ there exists € T, satisfying L(t) = e.
Therefore |X| is the total number of transition sensors in use
If t; andt, are identically behaving, then one of them is reand could be zero if no transition sensor is used.

dundant as far as state reconstruction is concerned. Tieref When an observable transitionvith a sensor fires, the label
since we focus on structural observability (a system pigrier L(t) is observed. Therefore, if(t,) = L(t2), the firings of

be defined shortly, which deals with state reconstructise), t1 andt, cannot be distinguished solely by label observation.
assume without loss of generality that there are no iddhticaFurthermore, ifL(t) = ¢, then the firing of transitior is not
behaving transitions in the Petri net we study. observed at all. We denofE. := {t € T': L(t) = e} for all

Definition 3 A partially observed Petri net) is a 3-tuple e€XUfeh

(N, P,,T,), where Example 2 For the net in Fig. 1, considér = (1 1 1)* and

L defined asL(t1) = a, L(t2) = L(t3) = b, L(t4) = ¢ and

L(ts) = e. SupposéVy = (2 0 1 0)T and the firing sequence

{pts occurs. Then, the system trajectorylif[ts) M [ts) Mo,

where M; = (0 0 2 0)7 and My = (0 0 1 1)T. Given

V and L, the available sensor information {€ 0 1)7 —

b— (0027 — (00 1)T, where— denotes the temporal
P, = P\P, denotes the set of unobservable placegrder of observations. Though no label is observed when the

Observable places can have sensors (e.g., vision sensats) dystem evolves from/; to M», we can infer that unobservable

indicate the number of tokens in a particular place, but unopansitiont; has occurred from the token change in plage

servable places cannot. Similarly,, = T'\T, denotes the set because only the firing of; can decrease the token number

of unobservable transitions. Observable transitions are hin p; by 1. [

sensors (e.g., motion sensors) that indicate when a tiamsit ) _

in a given subset of transitions has fired, but unobservabIeG'V?n a partially obs_erved Petri net, the general sensor

transitions cannot. One can always rename places to ens’iﬁ?cuon problem consists of choosing a place sensor con-

that the firstn, places are observable; therefore, we takiurationV and a labeling functior. such that|V| + X is
Py = {p1,p2, .o Py } minimized (or, more generally, the total cost of all sensors
o — b) 90 ny .

use is minimized)and the system state can be determined
Example 1 The netin Fig. 1 is a partially observed Petri netuniquely based on sensing information, knowledge of the
All places excepp, are observable and all transitions excgpt system model, and an arbitrary but known initial state.

are observable; unobservable places (or transitions)ravend
as shadowed circles (or bars).

Definition 2 Transitionst; andts areidentically behavingf
D(:,t1) = D(:,t2), whereD(:,t) denotes the column ab
corresponding to transitioh

e« N = (P,T,F,W) is a Petri net structure with places
andm transitions;

e« P, C P, is the set of observable places with cardinalit
ny satisfying0 < n; < n;

e T, C T, is the set of observable transitions.

Definition 4 Given a place sensor configuratidn and a
labeling function L, a partially observed Petri nef) is
Remark 1 We exclude initial statelM, from the definition structurally observabléf for an arbitrary but known initial

of partially observed Petri nets (introduced in [25]) besmu state M, andany firing sequence fronm/,, the system state
M at any given time step can be determined uniquely based
on observations from place sensors and transition sengors u
to that time step.

The notion of structural observability requires that the
current system state is determined uniquely without detay f
an arbitrary but known initial marking. If one allows a finite
delay in that definition, the notion ok -delayed structural
observability for a finite honnegative integer constahtcan
be stated as follows, and can be shown to be equivalent to
structural observability (refer to Appendix A).

Fig. 1. A partially observed Petri n€p.
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Definition 5 Given a place sensor configuratidn and a Remark 3 Transition distinguishability is different from
labeling functionZ, a partially observed Petri n&p is K- event-detectability as defined in [26] in that it allows infa-
delayed structurally observabléfor an arbitrary but known tion from transition sensors (besides place sensors) taksmt
initial state M, andanyfiring sequence from\/,, the system into account. Another related concept is invertibility [27
state M at any given time step > 0 can be determined i.e., the ability to reconstruct the entire event stringnfrthe
uniguely based on observations from place sensors and trahservation of the output string; the main difference ist tha
sition sensors no later than time step K. invertibility allows finite delay and depends on the initishte.

Remark 2 There are several properties that are related to, b.ut

differ from the notion of structural observability as define@ Proposition 1 Given a place sensor configuratidn and a
this work. The closest one is the immediate observabilig},[2 labeling functionL, a partially observed Petri n€} is struc-
i.e., the ability to determine the current state based ortlyrally observable if and only if it is transition distinginable.
on partial information about the state and either the last or
next event; the main difference between these two ”0ti028|e
is that structural observability requires that the state ba
determined for amrbitrary but known initial state. Structural
marking observability [19] is defined in a different settin
and has a different meaning: more specifically, in [19] eac!
transition has a unique label and the goal is to determine i?
there exists an observation sequence for angnowninitial
marking such that the current state can be reconstruct
In [26], observability involves not only the informationofn
place sensors but also control inputs.

Proof: (If part) If the Petri net is transition distinguish-

, then we can uniquely infer the firing sequence based
on transition labels and observations from place sensas. A
the initial state is known, the system state can be uniquely
etermined using the state equation (1). This process can be
ntinued recursively for all time steps.

(Only if part) If the Petri net is not transition distinguéie,

thden there exists an initial markiny,, some time step, and

?W(') transitionst; and ¢, such that the firings of; andts
cannot be distinguished based on sensing information. The
marking M at time stepk enables botht; and ¢, and the
Definition 6 Given a partially observed Petri n€ and a firings of transitions; and¢, at markingM result in different
fixed labeling function (or a fixed place sensor configuratiormarkings as there are no identically behaving transitidms.
V), a place sensor configuratidn (or a labeling functionl) this scenario, the system state cannot be determined upique
is valid if @ is structurally observable. and the Petri net is not structurally observable. ]

To simplify the sensor selection problem and gain a bettﬁrProposmon L implies that we can focus on the study of

understanding for it, we consider the two subproblems defin ansition dlstmgwshal_mhty. G_lven aplace sensor C““"?"@'O”
below. , the ||[V|| x m matrix Dy is constructed by keeping the

rows of D that correspond to observable places with sensors.
Problem 1 (Optimal Place Sensor Selection (OPSS)) Givenla addition, for a given labeling functioi, the ||V|| x |T¢|
partially observed Petri n€p and a fixed labeling functiofi, matrix DS, is constructed for each labek XU{c} by keeping
find a valid place sensor configuratidf,;, such that for any the columns inDy, that correspond to transitions if.

other valid place sensor configuratiéh |[Vmin|| < [[V] Proposition 2 Given a place sensor configuratidd and

Problem 2 (Optimal Transition Sensor Selection (OTSS)a labeling functionZ, a partially observed Petri ned is
Given a partially observed Petri n@tand a fixed place sensortransition distinguishable if and only if i) for each lakeE X,
configurationV/, find a valid labeling functiorL,,;, : T'— all columns of D, are pairwise different, and ii) fog, all
¥ U {e} such thatX| is minimized. columns ofD§, are nonzero and pairwise different.

