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Abstract—This paper studies optimal sensor selection in dis-
crete event systems modeled by partially observed Petri nets. The
goal is to place a minimum number of sensors while maintaining
structural observability, i.e., the ability to uniquely determine the
system state at any given time step based on sensor information
up to that time step, knowledge of the system model, and an
arbitrary but known initial state. The problem is important
because the majority of existing control schemes for Petri nets
rely on complete knowledge of the system state at any given time
step. To simplify the problem, we consider two subproblems:
the optimal place sensor selection (OPSS) problem and the
optimal transition sensor selection (OTSS) problem. The OPSS
problem is shown to be computationally hard by establishing
that the corresponding decision problem isNP-complete. For
this reason, we first reduce the problem to the linear integer
programming problem, which can be solved optimally using
existing linear integer programming solvers (at least for small
problem instances), and then propose two heuristic algorithms to
approximate its solution with polynomial complexity. Simulations
suggest that the two proposed heuristics run faster and can find
reasonably good solutions when compared to optimal methods
that are based on linear integer programming solvers. Unlike the
OPSS problem, the OTSS problem is solvable with polynomial
complexity.

Index Terms—Discrete event systems, Petri nets, Structural
observability, Sensor selection, State-based control.

I. I NTRODUCTION

A DISCRETE event system (DES) is a dynamic system
that evolves in accordance with the abrupt occurrence,

at possibly unknown and irregular intervals, of physical
events [1], [2]. Such systems arise in a variety of contexts,
ranging from manufacturing and robotics to vehicular traffic,
computer systems, and communication networks. Applications
that involve monitoring and controlling of such systems rely
on information conveyed by various types of sensors that are
available in the system. Usually it is impossible/unnecessary to
place sensors everywhere because sensors may be unavailable
or prohibitively expensive for certain state transitions or other
tasks. Therefore, selecting a minimum number of sensors or
a set of sensors of minimal cost that also meets the system
design requirements is critical and often mandatory.
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Optimal sensor selection problems have been studied ex-
tensively in discrete event systems that can be modeled as
finite state machines, e.g., [3]–[6]. In [3], a sequence of
tests is provided to obtain a set of sensors that has minimal
cost and ensures a given property (such as diagnosability).
In [4], the problem of obtaining an optimal sensor configura-
tion of minimum cardinality is shown to be computationally
hard (by showing that the corresponding decision problem is
NP-complete) for several properties, including diagnosability,
normality, and observability. The authors of [5] discuss the
problem of sensor selection to achieve observability with
minimum cost and show that polynomial time algorithms to
find good approximate solutions to this problem most likely
do not exist (at least under certain complexity assumptions).
Minimal1 sensor selection to fulfill a desired formal property
is shown to be generallyNP-hard in [6]; for properties
that have mask-monotonic behavior (e.g., (co-)observability,
normality, state-observability, and diagnosability), “top-down”
and “bottom-up” methods that have polynomial complexity
and achieve a minimal sensor configuration are proposed
in [6].

In this paper, we focus on sensor selection in DESs that
can be modeled as Petri nets. Petri nets have certain advan-
tages over finite state machines, including a high language
complexity, a compact, structural, and graphical description
of the state space, and the ability to synthesize in a modular
way [7]. Formal properties (e.g., observability, diagnosability)
are relatively easy to define in Petri nets but difficult to
check, partly because there is no practical algorithm to solve
the reachability problem of Petri nets [8]. There is only
limited previous work on sensor selection problems when
the underlying model is a Petri net. For example, in [9],
observability notions based on inputs and outputs are used as
criteria when optimizing the selection of sensors in interpreted
Petri net models; in this case, genetic algorithms are used
to approximate the optimal sensor selection, but the method
only applies to bounded Petri nets and the proposed algorithm
converges slowly to a suboptimal solution.

In the sensor selection problem we consider, we formu-
late the notion of structural observability, i.e., the ability to
uniquely determine the system state at any given time step2

1A sensor configuration is minimal if it is a minimal element ina partially
ordered set [6]. In general, finding a minimal sensor configuration is easier
than finding a sensor configuration with the minimum number ofsensors or
with the minimal cost.

2Time steps refer to the times at which transitions in a firing sequence fire.
For example, time stepi refers to the time at which thei-th transition in a
firing sequence fires.
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based on sensor information up to that time step, knowledge
of the system model, and an arbitrary but known initial state.
The requirement for uniquely determining the system state at
any given time step is motivated by a number of applications
where complete knowledge of the system state is absolutely
necessary. Examples include the following:

• In supervisory control, control policies for a large number
of synthesis methods (e.g., [10]–[17]) are defined as
a function from a reachable state to a control action.
Implicitly, these methods require that the system state
at any given time step is exactly known. There is only a
limited number of supervisor synthesis methods that are
based on state estimates (e.g., [18]–[21]) because such
control policies are difficult to formulate in an optimal
manner [19]. The problem is that algorithms based on
state estimates may also be forced to prevent transition
firings that lead the system from one admissible state to
another admissible state. More importantly, the use of
state estimates may significantly reduce the performance
of the closed-loop system and, in particular, it may lead
to a deadlock [22].

• In user-interface design of safety-critical systems, discrete
event systems which model such interfaces must be
immediately observable in order to be “good” interfaces,
i.e., interfaces that can accurately represent the underlying
system to the user, so that the user will not be misled or
confused [23].

Structural observability requires that the current systemstate is
determined uniquely without delay for an arbitrary but known
initial state. As shown later in the paper, even if one allows
a finite delay in the definition of structural observability,the
requirements for the two notions (non-delayed and delayed
structural observability) remain essentially the same.

After we formulate and analyze structural observability, we
consider the placement of a minimum number of sensors in
the system in order to enforce this property. Unlike sensor
selection problems for DES modeled as finite state machines,
we allow two types of sensors (in order to model both place
and transition observability): place sensors indicate thenumber
of tokens in a particular place (e.g., vision sensors), and
transition sensors indicate the firing of a transition in a given
subset of transitions (e.g., motion sensors). To simplify the
problem and gain a better understanding for it, we consider
two subproblems: the optimal place sensor selection (OPSS)
problem and the optimal transition sensor selection (OTSS)
problem. The paper first establishes that the OPSS problem
is computationally hard by showing that the corresponding
decision problem isNP-complete (this is done by reduc-
ing, with polynomial complexity, the minimum vertex cover
(MVC) problem to this decision problem). We also show that
the OPSS problem can be reduced with polynomial complexity
to the minimum{0, 1}-integer programming (MIP) problem
which can be solved optimally using existing linear integer
programming solvers (at least for small problem instances).
As an alternative to the linear integer programming-based
approach, we also propose two approximation algorithms to
approach the optimal solution. Unlike the OPSS problem,

the OTSS problem can be solved efficiently in time that is
polynomial in the number of places and transitions.

The contributions of the paper include the following: i) to
our best knowledge, this is the first effort to systematically
investigate sensor selection problems in systems modeled by
generalPetri nets; ii) we formulate the concept of structural
observability which is very important for implementing many
existing state-based supervisor synthesis methods; iii) we es-
tablish two novel polynomial reductions, namely, the reduction
from MVC to OPSS and the reduction from OPSS to MIP;
iv) we propose two approximation algorithms (namely, the
“bottom-up” algorithm and the “top-down” algorithm) that run
much faster and can get reasonably good solutions to the OPSS
problem, and we also obtain an upper bound on the number
of place sensors in the solution generated by the “bottom-up”
algorithm.

In the next section, we introduce Petri net notation and de-
fine partially observed Petri nets. In Section III, we formulate
the optimal sensor selection problem while in Section IV,
we give existence conditions for both the OPSS and OTSS
problems. In Section V, we show that the OPSS problem
is computationally hard by showing that the corresponding
decision problem isNP-complete; the problem can be solved
optimally by transforming it into an MIP problem as shown
in Section VI, or suboptimally using the approximation algo-
rithms we propose and analyze in Section VII. In Section VIII,
the OTSS problem is shown to be solvable with polynomial
complexity. In Section IX, we compare the solutions provided
by these different algorithms using a flexible manufacturing
cell example. Finally, conclusions are drawn in Section X.

II. PRELIMINARIES

In this section, we review basic definitions of Petri nets [24]
and partially observed Petri nets [25].

Definition 1 A Petri net structure is a 4-tuple N =
(P, T, F, W ) whereP = {p1, p2, ..., pn} is a finite set ofn
places;T = {t1, t2, ..., tm} is a finite set ofm transitions;
F ⊆ (P ×T )∪(T ×P ) is a set of arcs;W : F → {1, 2, 3, ...}
is a weight function;P ∩ T = ∅ andP ∪ T 6= ∅.

A marking is a functionM : P → N0 that assigns to
each place a nonnegative integer number of tokens, where
N0 denotes the set of nonnegative integers;M(p) denotes the
number of tokens in placep. Pictorially, places are represented
by circles, transitions by bars, and tokens by black dots, as
shown in Fig. 1. APetri net G = 〈N, M0〉 is a Petri net
structureN with an initial markingM0.

A transition t is said to beenabledat markingM if each
input placep of t (i.e., each placep such that(p, t) ∈ F ) is
marked with at leastW (p, t) tokens; this is denoted byM [t〉.
The firing of enabled transitiont removesW (p, t) tokens
from each input placep and addsW (t, p′) tokens to each
output placep′ (i.e., each placep′ such that(t, p′) ∈ F ),
resulting in a markingM ′; this is denoted byM [t〉M ′. In
this paper, we assume that at most one transition can fire
at any instant. NotationS = ts1

ts2
· · · tsk

captures ak-
length firing sequencefrom marking M if tsi

∈ T and
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M [ts1
〉M1[ts2

〉M2 · · · [tsk
〉M ′; this is denoted byM [S〉M ′.

Marking M ′ can also be written as

M ′ = M + Dσ, (1)

where (i) D is the n × m incidence matrixof N satisfying
D(i, j) = −W (pi, tj) + W (tj , pi) (if W (pi, tj) or W (tj , pi)
is not defined for a specific placepi and transitiontj , it is
taken to be0), and (ii) σ is them× 1 firing vectorof S with
its ith entry being the number of times transitionti appears
in S. In this paper, we assume that the Petri net is pure, i.e.,
it has no self-loops.

Definition 2 Transitionst1 andt2 are identically behavingif
D(:, t1) = D(:, t2), whereD(:, t) denotes the column ofD
corresponding to transitiont.

If t1 and t2 are identically behaving, then one of them is re-
dundant as far as state reconstruction is concerned. Therefore,
since we focus on structural observability (a system property to
be defined shortly, which deals with state reconstruction),we
assume without loss of generality that there are no identically
behaving transitions in the Petri net we study.

Definition 3 A partially observed Petri netQ is a 3-tuple
(N, Po, To), where

• N = (P, T, F, W ) is a Petri net structure withn places
andm transitions;

• Po ⊆ P , is the set of observable places with cardinality
n1 satisfying0 ≤ n1 ≤ n;

• To ⊆ T , is the set of observable transitions.