Proof: The if part follows from the fact that for any
transition ¢, there is a unique combination of a transition
label L(t) and a column vector of token changls (:, t) that

According to the state equation = M, + Do, one jdentifies the firing of the transition. Now we prove the only
sufficient condition for uniquely determining the systeratst if part by contradiction. i) Suppose there is a labet ¥ and
at any given time step is that the firing of each transitiomgt atwo associated transitiorts, o such thatL(t,) = L(t2) = e
time step can be distinguished based on sensing informatigRg Dy (:,t1) = Dy(:,ts). As there exists a marking/
In turn, this ensures that the firing sequence and the sequefifder whicht;, andt, are both enabled, we cannot distinguish
of markings can be constructed recursively. This discussigansitionst; and¢, based on sensor information at marking
motivates the notion of transition dlStlngUlShablllty M (We can a|WayS set the initial marking to M), this con-
Definition 7 Given a place sensor configuratidn and a F_radicts the fact tha_t the Petril pet is transition dististpable.
labeling function L, a partially observed Petri nef) is ) SUppose there is a transitionsuch thatL(t) = e and
transition distinguishablé, for an arbitrary but known initial Pv () = Ojjv||, where0y| is a|[V'||-dimensional column
state Mo, the firing of any of its transitions at any time stepy€ctor with all entries being. As there exists a marking
can be distinguished from any other transition firing based ¢/ such thatt is enabled, then the firing of cannot be

observations from place sensors and transition sensore uffi¢tected based on sensing information at markliig also
that time step. a contradiction. iii) The case when there are two transition

t1, to such thatL(tl) = L(tg) =€ andDV(:, tl) = DV(:7t2)

IV. CHARACTERIZATION OF STRUCTURAL
OBSERVABILITY
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can be proved in a way similar to Case i). B s identifiable by its unique label specified ly,,.., and the
firing of unobservable transitioty is identifiable by the token

Proposition 3 Given a place sensor configuratidn and a change in observable plags. -

labeling functionL, the transition distinguishability of a par-
tially observed Petri nef) can be determined with complexity Though the existence of an optimal solution to the OPSS
O(nm?). problem can be determined with polynomial complexity, the
] . OPSS problem itself is computationally hard (as we show in
Proof. Refer to Appendix B. he next section, the corresponding decision proble 8-

- L t
Now we state necessary and sufficient conditions for tr(]:%mplete). On the other hand, as discussed in Section VIII,

existence of solutions to Problems 1 and 2. First, we define . ! . .
. . . e OTSS problem is solvable with polynomial complexity.

Vinaz = 1, (Wherel,, is ann,-dimensional column vector

with all entries beingl), and definel,,,q. as Lyq.(t) =t for

anyt € T, and Lynas(t) = € for anyt € Tho. V. N'P-COMPLETENESS OFOPTIMAL PLACE SENSOR

SELECTION PROBLEM
Theorem 1 (Existence Condition for OPSS) Given a partially
observed Petri nef) and a fixed labeling functiord, there
exists an optimal place sensor configuration for the OP
problem if and only if@ is transition distinguishable underOr “false.” A decision problem is said to be in the clas&
L andVonqs. if it can be solved by a nondeterministic Turing machine in a
Proof: (If part) As the Petri net is transition distin-number of steps that is polynomial in the size of the problem.
guishable under the place sensor configurafion,., it is A decision problem is said to b&/P-hard if solving it in
structurally observable undér,,,. following Proposition 1, polynomial time would make it possible to solve all problems
which implies that there exists at least one valid placeaendn the classNP in polynomial time. If a problem is\V’P-
configuration. Since the total number of place sensor configiard and is inV'P, the problem is said to b&/P-complete
rations is finite and equal t1, the OPSS problem will have In this section, we show that the OPSS problem is computa-
an optimal place sensor configuration. tionally hard by demonstrating that the correspondingsieni
(Only if part) If there exists an optimal place sensoproblem isN’P-complete; theV'P-hardness is established by
configuration, we can add more sensors on the optimal plaéglucing the minimum vertex cover problem (a knowip-
sensor configuration to géf,...., while the Petri net remains complete problem [28]) to the decision version of the OPSS
transition distinguishable following Proposition 2. m problem.

Example 3 Given the labeling function specified in Exam-Problem 3 (OPSS: Decision Version) Given a partially ob-
ple 2, if we considelV,,,, = 13 for the net in Fig. 1, we get served Petri ne), a fixed labeling functior’., and a positive

We first recall some basic concepts from the field of
mputational complexity [28]. A problem is callediacision
oblemif all problem instances are mapped to either “true”

the 3 x 5 matrix below integerk < n, is there a valid place sensor configuratigh
"N < k2
11-1 —21 ol o such that||V’|| < k7
D o 1 0|-1] O The definition of a vertex cover for a grapth = (Z, E),
Vmae =1 0| 0 1 1| -11" where Z is the set of vertices andél is the set of edges, and
a b c € the minimum vertex cover problem are recalled next.

Following Proposition 2, the Petri net is verified to be trarDefinition 8 Given a graphH = (Z, F), a subsetZ’ C Z
sition distinguishable, and therefore, an optimal plagesse is a vertex coverfor H if for each edge(u,v) € E, where
configuration exists. This optimal place sensor configaratiu,v € Z, at least one of, andv belongs toZ’.

H I T i 3 _
IS fognd t0 beVinin = (0 0 1? by.gomg through alb” = & Problem 4 (Minimum Vertex Cover (MVC): Decision Ver-
possible place sensor configurations. In other words, only a

sensor onps is needed to complement the observation d?on)GNenagraptH = (2, E) and a positive integdr< |Z],

. ! N<i?
the label sequence so that we can determine the system s'?a{gere a vertex cover” such thaZ’| <1

uniquely. B Theorem 3 The decision version of the OPSS problem is

We also have the following condition for the OTSS problen’{\,/p'complme'

which can be proved in a way similar to Theorem 1. Proof: Problem 3 is shown to b&/P-complete by (i)

Theorem 2 (Existence Condition for OTSS) Given a partially.eStabIIShIng that it is iV’P and (i) reducing Problem 4 to

observed Petri ngd and a fixed place sensor configuratidgn
there exists an optimal labeling function for the OTSS peabl
if and only if @ is transition distinguishable undér and

(i) Problem 3 is inA/P. Select a place sensor configuration
V such that||[V|| < k and test ifV is valid; this test can
be done with complexity that is polynomial in the number
of places and transitions (see Proposition 3). Therefa)P
Example 4 Consider the Petri net in Fig. 1 where placéem 3 belongs toVP.
p4 IS unobservable and transitiag is unobservable. Given (i) Problem 3 is AP-hard because Problem 4 can be
V = (00 1)T, the optimal labeling function exists following reduced to it with polynomial complexity. Given a graph
Theorem 2. Intuitively, the firing of an observable tramsiti H = (Z, E), where Z = {z1, 29, 23,...,2,}, We construct

Lmaz-
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(a) Graph (b) Corresponding net

Fig. 2. Reducing MVC to OPSS.

a partially observed Petri n€}, with n places andn := |E| and the output place of the transition, then the unobsegvabl
transitions. The vertices of the grap are renamed to transition cannot be detected and therefore, the Petriset i

be {1,2,...,n} so that all isolated vertices have indicesiot transition distinguishable); then, the set of vertitiest
ny +1,...,n. Petri netQ is constructed by making a copycorrespond to the set of places that have senso¥s is also
of the renamed graph and attachipgto vertex: for ¢ = a vertex cover for the grapl/; (ii) given any vertex cover

1,2, ...,n. For every edge with verticesi, j in H, a transition Z’, for each edge: € E, at least one of its two vertices

t is inserted in@Q and connected to places and p,. We belongs toZ’; then, the transition corresponding to the edge
arbitrarily assign directions to these arcs with the caistr ¢ in H can be distinguished from other transitions by the
that the two arcs associated with the same edgé imave the place corresponding to the selected vertextherefore, we
same direction (see Fig. 2). Furthermore, for each vertex, Wwave established the validity of place sensor configurdtion
assign different weights to each incoming (or outgoing) aréwith V'(p) = 1 iff p corresponds to a vertex in the covét).

these weights range from to the number of incoming (or [ ]
outgoing) arcs. Places, ..., pn, (Of pn,+1,-..,pyn) are taken

to be observable (or unobservable). Transitions are narmed ®1. TRANSFORMATION OFOPSSTO A LINEAR INTEGER
t1, to, ..., t,, and share the same empty labeFig. 2(b) shows PROGRAMMING PROBLEM

a Petri net constructed from the graph in Fig. 2(a) using the|n this section, we convert the OPSS problem to the

above mentioned procedure. The construction of the Petri Meinimum {0, 1}-integer programming problem (a knowliP-

from the given graph has complexitf(|E| x |Z]) that is  complete problem [29]) so that it can be solved optimallyigsi

polynomial in the number of edges and vertices. It is WO”@xisting linear integer programming solvers (this is poissi

noting the following: for small problem instances). Before we present the formal

« The constructed partially observed Petri aehasP, = transformation, we first define the minimu#®, 1}-integer

{p1,p2,--»Pn, }» To = 0, and fixed labeling function programming problem and then use an example to illustrate
L(t;) = e for i = 1,2,...,m, which implies that all the main idea.

transitions are unobservable. Given this Petri net and_ga - .
positive integelk = [, we have an instance of Problem 3Problem 5 (Minimum {0, 1}-Integer Programming (MIP))

. . ) i ; Given ag x s integer matrix4, ag-dimensional integer column
As there are no identically behaving transitions in the . . L
X vector b, and ans-dimensional nonnegative integer column
constructed nef), we can decide whether a place sensor ) . : :
. . . ; : .. _vector ¢, find a binary s-dimensional column vector to
configurationV is valid or not by checking transition -~~~ .~ )
T o . . minimize ¢* x subject toAx > b.
distinguishability following Proposition 1.
« All transitions are labeled with the same empty labeExample 5 For the Petri net in Fig. 1 with the labeling
and the input place and output place of each transitidanction defined in Example 2, we can formulate the following
are observable (unobservable places are isolated). Eéinkar integer programming problem corresponding to the

observable place can be used to distinguish all of its inp@PSS problem

and output transitions as the firing of these transitionk wil . T

result in different token changes in the place (recall the e

procedure of assigning weights to arcs). Therefore, we st Ar=>b

can distinguish a transition by putting a sensor on eith@fere . — 1117, 2=V = (v v2 v3)T (asp1, p2 andps
its input place or output place. are all observable}, = (1 1)7, anct

Note that there is a Qne—tq-or)e correspondence between a 14-9 140 041 111
valid place sensor configuratidri’ for () and a vertex cover A= 040 040 —1#£0 =10 o 1|
Z'in H: (i) given any valid place sensor configuratioh for

Q, each transition must have at least one input or output placeyge o integers: andb, a b has valuel if a is not equal tob, and
p such thatV’(p) = 1 (if V’(p) = 0 for both the input place o otherwise.
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The first row of matrixA is obtained by comparing the firstto find approximation algorithms that lead to good suboptima
three entries ofD(:,t;) with the corresponding entries ofsolutions with reasonable computational effort. This im&o
D(:,t3) and captures the requirement that the place sensworithe next section.

configurationV” distinguish transitiong, andts; the second

row is obtained by comparing the first three entriedxf, ¢5) VII. A PPROXIMATING OPTIMAL PLACE SENSOR

with three0’s and captures the requirement thatdetect un- SELECTION

observable transitioty. Using the linear integer programming |, this section, we propose two approximation algorithms

solver [30], the optimal solution is found to g0 1), which o, the OPsS problem by generalizing the heuristics used
is the same as the solution obtained via exhaustive searct}dpthe optimal selection of diagnostic probes in [31]. More

Example 3. specifically, we consider how the addition of a sensor to

To translate an instance of the OPSS problem to an instar@éeobservable place serves to detect/distinguish uncétsierv
of the MIP problem, we define the parameters of the MIP &&nsitions or to distinguish transitions that are assedia
follows: with the same labek € X. We then define a “measure

« Sets = n; andg = |T5|+Ze€§]u{s},\Tc|22 (\T2|) where Of (_j.istinguishabil_ity" (called scoring function) and useto

(77,) is the binomial coefficientsi chooser”: faC|I!tate our ch_0|ce of observable _places _to put sensors on
. Sretb — 1, c=1,andz = V: G|\{e_n a partially _observed .Petrl n@l Wlth n places,.m
. SetA toqbe aq x s binary matrix with two kinds of transitions, and a fixed labeling fgnctmb, if there exists
rows: a) for each pait;,t, € T, (j # k) for any label one or more unobser_vable tranS|t_|ons, we construct a new
¢ € S U {e} with |T,| > 2, there is a row of the form parual{y ogservdedbPetrl r_m@_by e:ﬁdlng ar: |S;)Igte|dt trz_itns:tlon
. .y . tma1 O and by assigning the empty label to it. In
(D(L,j) # DL, k) D(2,) #D(2 k) Dins, j) # other words, the new incidence matix = (D 0,,) if there