Puo = P\Po denotes the set of unobservable places.
Observable places can have sensors (e.g., vision sensors) that
indicate the number of tokens in a particular place, but unob-
servable places cannot. Similarly,Tuo = T \To denotes the set
of unobservable transitions. Observable transitions can have
sensors (e.g., motion sensors) that indicate when a transition
in a given subset of transitions has fired, but unobservable
transitions cannot. One can always rename places to ensure
that the firstn1 places are observable; therefore, we take
Po = {p1, p2, ..., pn1

}.

Example 1 The net in Fig. 1 is a partially observed Petri net.
All places exceptp4 are observable and all transitions exceptt5
are observable; unobservable places (or transitions) are drawn
as shadowed circles (or bars). �

Remark 1 We exclude initial stateM0 from the definition
of partially observed Petri nets (introduced in [25]) because

p1 p2

p4 p3

t1

t2

t3 t4

t5

2

Fig. 1. A partially observed Petri netQ.

in this paper, we focus on structural properties that are
independent ofM0. �

III. PROBLEM FORMULATION

In order to formulate sensor selection problems, we define
the notions of place sensor configuration and labeling function.
A place sensor configurationV is a vector(v1 v2 ... vn1

)T ,
wherevi = 0 if no place sensor exists on placepi andvi = 1
otherwise.||V || :=

∑n1

i=1 vi ≤ n1 denotes the total number of
place sensors in the place sensor configurationV .

A labeling functionL : T → Σ ∪ {ε} assigns a label to
each transition and satisfiesL(t) = ε for any t ∈ Tuo. Here,
Σ is the set of labels andε is the empty label. We defineΣ so
that, for eache ∈ Σ there existst ∈ To satisfyingL(t) = e.
Therefore,|Σ| is the total number of transition sensors in use
and could be zero if no transition sensor is used.

When an observable transitiont with a sensor fires, the label
L(t) is observed. Therefore, ifL(t1) = L(t2), the firings of
t1 andt2 cannot be distinguished solely by label observation.
Furthermore, ifL(t) = ε, then the firing of transitiont is not
observed at all. We denoteTe := {t ∈ T : L(t) = e} for all
e ∈ Σ ∪ {ε}.

Example 2 For the net in Fig. 1, considerV = (1 1 1)T and
L defined asL(t1) = a, L(t2) = L(t3) = b, L(t4) = c and
L(t5) = ε. SupposeM0 = (2 0 1 0)T and the firing sequence
t3t5 occurs. Then, the system trajectory isM0[t3〉M1[t5〉M2,
where M1 = (0 0 2 0)T and M2 = (0 0 1 1)T . Given
V and L, the available sensor information is(2 0 1)T →
b → (0 0 2)T → (0 0 1)T , where→ denotes the temporal
order of observations. Though no label is observed when the
system evolves fromM1 to M2, we can infer that unobservable
transitiont5 has occurred from the token change in placep3,
because only the firing oft5 can decrease the token number
in p3 by 1. �

Given a partially observed Petri net, the general sensor
selection problem consists of choosing a place sensor con-
figurationV and a labeling functionL such that||V ||+ |Σ| is
minimized (or, more generally, the total cost of all sensorsin
use is minimized)and the system state can be determined
uniquely based on sensing information, knowledge of the
system model, and an arbitrary but known initial state.

Definition 4 Given a place sensor configurationV and a
labeling function L, a partially observed Petri netQ is
structurally observableif for an arbitrary but known initial
stateM0 and any firing sequence fromM0, the system state
M at any given time step can be determined uniquely based
on observations from place sensors and transition sensors up
to that time step.

The notion of structural observability requires that the
current system state is determined uniquely without delay for
an arbitrary but known initial marking. If one allows a finite
delay in that definition, the notion ofK-delayed structural
observability for a finite nonnegative integer constantK can
be stated as follows, and can be shown to be equivalent to
structural observability (refer to Appendix A).
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Definition 5 Given a place sensor configurationV and a
labeling functionL, a partially observed Petri netQ is K-
delayed structurally observableif for an arbitrary but known
initial stateM0 andany firing sequence fromM0, the system
state M at any given time stepi ≥ 0 can be determined
uniquely based on observations from place sensors and tran-
sition sensors no later than time stepi + K.

Remark 2 There are several properties that are related to, but
differ from the notion of structural observability as defined in
this work. The closest one is the immediate observability [23],
i.e., the ability to determine the current state based only
on partial information about the state and either the last or
next event; the main difference between these two notions
is that structural observability requires that the state can be
determined for anarbitrary but known initial state. Structural
marking observability [19] is defined in a different setting
and has a different meaning: more specifically, in [19] each
transition has a unique label and the goal is to determine if
there exists an observation sequence for anyunknowninitial
marking such that the current state can be reconstructed.
In [26], observability involves not only the information from
place sensors but also control inputs. �

Definition 6 Given a partially observed Petri netQ and a
fixed labeling functionL (or a fixed place sensor configuration
V ), a place sensor configurationV (or a labeling functionL)
is valid if Q is structurally observable.

To simplify the sensor selection problem and gain a better
understanding for it, we consider the two subproblems defined
below.

Problem 1 (Optimal Place Sensor Selection (OPSS)) Given a
partially observed Petri netQ and a fixed labeling functionL,
find a valid place sensor configurationVmin such that for any
other valid place sensor configurationV , ||Vmin|| ≤ ||V ||.