D(nq,k)); b) for eacht; € T, there is a row of the form =" o ;
(D(1,§) #0 D(2,5)£0 --- D(ny,j) #0) exists at least one unobservable transition(Jn otherwise,

D = D. Given a place sensor configuratibnit can be shown
Proposition 4 The minimum {0, 1}-integer programming (following Proposition 2) that if, for each labele ¥ U {¢},
problem constructed above is equivalent to the OPSS probleit columns of D¢, are different from each other, then the

Proof: As « = V, ¢’z = ™ v; = ||[V]|. We need to original Petri_ n_eQ is tra_msition dis’Finguish_abIe. We introduce

D because i) it simplifies Proposition 2 in the sense that we
only need to check if any two columns 6f, are different for
¥ U {e}, including the empty label; and ii) it eliminates
need to treat differently unobservable transitionsoseh
firings generate token changes at plag¢drom unobservable
éransitions (whose firings do not generate token changes at
p) in the partition of 7. generated by observable plaggas
defined below).

show Az > b if and only if V is valid, i.e., the Petri net is
structurally observable undé&rand the given labeling function
L. Following Proposition 1 and Proposition 2, we only need tf%e
show Az > b if and only if all columns ofDy, are pairwise the
different for each labet € ¥ such that|T.| > 2, and all
columns of D§, are nonzero and pairwise different. This i
established from the following facts:

e (D(1,j) # D(1,k) D(2.j) # D(2,k) --- D(n1,j) #
D(n1,k))z > 1 is equivalent to the fact that thigh and Definition 9 Given a partially observed Petri n€) and a
kth columns of incidence matri® differ in at least one fixed labeling functionZ, Q.(p;) for e € ¥ U {¢} denotes the
of the observable places that are equipped with a sengartition of 7. generated by observable plage in the Petri
(as indicated by the place sensor configurafior= ). netQ, and is defined a®.(p;) = {S1, S, ..., St }, where
The construction of matrixl ensures that this is true for 4 % is equal to the number of distinct entries in the row

all pairst;,tx € T. (j # k) for any labele € ¥ U {¢} vector D{,, whereV hasV (i) = 1 and all other entries
with |T.| > 2. In total, there aréy”, v,y 7152 () equal to0;
inequalities of this type; e S1USU---US, =T, andS; NS, = 0 for different
o (D(1,7) #0 D(2,j) #0 -+ D(ni,j) #0)z > 11is i, J
equivalent to the fact that thigh column is nonzeroinat .« S forl =1,2,..., k is a non-empty set with the maximal
least one of the observable places that are equipped with number of transitiongt;, ..., t; } that satisfyt;, - -- ,t, €
a sensor. The construction of mattik ensures that this T. andD(i,j) = --- = D(i, k).
is true for anyt; € T.. In total, there ar¢T| inequalities

Example 6 We find the partitions generated by observable
placep; in the Petri net constructed from the net in Fig. 1 by

o . dding an isolated transitiag. Then the row of the incidence
It can be verified that the reduction from OPSS to M”f?natrix[) corresponding to placgy is

can be performed with complexity that is polynomial in the
number of places and transitions. Therefore, we can sobkve th | 1 | -1 -2 | 0 | 0 0 |
OPSS problem optimally using linear integer programming a b c e 7

solvers. Though linear integer programming solvers with-ge ;g by definition, the partitions generated by plagefor

erally be more efficient than exhaustive search, they can ophpels . 5 ¢ and ¢ are respectively{{t1}}, {{t2},{ts}},
effectively deal with small problem instances as the OP%S{M}} and {{ts, ¢} }.

problem is computationally hard. Therefore, it is impemti

of this type.
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Remark 4 The partition defined above generalizes the mea-We briefly explain Lines 4-12 of Algorithm 1. After com-
sure of the diagnostic power of a probe in [31] in the sengriting the score for every observable place, welgt, ¢,

that the incidence matri can have arbitrary integer entrieso be V},,,, and Py to be the set of observable places at
while the dependency matrix in [31] only hésor 1 entries. Line 4. P4+ keeps track of the set of observable places that
| we have not considered so far and its cardinality decreases
by one after each loop in thevhile clause; this guarantees
the termination of the algorithm. In the loop, we uge,,, to
represent the place sensor configuration induced ¥gm.c..;

If there exists at least one unobservable transitio) ithen
|T-| > 2 in Q. Clearly for a labele with only one transition,
the transition is observable and uniquely identified byatsel. : R

" . . A by removing a sensor from the plagethat minimizes the
The transitions associated with a laleet ¥ U {¢} satisfying . : .
A . core among all places iR.s:. If the system is transition
| 7| > 2 need to be distinguished using place sensors so t@"f‘stin uishable undeV and L, then the sensor can be
transition distinguishability holds. If the partition genated 9 temp '

removed and we updal usin ; otherwise, the
by an observable plagefor such a labet has|T,| elements, sensor cannot be rgmoﬂ\iuéraeﬁhe cu%rvetr?ﬁ'erationva nd
then a place sensor at is sufficient for distinguishing all ent

transitions inT,. In Example 6,p; is sufficient for distin- remains th? same as before. In both cases, we remove the
L © . . . L corresponding placg from P.s;. After we have considered

guishing transitions associated with lalbebut is insufficient ; . .

for distinguishing transitions associated with all observable places, i.eB. s+ is empty, the algorithm stops

. . . with the output -ent, Which is an approximation t,,;
Now we define thescoring functiorfor an observable place Utp Veurr ent. : PP X onin
: . because in any execution of théile loop, V., rrent iS always
pi asf(pi) = X cesuiey, m>2 [ (pi)]. The scoring function

e valid.
satisfies I < \ < For certain Petri nets, it may be the case that sgifig)
b < fpi) <, is very close tou, so that one or two additional place
where = Zeezu{s} 7>z and  wp — sensors are sufficient to guarantee structural obseryahile

Zeezu{g} T, |>2 IT.|, becausel < [Q.(p;)] < |T.|. If nextconsider how to extend the scoring function to multiple

f(pi) > f(p;), then a place sensor gt can distinguish more places so that we can approximate the optimal_ solution in
(partitions of) transitions than a place sensopattherefore, @ “bottom-up” fashion. Suppose we have a partition(p;)
f(p:) is a measure of the ability of plage to distinguish generated by place; for label e and' [Q.(p;)| < |Te|.
transitions. If f(p;) is equal tou,, thenp; is sufficient for If we choose another placg;, we can refine the parti-
distinguishing all transitions. tion Q.(p;) by considering whether transitions belonging to
With the scoring functions computed, one natural “topsome setS € (.(p;) can be distinguished using;. If
down” method to approximate the OPSS problem is to sta¥e denote the refined partition &% (p;,p;), we can define
with all observable places and then subtract places one &y dit{ri:Pj}) = > cesifer,m>2 [Q2e(pi,p;)|- By repeatedly
in the order of increasing value of the scoring function,ilunttPPlying the above operation, we can define the scoring func-
we reach a set of observable places that cannot be redufi@@ f(5) for any nonempty set' of observable places. Note
further without affecting the transition distinguishatyilof the that the partitions ir2.(p;, , pi,, ..., p;,,) are independent of

net. The details are given in Algorithm 1. the ordering of places anfi(S) still satisfiesl, < f(5) < uy
for any nonempty set of observable places.
Algorithm 1 Top-down method The idea of the “bottom-up” method is as follows: initially,

choose the place,; which maximizesf(p;) and keep its
generated partition for each label; the second time around,
choose the place; which maximizesf({p;,p,;}) and keep
the refined partition for each label; keep doing this until