Problem 2 (Optimal Transition Sensor Selection (OTSS))
Given a partially observed Petri netQ and a fixed place sensor
configurationV , find a valid labeling functionLmin : T →
Σ ∪ {ε} such that|Σ| is minimized.

IV. CHARACTERIZATION OF STRUCTURAL

OBSERVABILITY

According to the state equationM = M0 + Dσ, one
sufficient condition for uniquely determining the system state
at any given time step is that the firing of each transition at any
time step can be distinguished based on sensing information.
In turn, this ensures that the firing sequence and the sequence
of markings can be constructed recursively. This discussion
motivates the notion of transition distinguishability.

Definition 7 Given a place sensor configurationV and a
labeling function L, a partially observed Petri netQ is
transition distinguishableif, for an arbitrary but known initial
stateM0, the firing of any of its transitions at any time step
can be distinguished from any other transition firing based on
observations from place sensors and transition sensors up to
that time step.

Remark 3 Transition distinguishability is different from
event-detectability as defined in [26] in that it allows informa-
tion from transition sensors (besides place sensors) to be taken
into account. Another related concept is invertibility [27],
i.e., the ability to reconstruct the entire event string from the
observation of the output string; the main difference is that
invertibility allows finite delay and depends on the initialstate.
�

Proposition 1 Given a place sensor configurationV and a
labeling functionL, a partially observed Petri netQ is struc-
turally observable if and only if it is transition distinguishable.

Proof: (If part) If the Petri net is transition distinguish-
able, then we can uniquely infer the firing sequence based
on transition labels and observations from place sensors. As
the initial state is known, the system state can be uniquely
determined using the state equation (1). This process can be
continued recursively for all time steps.

(Only if part) If the Petri net is not transition distinguishable,
then there exists an initial markingM0, some time stepk, and
two transitionst1 and t2 such that the firings oft1 and t2
cannot be distinguished based on sensing information. The
marking M at time stepk enables botht1 and t2, and the
firings of transitionst1 andt2 at markingM result in different
markings as there are no identically behaving transitions.In
this scenario, the system state cannot be determined uniquely
and the Petri net is not structurally observable.

Proposition 1 implies that we can focus on the study of
transition distinguishability. Given a place sensor configuration
V , the ||V || × m matrix DV is constructed by keeping the
rows of D that correspond to observable places with sensors.
In addition, for a given labeling functionL, the ||V || × |Te|
matrixDe

V is constructed for each labele ∈ Σ∪{ε} by keeping
the columns inDV that correspond to transitions inTe.

Proposition 2 Given a place sensor configurationV and
a labeling functionL, a partially observed Petri netQ is
transition distinguishable if and only if i) for each labele ∈ Σ,
all columns ofDe

V are pairwise different, and ii) forε, all
columns ofDε

V are nonzero and pairwise different.

Proof: The if part follows from the fact that for any
transition t, there is a unique combination of a transition
labelL(t) and a column vector of token changesDV (:, t) that
identifies the firing of the transition. Now we prove the only
if part by contradiction. i) Suppose there is a labele ∈ Σ and
two associated transitionst1, t2 such thatL(t1) = L(t2) = e

and DV (:, t1) = DV (:, t2). As there exists a markingM
under whicht1 andt2 are both enabled, we cannot distinguish
transitionst1 and t2 based on sensor information at marking
M (we can always set the initial marking to beM ); this con-
tradicts the fact that the Petri net is transition distinguishable.
ii) Suppose there is a transitiont such thatL(t) = ε and
DV (:, t) = 0||V ||, where0||V || is a ||V ||-dimensional column
vector with all entries being0. As there exists a marking
M such thatt is enabled, then the firing oft cannot be
detected based on sensing information at markingM ; also
a contradiction. iii) The case when there are two transitions
t1, t2 such thatL(t1) = L(t2) = ε andDV (:, t1) = DV (:, t2)
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can be proved in a way similar to Case i).

Proposition 3 Given a place sensor configurationV and a
labeling functionL, the transition distinguishability of a par-
tially observed Petri netQ can be determined with complexity
O(nm2).

Proof: Refer to Appendix B.
Now we state necessary and sufficient conditions for the

existence of solutions to Problems 1 and 2. First, we define
Vmax = 1n1

(where1n1
is ann1-dimensional column vector

with all entries being1), and defineLmax asLmax(t) = t for
any t ∈ To andLmax(t) = ε for any t ∈ Tuo.

Theorem 1 (Existence Condition for OPSS) Given a partially
observed Petri netQ and a fixed labeling functionL, there
exists an optimal place sensor configuration for the OPSS
problem if and only ifQ is transition distinguishable under
L andVmax.

Proof: (If part) As the Petri net is transition distin-
guishable under the place sensor configurationVmax, it is
structurally observable underVmax following Proposition 1,
which implies that there exists at least one valid place sensor
configuration. Since the total number of place sensor configu-
rations is finite and equal to2n1 , the OPSS problem will have
an optimal place sensor configuration.

(Only if part) If there exists an optimal place sensor
configuration, we can add more sensors on the optimal place
sensor configuration to getVmax, while the Petri net remains
transition distinguishable following Proposition 2.

Example 3 Given the labeling function specified in Exam-
ple 2, if we considerVmax = 13 for the net in Fig. 1, we get
the 3 × 5 matrix below

DVmax
=

1 −1 −2 0 0
0 1 0 −1 0
0 0 1 1 −1
a b c ε

.

Following Proposition 2, the Petri net is verified to be tran-
sition distinguishable, and therefore, an optimal place sensor
configuration exists. This optimal place sensor configuration
is found to beVmin = (0 0 1)T by going through all23 = 8
possible place sensor configurations. In other words, only a
sensor onp3 is needed to complement the observation of
the label sequence so that we can determine the system state
uniquely. �

We also have the following condition for the OTSS problem,
which can be proved in a way similar to Theorem 1.

Theorem 2 (Existence Condition for OTSS) Given a partially
observed Petri netQ and a fixed place sensor configurationV ,
there exists an optimal labeling function for the OTSS problem
if and only if Q is transition distinguishable underV and
Lmax.

Example 4 Consider the Petri net in Fig. 1 where place
p4 is unobservable and transitiont5 is unobservable. Given
V = (0 0 1)T , the optimal labeling function exists following
Theorem 2. Intuitively, the firing of an observable transition

is identifiable by its unique label specified byLmax, and the
firing of unobservable transitiont5 is identifiable by the token
change in observable placep3. �

Though the existence of an optimal solution to the OPSS
problem can be determined with polynomial complexity, the
OPSS problem itself is computationally hard (as we show in
the next section, the corresponding decision problem isNP-
complete). On the other hand, as discussed in Section VIII,
the OTSS problem is solvable with polynomial complexity.

V. NP -COMPLETENESS OFOPTIMAL PLACE SENSOR

SELECTION PROBLEM

We first recall some basic concepts from the field of
computational complexity [28]. A problem is called adecision
problem if all problem instances are mapped to either “true”
or “false.” A decision problem is said to be in the classNP
if it can be solved by a nondeterministic Turing machine in a
number of steps that is polynomial in the size of the problem.
A decision problem is said to beNP-hard if solving it in
polynomial time would make it possible to solve all problems
in the classNP in polynomial time. If a problem isNP-
hard and is inNP , the problem is said to beNP-complete.
In this section, we show that the OPSS problem is computa-
tionally hard by demonstrating that the corresponding decision
problem isNP-complete; theNP-hardness is established by
reducing the minimum vertex cover problem (a knownNP-
complete problem [28]) to the decision version of the OPSS
problem.

Problem 3 (OPSS: Decision Version) Given a partially ob-
served Petri netQ, a fixed labeling functionL, and a positive
integerk ≤ n, is there a valid place sensor configurationV ′

such that||V ′|| ≤ k?

The definition of a vertex cover for a graphH = (Z, E),
whereZ is the set of vertices andE is the set of edges, and
the minimum vertex cover problem are recalled next.

Definition 8 Given a graphH = (Z, E), a subsetZ ′ ⊆ Z

is a vertex coverfor H if for each edge(u, v) ∈ E, where
u, v ∈ Z, at least one ofu andv belongs toZ ′.

Problem 4 (Minimum Vertex Cover (MVC): Decision Ver-
sion) Given a graphH = (Z, E) and a positive integerl ≤ |Z|,
is there a vertex coverZ ′ such that|Z ′| ≤ l?

Theorem 3 The decision version of the OPSS problem is
NP-complete.

Proof: Problem 3 is shown to beNP-complete by (i)
establishing that it is inNP and (ii) reducing Problem 4 to
it.

(i) Problem 3 is inNP . Select a place sensor configuration
V such that||V || ≤ k and test ifV is valid; this test can
be done with complexity that is polynomial in the number
of places and transitions (see Proposition 3). Therefore, Prob-
lem 3 belongs toNP .

(ii) Problem 3 is NP-hard because Problem 4 can be
reduced to it with polynomial complexity. Given a graph
H = (Z, E), whereZ = {z1, z2, z3, . . . , zn}, we construct
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Fig. 2. Reducing MVC to OPSS.

a partially observed Petri netQ, with n places andm := |E|
transitions. The vertices of the graphH are renamed to
be {1, 2, . . . , n} so that all isolated vertices have indices
n1 + 1, . . . , n. Petri netQ is constructed by making a copy
of the renamed graph and attachingpi to vertex i for i =
1, 2, ..., n. For every edgee with verticesi, j in H , a transition
t is inserted inQ and connected to placespi and pj . We
arbitrarily assign directions to these arcs with the constraint
that the two arcs associated with the same edge inH have the
same direction (see Fig. 2). Furthermore, for each vertex, we
assign different weights to each incoming (or outgoing) arc;
these weights range from1 to the number of incoming (or
outgoing) arcs. Placesp1, . . . , pn1

(or pn1+1, . . . , pn) are taken
to be observable (or unobservable). Transitions are named as
t1, t2, ...,tm and share the same empty labelε. Fig. 2(b) shows
a Petri net constructed from the graph in Fig. 2(a) using the
above mentioned procedure. The construction of the Petri net
from the given graph has complexityO(|E| × |Z|) that is
polynomial in the number of edges and vertices. It is worth
noting the following:

• The constructed partially observed Petri netQ hasPo =
{p1, p2, ..., pn1

}, To = ∅, and fixed labeling function
L(ti) = ε for i = 1, 2, ..., m, which implies that all
transitions are unobservable. Given this Petri net and a
positive integerk = l, we have an instance of Problem 3.
As there are no identically behaving transitions in the
constructed netQ, we can decide whether a place sensor
configurationV is valid or not by checking transition
distinguishability following Proposition 1.

• All transitions are labeled with the same empty label,
and the input place and output place of each transition
are observable (unobservable places are isolated). Each
observable place can be used to distinguish all of its input
and output transitions as the firing of these transitions will
result in different token changes in the place (recall the
procedure of assigning weights to arcs). Therefore, we
can distinguish a transition by putting a sensor on either
its input place or output place.