1: Determine whether there exists an optimal place senslz)(rs) U _for some subsef of observable places. The details
dre given in Algorithm 2.

configuration using Theorem 1; if one does not exist, exit; . L . ,
2: ConstructQ) by adding an isolated transition if there is at We briefly explain Lines 3-10 of Algorithm 2. We first

least one unobservable transition: set Veurrent 10 be the place sensor configuration without
' sensors at Line 3. If) is transition distinguishable under the

Input: A partially observed Petri nep) and a fixed labeling
function L
Output: V' — an approximation oV},

i ‘C;om‘puttei(z‘)/i) fo;%el_ilypz fjg given labeling function. and th_e place sensor configurati(_)n

5. wﬁTéETB i ’;"8 do ef o V“."Te”‘f’ then no place sensor is necessary and the algorithm

6 Viemp z: Vourrons: exits with V' = 0,,,. Otherwise we seP,.; to be the set of

7. Findp € Pi.s+ to minimize f(p). If there are multiple E_bservable pl)(lace§ 0 ﬁe fthﬁ empt;; sst, amzltﬁn tcl) beO ﬁt
places that minimizg (p), randomly choose one; ine 4. Pie i eeps track of t es_eto observable places that we

& Viewp(n) < 0; have not considered so far, variatsikeeps track of the set of

observable places that have sensor¥ig).,.cn:, andsign has

o Test whether() is transition distinguishable undera valuel if we have found a valid place sensor configuration

Viemp- If itis, then Veyrrent <= Viemp:

10: Pleyt = Preye — {p}; 4f |Qe(ps)| = |Te| for every labele, then adding another place cannot
11: end while increase the value of the scoring function. In fact, in suabec a sensor at
12: V <= Voyrront- placep; is sufficient for structural observability and the propogégorithm 2

would terminate after selecting;.
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Algorithm 2 Bottom-up method

Input: A partially observed Petri nep) and a fixed labeling
function L

Output: V' — an approximation o¥/,,;,

configuration using Theorem 1; if one does not exist, ex
least one unobservable transition;
L and Veyprent, €Xit with V- =0,,,;

4: Pegr <= P,, S < 0, andsign < 0;
: while sign is 0 do

6: Findp € Py, to maximizef(S U {p}) and keep their
generated partitions for each label. If there are multip
places that result in an equal maximum, random
choose one;

7 ‘/current(p) < 1, Pleft <~ Pleft - {p} andS < SuU
{p};

8 If f(S) is equal tous, thensign < 1,

9: end while

10: V & ‘/cur'r‘ent-

and 0 otherwise. In thewhile loop, we first select place
(in P.y:) that maximizedthe scoref (S U {p}); then, we set
Veurrent(p) to bel, removep from P, and at the same time
addp into S; finally, we determine iff (S) is equal touy, or
equivalently, if V., rene is valid. If it is, then thewhile loop
ends by settingign to bel andV_,.. IS @n approximation

: Determine whether there exists an optimal place senso
. ConstructQ by adding an isolated transition if there is a

: Veurrent < Op,. If Q is transition distinguishable under

programming solvers (in Example 5). |

Now we provide a simple analysis of the performance of
the “bottom-up” method by providing an upper bound on
the number of place sensors in the solution generated by
Allgorithm 2. The upper bound isin(ny, uy —1I,+ 1), where
ol is the number of observable places and(or [;) is the
{haximum (or minimum) value of the scoring function. The
reasoning is the following: at each iteration in Algorithm 2
one place sensor will be added and the scoring function
increases at least by for the first picked place and at least
by 1 for the following picked places (otherwise, we will not
select the place sensor); therefore, the loop will be exetut
at mostn; times as there can be at most sensors to add,

nd also at most;, — [ + 1 times as the value of the scoring
Emction increases from at leakt to u; with the increment
eing at leastl. For the OPSS problem in Example 7, as
ny = 3, u, = 4 andl, = 2, we get the upper bound
min(ny, uy —lp + 1) = min(3, 4 — 2+ 1) = 3; clearly,
the bound holds as there is only one sensor in the optimal
solution.

It can be shown that both Algorithm 1 and Algorithm 2 have
complexityO(n?m?); details are omitted due to lack of space.
We can obtain a better solution if we apply Algorithm 1 after
Algorithm 2 by settingV,,,,-ren: (@t Line 4 of Algorithm 1) to
be the output of Algorithm 2 instead &f,,,.; this is illustrated
in Section IX-A.

VIII. OPTIMAL TRANSITION SENSORSELECTION
PROBLEM

to Vin; Otherwise, the algorithm goes to the next loop. The ) )

algorithm is guaranteed to stop because after each itaratio S€ction V showed that the optimallace sensor selec-

S| will be increased byl and|S| is upper bounded by the tion problem is co_m_putanonally h_ard by showing that the

number of observable places (and also because the existeffigesponding decision problem §"P-complete. Perhaps

of an optimal solution has been verified at Line 1). surprisingly, the optimatransition sensor selection problem
is solvable with complexity that is polynomial in the number

Example 7 For the Petri net in Fig. 1 with the labelingof places and transitions. We first define the partition of

function defined in Example 2, we illustrate the use of th?o generated by a p|ace sensor Configuraﬁ(),nwhich is a
“top-down” and “bottom-up” methods to solve the OPSgjightly modified version of Definition 9.

problem. An optimal solution exists as shown in Example 3. _ . _

As t5 is unobservable, we add an isolated transitignto Definition 10 Given a partially observed Petri né} and a
construct). We first use the “top-down” method. We computdixed place sensor configuration, the partition of the set
f(pi) for i = 1,2,3, and obtainf(p;) = 3, f(p2) = 3 and of observable transitiong,, generated by is defined to be
f(p3s) = 4. At the first iteration,p; and p» both minimize Q(V) = {So, S1, S2, ..., Sk}, where

f(p); we choose to eliminate the sensor pnand find out
that() is still transition distinguishable. At the second iteoati
we eliminate the sensor op, while at the third iteration,

we cannot eliminate any sensor and the algorithm ends with

V = (0 0 1)T. Using the “bottom-up” method, we initialize

e Sy is a (possibly empty) set with the maximal number
of transitions{¢;, ..., t;} that satisfyt;,--- ,t;, € T, and
Dv(:,j) = .- = Dv(:,l) = OHVH (WheI'EDv(:,j)
denotes thgth column of matrixDy);

S = (). At the first iteration, we findps which maximizes
f(p) and setS = {ps}. As f(S) = up = 4, the algorithm
ends with the” = (0 0 1)T". For this particular example, both
algorithms give the optimal solution that we obtained earli
using exhaustive search (in Example 3) and linear integer,

L[]
SInstead of computing all partitions generated $yJ {p}, we can save
computation by computing the value ¢{.S U {p}) based on the value of
f(S) and the increment induced by plapg(recall that Algorithm 2 iterates
through places in a bottom-up fashion).

If Sp is @, thenk is equal to the number of distinct
columns in the matrixDy ; if Sy is the same a¥,, then
k is defined to bel and.S; = §); otherwise k is equal to
the number of distinct columns in the matrb, minus
1;

SoUS1USyU---US, =T, andS;NS; =0 if i # j;
S; for ¢ = 1,2,...,k is a (possibly empty) set with
the maximal number of transitiods;, ..., ¢;} that satisfy
tj,---,t1 € T, and Dy (:,5) = --- = Dy(:,1) being
nonzero.
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Essentially, any two transitions that have the same colurtm each transition among an;| — 1 transitions and assign
in Dy fall into the same partition if2(V"). After computing the empty label to the remaining transition. The way to assig
the partitionQ2(V'), we need to configure transition sensors ttransition labels is possible due to the value |Bf. L,
distinguish/detect all transitions ifiy by assigning a unique and the givenV guarantee transition distinguishability and
label to each transition iy because no token changes artherefore,L,,;, is valid (and the number of transition labels
available for these transitions; we also need to configarests is also minimized). Note that,,;,, is not necessarily unique as
tion sensors to distinguish all transitionsdpfori = 1,2,...,k  there are no constraints on how to assign labels for transiti
by assigning a unique label to affy;|—1 transitions inS; (the within a setS; or two different setsS;, and S, .
transition that is left without a label can be distinguishgdhe It can be shown that Algorithm 3 has complexi®y(nm?);
token changes i). The minimum number of labels needed igletails are omitted due to lack of space.
equal to| Y|, = max(|So|, max(|S1], |Sz|,- .., |Sk])—1). If
I2| < |X]min (i-€., if the number of available transition sensor

is less than|X|,.:»), then by Dirichlet's drawer principle, if we are given place sensor configuratioh = (0 0 1)T.

either some transition 8, cannot be detected or at least twi " ;
transitions in somes; for 1 < ! < k cannot be distinguished.the partition of T, ggqerated byV_ is So = {t1,t2} and
1 = {t3,t4} by examining the matridDy = (0 0 1 1 —1).

Based on this idea, we have Algorithm 3 for the OTS herefore, we can S8E| = max(|So|, |S1|— 1) = 2 and =

problem. {e1, e2}. Labeling function defined ad.(t;) = L(t3) = e,
L(t3) = e and L(t4) = L(t5) = ¢ is one optimal solutionl

Example 8 We consider the OTSS problem as stated in
Example 4. Recall that the optimal labeling function exists

Algorithm 3 Algorithm for OTSS . . _
Input: A partially observed Petri ne and a fixed place Remark 5 Though there can be multiple optimal labeling

sensor configuratiof’ functions, we may form preferences depending on other cri-
Output: A valid labeling functionL,.;, : T — X U {¢} teria; for example, using the results in [32], we may want to
satisfying Loin (t) = £ for any ¢ € Ty, minimize the number of possible states that are consistitht w

the observation of labels in case of place sensor failurlli.

1: Determine whether there exists an optimal labeling func- |n the OTSS problem, we have made one implicit assump-

tion using Theorem 2; if one does not exist, exit; tion: a nonempty label can be associated to any subset of
2: Compute the partitio2(V') to getSy, Si, Sa, - - ., Sk; observable transitions. This assumption may not be r&alist
3: |X] <« max(|So|, max(|S1],|S2|,...,|Sk]) = 1). If |X] in certain applications due to other constraints. For examp
is 0, exit with L,,;n(t) = e for t € T, else,¥ < the labeling function may be required to be injective over
{er, e, ez} observable transitions, which means every observable tran
4: Assign a unique label fronX to each transition irf if  sition should be associated with a unique (possibly empty)
So Is nonempty; label. For the OTSS problem under this constraint, it can be
5. for [ =1tok do shown (following almost the same reasoning as for the OTSS
6: if |5 is 1 then problem) that the minimum number of transition labgl is
7: Assign the empty label to the unique transitionSin | .So| + max(|Sy| + [Sa| + - - -+ |Sk| — 1, 0) as we can assign
8 elseif|S| > 1 then the empty label to one of these observable transitions {whic
9: Assign a unique label fron® to each transition cause token changes in observable places with sensorsy. Mor
among anyS;| — 1 transitions inS;, and assign the specifically, || is equal to|T,| if Sy = T,, and |T,| — 1
empty label to the remaining transition; otherwise.
10:  end if
11: end for

IX. EXAMPLE: AUTOMATED GUIDED VEHICLES
12: Lyin(t) < € for t € Ty, and outputL ;.. ) ) _ _ _
In this section, we first consider a practical example to

) o ) demonstrate the two approximation algorithms and then dis-
We briefly explain Lines 3-12 of Algorithm 3. After com-cyss how to modify our heuristics to solve the OPSS problem
puting (V), at Line 3 we set|X| (the number of transi- with arbitrary nonnegative integer costs.

tion sensors) to benax(|So|, max(|Si],|S2|,.-.,|Sk]) — 1)

as discussed previously. 12| = 0, then no transition ) )

sensor is required; otherwise, we nel transition labels A- Automated Guided Vehicles

e1,e2,...,eg.- Then we define the labeling functiob,,;, In this subsection, we consider the OPSS problem in a

for observable transitions in Lines 4-11 (and for unobdaleva flexible manufacturing cell modeled as a Petri net with
transitions at Line 12). At Line 4 we assign a unique label folaces and3 transitions (first introduced in [10]), and use this
each transition inSy if Sy is not empty. In thefor loop from example to compare our approximation algorithms agairest th
Line 5 to Line 11, we assign labels to each transitionSjn method based on linear integer programming solvers. The cel
forl = 1,...,k. There are two cases: i) |5/ is 1, then the includes three workstations, two part-receiving statiansl
token change can uniquely identify the only transitiondn one completed parts station. Five automated guided vehicle
and therefore, we assign the empty label to this transifipn; (AGV’s) transport material between pairs of stations arel/th

if |.S;| is larger thanl, then we assign a unique label frd®d| may collide with each other in shared regions. For more Betai