Note that there is a one-to-one correspondence between a
valid place sensor configurationV ′ for Q and a vertex cover
Z ′ in H : (i) given any valid place sensor configurationV ′ for
Q, each transition must have at least one input or output place
p such thatV ′(p) = 1 (if V ′(p) = 0 for both the input place

and the output place of the transition, then the unobservable
transition cannot be detected and therefore, the Petri net is
not transition distinguishable); then, the set of verticesthat
correspond to the set of places that have sensors inV ′ is also
a vertex cover for the graphH ; (ii) given any vertex cover
Z ′, for each edgee ∈ E, at least one of its two verticesv
belongs toZ ′; then, the transition corresponding to the edge
e in H can be distinguished from other transitions by the
place corresponding to the selected vertexv; therefore, we
have established the validity of place sensor configurationV ′

(with V ′(p) = 1 iff p corresponds to a vertex in the coverZ ′).

VI. T RANSFORMATION OFOPSSTO A L INEAR INTEGER

PROGRAMMING PROBLEM

In this section, we convert the OPSS problem to the
minimum{0, 1}-integer programming problem (a knownNP-
complete problem [29]) so that it can be solved optimally using
existing linear integer programming solvers (this is possible
for small problem instances). Before we present the formal
transformation, we first define the minimum{0, 1}-integer
programming problem and then use an example to illustrate
the main idea.

Problem 5 (Minimum {0, 1}-Integer Programming (MIP))
Given aq×s integer matrixA, aq-dimensional integer column
vector b, and ans-dimensional nonnegative integer column
vector c, find a binary s-dimensional column vectorx to
minimize cT x subject toAx ≥ b.

Example 5 For the Petri net in Fig. 1 with the labeling
function defined in Example 2, we can formulate the following
linear integer programming problem corresponding to the
OPSS problem

min cT x

s.t. Ax ≥ b

wherec = (1 1 1)T , x = V = (v1 v2 v3)
T (asp1, p2 andp3

are all observable),b = (1 1)T , and3

A =

[

−1 6= −2 1 6= 0 0 6= 1
0 6= 0 0 6= 0 −1 6= 0

]

=

[

1 1 1
0 0 1

]

.

3Here, for integersa and b, a 6= b has value1 if a is not equal tob, and
0 otherwise.
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The first row of matrixA is obtained by comparing the first
three entries ofD(:, t2) with the corresponding entries of
D(:, t3) and captures the requirement that the place sensor
configurationV distinguish transitionst2 and t3; the second
row is obtained by comparing the first three entries ofD(:, t5)
with three0’s and captures the requirement thatV detect un-
observable transitiont5. Using the linear integer programming
solver [30], the optimal solution is found to be(0 0 1)T , which
is the same as the solution obtained via exhaustive search in
Example 3. �

To translate an instance of the OPSS problem to an instance
of the MIP problem, we define the parameters of the MIP as
follows:

• Sets = n1 andq = |Tε|+
∑

e∈Σ∪{ε},|Te|≥2

(

|Te|
2

)

, where
(

n
r

)

is the binomial coefficient “n chooser”;
• Setb = 1q, c = 1s andx = V ;
• Set A to be a q × s binary matrix with two kinds of

rows: a) for each pairtj , tk ∈ Te (j 6= k) for any label
e ∈ Σ ∪ {ε} with |Te| ≥ 2, there is a row of the form
(D(1, j) 6= D(1, k) D(2, j) 6= D(2, k) · · · D(n1, j) 6=
D(n1, k)); b) for eachtj ∈ Tε, there is a row of the form
(D(1, j) 6= 0 D(2, j) 6= 0 · · · D(n1, j) 6= 0).

Proposition 4 The minimum {0, 1}-integer programming
problem constructed above is equivalent to the OPSS problem.

Proof: As x = V , cT x =
∑n1

i=1 vi = ||V ||. We need to
show Ax ≥ b if and only if V is valid, i.e., the Petri net is
structurally observable underV and the given labeling function
L. Following Proposition 1 and Proposition 2, we only need to
showAx ≥ b if and only if all columns ofDe

V are pairwise
different for each labele ∈ Σ such that|Te| ≥ 2, and all
columns ofDε

V are nonzero and pairwise different. This is
established from the following facts:

• (D(1, j) 6= D(1, k) D(2, j) 6= D(2, k) · · · D(n1, j) 6=
D(n1, k))x ≥ 1 is equivalent to the fact that thejth and
kth columns of incidence matrixD differ in at least one
of the observable places that are equipped with a sensor
(as indicated by the place sensor configurationV = x).
The construction of matrixA ensures that this is true for
all pairs tj , tk ∈ Te (j 6= k) for any labele ∈ Σ ∪ {ε}
with |Te| ≥ 2. In total, there are

∑

e∈Σ∪{ε},|Te|≥2

(

|Te|
2

)

inequalities of this type;
• (D(1, j) 6= 0 D(2, j) 6= 0 · · · D(n1, j) 6= 0)x ≥ 1 is

equivalent to the fact that thejth column is nonzero in at
least one of the observable places that are equipped with
a sensor. The construction of matrixA ensures that this
is true for anytj ∈ Tε. In total, there are|Tε| inequalities
of this type.

It can be verified that the reduction from OPSS to MIP
can be performed with complexity that is polynomial in the
number of places and transitions. Therefore, we can solve the
OPSS problem optimally using linear integer programming
solvers. Though linear integer programming solvers will gen-
erally be more efficient than exhaustive search, they can only
effectively deal with small problem instances as the OPSS
problem is computationally hard. Therefore, it is imperative

to find approximation algorithms that lead to good suboptimal
solutions with reasonable computational effort. This is done
in the next section.

VII. A PPROXIMATING OPTIMAL PLACE SENSOR

SELECTION

In this section, we propose two approximation algorithms
for the OPSS problem by generalizing the heuristics used
for the optimal selection of diagnostic probes in [31]. More
specifically, we consider how the addition of a sensor to
an observable place serves to detect/distinguish unobservable
transitions or to distinguish transitions that are associated
with the same labele ∈ Σ. We then define a “measure
of distinguishability” (called scoring function) and use it to
facilitate our choice of observable places to put sensors on.

Given a partially observed Petri netQ with n places,m
transitions, and a fixed labeling functionL, if there exists
one or more unobservable transitions, we construct a new
partially observed Petri net̄Q by adding an isolated transition
tm+1 to Q and by assigning the empty labelε to it. In
other words, the new incidence matrix̄D = (D 0n) if there
exists at least one unobservable transition inQ; otherwise,
D̄ = D. Given a place sensor configurationV , it can be shown
(following Proposition 2) that if, for each labele ∈ Σ ∪ {ε},
all columns of D̄e

V are different from each other, then the
original Petri netQ is transition distinguishable. We introduce
D̄ because i) it simplifies Proposition 2 in the sense that we
only need to check if any two columns of̄De

V are different for
e ∈ Σ ∪ {ε}, including the empty label; and ii) it eliminates
the need to treat differently unobservable transitions (whose
firings generate token changes at placep) from unobservable
transitions (whose firings do not generate token changes at
p) in the partition ofTε generated by observable placep (as
defined below).

Definition 9 Given a partially observed Petri netQ and a
fixed labeling functionL, Ωe(pi) for e ∈ Σ∪ {ε} denotes the
partition of Te generated by observable placepi in the Petri
net Q̄, and is defined asΩe(pi) = {S1, S2, ..., Sk}, where

• k is equal to the number of distinct entries in the row
vector D̄e

V , whereV hasV (i) = 1 and all other entries
equal to0;

• S1 ∪ S2 ∪ · · · ∪ Sk = Te and Si ∩ Sj = ∅ for different
i, j;

• Sl for l = 1, 2, ..., k is a non-empty set with the maximal
number of transitions{tj, ..., tk} that satisfytj , · · · , tk ∈
Te andD̄(i, j) = · · · = D̄(i, k).

Example 6 We find the partitions generated by observable
placep1 in the Petri net constructed from the net in Fig. 1 by
adding an isolated transitiont6. Then the row of the incidence
matrix D̄ corresponding to placep1 is

1 −1 −2 0 0 0
a b c ε

,

and by definition, the partitions generated by placep1 for
labels a, b, c and ε are respectively{{t1}}, {{t2}, {t3}},
{{t4}} and{{t5, t6}}. �



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 7, JULY2010 8

Remark 4 The partition defined above generalizes the mea-
sure of the diagnostic power of a probe in [31] in the sense
that the incidence matrix̄D can have arbitrary integer entries
while the dependency matrix in [31] only has0 or 1 entries.
�

If there exists at least one unobservable transition inQ, then
|Tε| ≥ 2 in Q̄. Clearly for a labele with only one transition,
the transition is observable and uniquely identified by its label.
The transitions associated with a labele ∈ Σ∪ {ε} satisfying
|Te| ≥ 2 need to be distinguished using place sensors so that
transition distinguishability holds. If the partition generated
by an observable placep for such a labele has|Te| elements,
then a place sensor atp is sufficient for distinguishing all
transitions inTe. In Example 6,p1 is sufficient for distin-
guishing transitions associated with labelb, but is insufficient
for distinguishing transitions associated withε.

Now we define thescoring functionfor an observable place
pi asf(pi) =

∑

e∈Σ∪{ε},|Te|≥2 |Ωe(pi)|. The scoring function
satisfies

lb ≤ f(pi) ≤ ub,

where lb =
∑

e∈Σ∪{ε},|Te|≥2 1 and ub =
∑

e∈Σ∪{ε},|Te|≥2 |Te|, because1 ≤ |Ωe(pi)| ≤ |Te|. If
f(pi) > f(pj), then a place sensor atpi can distinguish more
(partitions of) transitions than a place sensor atpj ; therefore,
f(pi) is a measure of the ability of placepi to distinguish
transitions. Iff(pi) is equal toub, then pi is sufficient for
distinguishing all transitions.

With the scoring functions computed, one natural “top-
down” method to approximate the OPSS problem is to start
with all observable places and then subtract places one by one
in the order of increasing value of the scoring function, until
we reach a set of observable places that cannot be reduced
further without affecting the transition distinguishability of the
net. The details are given in Algorithm 1.

Algorithm 1 Top-down method
Input: A partially observed Petri netQ and a fixed labeling

function L

Output: V – an approximation ofVmin

1: Determine whether there exists an optimal place sensor
configuration using Theorem 1; if one does not exist, exit;

2: ConstructQ̄ by adding an isolated transition if there is at
least one unobservable transition;

3: Computef(pi) for everypi ∈ Po;
4: Vcurrent ⇐ Vmax andPleft ⇐ Po;
5: while |Pleft| > 0 do
6: Vtemp ⇐ Vcurrent;
7: Find p ∈ Pleft to minimizef(p). If there are multiple

places that minimizef(p), randomly choose one;
8: Vtemp(p) ⇐ 0;
9: Test whetherQ̄ is transition distinguishable under

Vtemp. If it is, then Vcurrent ⇐ Vtemp;
10: Pleft ⇐ Pleft − {p};
11: end while
12: V ⇐ Vcurrent.