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 7, JUL®010 11

. . . TABLE Il
on th? Pe'_[” net model of the ceI_I, refer to Fig. 2 in [10} (but  compaRISON OFAPPROXIMATION ALGORITHMS WITH MIP-BASED
keep in mind that for our simulations on sensor selection, we METHOD OVER 25 SIMULATIONS

do not need the control places in that figure). In [10], the

collision avoidance problem was studied under the assompti % Top'dovin Method BOttom'pr Method
that the current marking of the system is known. The same 1 4 12
problem was also studied in [33] under the assumption that 2 7 1

all transitions are observable. However, these methodsotan

be directly applied when only part of the system state is kmow

or when there are unobservable transitions. of 10 labels, the “top-down” method ran i0.406 seconds
We model the cell as a partially observed Petri net ar@hd the “bottom-up” method ran i2.312 seconds while the

assume that alb4 places and al53 transitions are observableMIP-based method ran i6287.8 seconds. These simulations

so that we do not need to worry about the existence ofsgggest that the two approximation algorithms run faster

solution to the OPSS problem. To test the effectiveness of nd can find reasonably good solutions compared with the

approximation methods, we need to generate labeling fud!P-based method. In particular, the “bottom-up” method is

tions. First, we specify the number of transition label§hen, quite promising in terms of running time and quality of the

we leti take valuesl0, 13, 16,20, 24, and for each value of approximation.

i, we randomly generate labeling functions in the following A better solution can be achieved if we apply Algorithm 1

manner: we allow each transitign(among all53 transitions) after Algorithm 2 by settingVe.,c.: (at Line 4 of Algo-

to have any of the labels with equal probability. In total, we rithm 1) to be the output of Algorithm 2 instead ©f,,..

have25 randomly generated labeling functions; then we solM@ one simulation withi being 20, both the “top-down”

the 25 OPSS problems using Algorithm 1, Algorithm 2, andnethod and the “bottom-up” method obtain place sensor

the MIP-based method (the solver we used is the open souge@figurations withi 8 sensors; however, the combined method

mixed-integer programming solver [30]). Simulation pragis Obtains a place sensor configuration withsensors, which is

were written in Matlab and were run onlaiGhz laptop. The the same as the number of sensors obtained by the MIP-based

results obtained using the two approximation algorithmg amnethod.

the MIP-based method are shown in Table I. In this tablé, “

refers to the number of transition labels ang tonstraints” g opss with Arbitrary Nonnegative Integer Costs

refers to the parameterin Problem 5 of Section VI. Note that . : . . .
P 9 In this subsection, we consider a weighted version of the

the exhaustive search method is prohibitive for this exampé o . .
N PSS problem. More specifically, we associate with each
64 __ 19 ’
as there ar@’™ = 1.8447 x 10 * possibilities, 8bservab|e placer; a nonnegative integecost(p;) which

We compare the two approximation algorithms with th 0 th ¢ of | Gi
MIP-based method using the difference between the numl&%o ures he Ccost of a Sensor on pigee Lven a par-
ly observed Petri net) and a fixed labeling function

of sensors in their respective solutions, and their runni ' ! . . i

time. Table |1 shows the comparison results when considerifj” '© try to find a valid sgfnsor confguraﬂoﬂnm such
the differenceA between the number of sensors given b at for any other valid/, ¢ ‘;"”" < C7V, where ' =
approximation algorithms and the number given by the MI cost(p1) cost(pz) -+ cost(pn,))". o
based method. For the “bottom-up” method, nearly one h IfThe existence co_ndltlon for an optlmal solutlonlls.snllgw

of 25 simulations give solutions with the same number y Theorem 1, which can be proved in a way similar to thgt
sensord as the MIP-based method and also nearly anoth%fr Theo_rem 1. To solve t_he problem, we can transform it
one half give a solution that is only slightly worse (namel)},nt(_) an integer programming problem by _settmg t_he vector
the difference A satisfiesA = 1). For the “top-down” ¢ (in Problem 5 of Section VI) to b&'. Notice that integer

method, 4 of 25 simulations give solutions with the Saméarogramming solvers will give the optimal solution for this

number of sensors as the MIP-based method and over blem but will be slow for large problgm insFances. To
half among the25 simulations give a solution that is onlyemploy the tqp—down. _method _developgd n Schofn(lel, we
slightly worse (namelyA — 1). When comparing the two US€ the following modified scoring functiof(p:) = .7

) . ) _ ¢ cost(p;)’
approximation algorithms directly, the “bottom-up” metho where f(p;) is the scoring function defined in Section VII.
gives better solutions far3 simulations while the “top-down

» The justification is the following: i) the larger the value of
method gives better solutions only fdr simulation; there J(pi), the fewer place sensors are needed based on the result
are 11 simulations in which the two methods give solution

In Section VII; i) the smaller the value ofost(p;), the

with the same number of sensors. Table | shows that tR@aller the total cost. To use the "bottom-up” me}?gd' we can
H !/ !/ _

running time of the “bottom-up” method is slightly longerdeneralizef’(p;) to a set of places as f'(S5) = ST cost(p)|

than the running time of the “top-down” method; the runnin@ther scoring functions with properties similar to i) any ii

time of both approximation algorithms is much shorter thasbove can also be used but are not studied here in the interest

the running time of the MIP-based method, especially wheyi space.

there are fewer labels. For example, in the last simulationTo compare the two modified approximation algorithms and
o _— _ the MIP-based method for the OPSS problem with costs, we
Though the place sensor configurations given by the “bottpfnmethod . . .

and the MIP-based method have the same number of place setisy are still use the AGV.exampIe_. In Olj'r simulations, we randomly

not necessarily identical. generate a labeling function witR0 labels and choosé




IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 7, JUL®010 12

TABLE |
SIMULATION RESULTS OFTWO APPROXIMATIONALGORITHMS AND MIP-BASEDMETHOD

Top-down Method Bottom-up Method MIP-based Method
1 | time (s) # sensorg time (s) # sensord time (s) # sensors # constraints
0.343 18 2.079 17 1.421 16 56
24 0.359 17 2.079 17 2.703 16 59
0.359 17 1.891 16 1.094 15 47
0.344 17 1.875 16 0.984 16 56
0.344 16 1.969 16 2.641 16 52
0.375 19 2.093 18 16.391 17 67
20 0.359 19 2.032 18 16.813 17 68
0.344 18 1.953 17 5.578 17 69
0.391 20 2.359 18 32.250 18 60
0.375 18 2.125 18 20.875 18 69
0.375 20 2.297 21 266.797 19 87
16 0.360 21 2.297 20 192.984 19 74
0.359 19 2.172 19 101.391 19 85
0.360 21 2.391 21 801.890 20 80
0.359 21 2.266 20 1595.000 20 95
0.375 21 2.219 21 287.843 20 102
13 0.359 22 2.250 21 1782.700 21 108
0.391 22 2.140 22 1377.100 21 111
0.375 21 2.250 20 630.703 20 107
0.391 21 2.219 21 130.766 20 103
0.375 22 2.172 22 3899.1 22 137
10 0.406 23 2.203 22 2097.5 22 162
0.406 23 2.281 23 3575.9 22 140
0.407 24 2.328 22 3533.2 22 130
0.406 23 2.312 23 6287.8 22 135

cost functions: i) functionl has entries) or 1 with equal a set of places to put sensors on so that fault transitions
probability; i) function2 (or 3, 4, 5) is a shifted version of can be distinguished immediately. Another applicationhe t
function1 by changing the expectation to hes (or 2.5, 5.5, heuristics is in rough set theory [35] to compute a reduct
10.5). The results are shown in Table Ill. In this table; “ with a minimum cardinality of attributes among all possible
refers to theith cost function, ¢ost” refers to the total cost reducts; in this problem, a reduct is similar to a place senso
of the corresponding place sensor configuration. The esutbnfiguration in the OPSS problem and attributes are similar
show that the two approximation algorithms give solution® sensors on observable places.
close to the optimal one but with much less running time, There are several future research directions. First, we pla
especially when the costs of places do not exhibit largéivela to consider the general sensor selection problem mentioned
difference. If we fix the cost function but change the labglinSection I1l. The goal is to choose a set of place sensors and
function (while keeping the total number of labels to 1), transition sensors of minimum cardinality such that theeys
the total cost and running time for all three methods do n@§ structurally observable. The general problem is at least
change much, and we omit the outcomes of these simulatiogificult as the OPSS problem. The problem can be solved
optimally by exhaustively searching all possibilities. Mo
X. CONCLUSION specifically, one first chooses a place sensor configurafion

This paper studies the optimal sensor selection problem&g0ng2™* possible choices, solves the OTSS problem with
achieve structural observability in partially observetrireets, the fixed place sensor configuratién obtains the minimum
The OPSS problem is shown to be computationally hard, aRdmber of transition labels required, and finally adds the
solvable optimally via a transformation into an MIP problerfumber of place sensors and the number of transition labels;
or suboptimally via approximation algorithms. We propos@€ solution selected for the general sensor selectiorigmrois
two such algorithms, a “top-down” method and a “bottom-ugh€ one with the minimum sum among afi* choices. Though
method, both of which have complexity that is polynomidf 1S not clear how to transform the problem into an integer
in the number of places and transitions. The example Bfogramming problem due to the heterogeneity of place senso
automated guided vehicles shows that the two algorithnf@nfigurations and transition labeling functions, one rhigé
especially the “bottom-up” method, work almost as well aable to modify the heur|§t|cs in Section VIl to approximate
the MIP-based method but with significantly reduced runnirf§® OPtimal solution to this general sensor selection bl
time. Unlike the OPSS problem, the OTSS problem was shownWe also plan to investigate a relaxed version of the OPSS
to be solvable with complexity that is polynomial in theoroblem (based on the work in [32]) in which we allow
number of places and transitions. multiple states and select a minimum number of place sensors

The heuristics used in our approximation algorithms cdf guarantee that the number of possible states can increase
also be used in other settings. For example, they can M@ faster than a given function that is polynomial in the kbeng
easily adapted to the design of a minimal diagnoser [34] g the observation sequence.
slightly modifying our approximation algorithms to choose Another research direction is to consider a variation of the
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TABLE Il
SIMULATION RESULTS FOROPSSwWITH COSTS

Top-down Method Bottom-up Method MIP-based Method
1 | time (s) # sensors cost time (s) # sensors  cost time (s) # sensors  cost
1 0.391 18 7 0.938 38 3 0.125 23 3
2 0.375 18 24 2.297 36 37 1.781 19 20
3 0.390 18 45 2.109 21 42 5.250 17 36
4 0.375 18 103 2.015 19 98| 13.266 17 90
5 0.391 18 193 2.000 18 186| 74.266 17 178

OTSS problem, in which only physically close transitionglowever, these states will still be possible even aftetime
can share the same label. More specifically, the followirggeps if enough tokens are added in the initial marking while
constraints can be imposed on transition sensors: i) there generating the same observation. Since the property haddo h
only d types of transition sensorg, 7, ..., 7;; and ii) each for an arbitrary initial state, we have reached a contraatict
type 7; covers a subset of observable transitions while sorfi&erefore, the system state at time sidpas to be uniquely
transitions may not be covered and some transitions may determined by observations up to time stepvhich implies

covered by more than one type of sensors. We believe timat structural observability holds. [ ]
approaches to solve the OPSS problem proposed in this paper

could be useful to solve this constrained OTSS problem, and APPENDIXB

we plan to investigate them in the near future. PROOF OFPROPOSITION3

Finally, we plan to analyze performance guarantees forTo determine transition distinguishability using Proposi
the “bottom-up” method. Note that we can reduce the OP$gn 2, for each labek € ¥ U {e} satisfying |T.| > 2,
problem to the set cover problem and solve the construcig@ need to check whether their corresponding columns in
set cover problem using a standard greedy algorithm (refer pe are pairwise different. In the worst case, we need to
[36] for the algorithm and its performance guarantee) whiGRyoke V]| x (\T;I) comparisons. Foe, we need to also
selects the subset that can cover the most uncovered eemgRkck whether any of its transitions corresponds to a zero

so far in the universe. This greedy algorithm guaranteea@pl yector, which need$ V|| x |7%| additional comparisons. Let

sensor configuration with the number of place sensors WithtE esufey 1 >z [Tel = m1 < m. Then
[ Epyde|lZ —

OPT x H,, where OPT is the minimum number of place
sensors used in an optimal solutiop,is the parameter in #comparisons= ||V|| x |T2] + |[V]] x Z <|Te|)
Problem 5 andH, = 1+ % + ... + £ = O(Ing). Directly

establishing a performance guarantee for the “bottom-up”
method (perhaps in comparison to the solution provided by th — i - my . Z @
set cover greedy algorithm) is an interesting researchtigues o €

e€XU{e},|TL|>2

eeXU{e},|Tc|>2

2 2
APPENDIXA Snx<m_@+m1 )Snm -+ nm
EQUIVALENCE BETWEEN STRUCTURAL OBSERVABILITY 2 2 2
AND K -DELAYED STRUCTURAL OBSERVABILITY )
We now establish the equivalence between structural ohere Eq. (2) follows from the fact thad !  a? <
servability andK-delayed structural observability. (>i, a;)? for positive a;'s, ||[V]| < n and |T| < m.

Therefore, transition distinguishability can be deteredinvith

Proposition 5 Given a place sensor configuratidn and a complexity O (nm?).

labeling functionL, a partially observed Petri ng€p being
structurally observable is equivalent © being K-delayed
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