We briefly explain Lines 4-12 of Algorithm 1. After com-
puting the score for every observable place, we setVcurrent

to be Vmax and Pleft to be the set of observable places at
Line 4. Pleft keeps track of the set of observable places that
we have not considered so far and its cardinality decreases
by one after each loop in thewhile clause; this guarantees
the termination of the algorithm. In the loop, we useVtemp to
represent the place sensor configuration induced fromVcurrent

by removing a sensor from the placep that minimizes the
score among all places inPleft. If the system is transition
distinguishable underVtemp and L, then the sensor can be
removed and we updateVcurrent usingVtemp; otherwise, the
sensor cannot be removed at the current iteration andVcurrent

remains the same as before. In both cases, we remove the
corresponding placep from Pleft. After we have considered
all observable places, i.e.,Pleft is empty, the algorithm stops
with the outputVcurrent, which is an approximation toVmin

because in any execution of thewhile loop,Vcurrent is always
valid.

For certain Petri nets, it may be the case that somef(pi)
is very close toub so that one or two additional place
sensors are sufficient to guarantee structural observability. We
next consider how to extend the scoring function to multiple
places so that we can approximate the optimal solution in
a “bottom-up” fashion. Suppose we have a partitionΩe(pi)
generated by placepi for label e and4 |Ωe(pi)| < |Te|.
If we choose another placepj , we can refine the parti-
tion Ωe(pi) by considering whether transitions belonging to
some setS ∈ Ωe(pi) can be distinguished usingpj . If
we denote the refined partition asΩe(pi, pj), we can define
f({pi, pj}) =

∑

e∈Σ∪{ε},|Te|≥2 |Ωe(pi, pj)|. By repeatedly
applying the above operation, we can define the scoring func-
tion f(S) for any nonempty setS of observable places. Note
that the partitions inΩe(pi1 , pi2 , ..., pik

) are independent of
the ordering of places andf(S) still satisfieslb ≤ f(S) ≤ ub

for any nonempty set of observable places.
The idea of the “bottom-up” method is as follows: initially,

choose the placepi which maximizesf(pi) and keep its
generated partition for each label; the second time around,
choose the placepj which maximizesf({pi, pj}) and keep
the refined partition for each label; keep doing this until
f(S) = ub for some subsetS of observable places. The details
are given in Algorithm 2.

We briefly explain Lines 3-10 of Algorithm 2. We first
set Vcurrent to be the place sensor configuration without
sensors at Line 3. If̄Q is transition distinguishable under the
given labeling functionL and the place sensor configuration
Vcurrent, then no place sensor is necessary and the algorithm
exits with V = 0n1

. Otherwise we setPleft to be the set of
observable places,S to be the empty set, andsign to be0 at
Line 4.Pleft keeps track of the set of observable places that we
have not considered so far, variableS keeps track of the set of
observable places that have sensors inVcurrent, andsign has
a value1 if we have found a valid place sensor configuration

4If |Ωe(pi)| = |Te| for every labele, then adding another place cannot
increase the value of the scoring function. In fact, in such case, a sensor at
placepi is sufficient for structural observability and the proposedAlgorithm 2
would terminate after selectingpi.
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Algorithm 2 Bottom-up method
Input: A partially observed Petri netQ and a fixed labeling

function L

Output: V – an approximation ofVmin

1: Determine whether there exists an optimal place sensor
configuration using Theorem 1; if one does not exist, exit;

2: ConstructQ̄ by adding an isolated transition if there is at
least one unobservable transition;

3: Vcurrent ⇐ 0n1
. If Q̄ is transition distinguishable under

L andVcurrent, exit with V = 0n1
;

4: Pleft ⇐ Po, S ⇐ ∅, andsign ⇐ 0;
5: while sign is 0 do
6: Find p ∈ Pleft to maximizef(S ∪ {p}) and keep their

generated partitions for each label. If there are multiple
places that result in an equal maximum, randomly
choose one;

7: Vcurrent(p) ⇐ 1, Pleft ⇐ Pleft − {p} and S ⇐ S ∪
{p};

8: If f(S) is equal toub, thensign ⇐ 1;
9: end while

10: V ⇐ Vcurrent.

and 0 otherwise. In thewhile loop, we first select placep
(in Pleft) that maximizes5 the scoref(S ∪ {p}); then, we set
Vcurrent(p) to be1, removep from Pleft, and at the same time
addp into S; finally, we determine iff(S) is equal toub, or
equivalently, ifVcurrent is valid. If it is, then thewhile loop
ends by settingsign to be1 andVcurrent is an approximation
to Vmin; otherwise, the algorithm goes to the next loop. The
algorithm is guaranteed to stop because after each iteration,
|S| will be increased by1 and |S| is upper bounded by the
number of observable places (and also because the existence
of an optimal solution has been verified at Line 1).

Example 7 For the Petri net in Fig. 1 with the labeling
function defined in Example 2, we illustrate the use of the
“top-down” and “bottom-up” methods to solve the OPSS
problem. An optimal solution exists as shown in Example 3.
As t5 is unobservable, we add an isolated transitiont6 to
constructQ̄. We first use the “top-down” method. We compute
f(pi) for i = 1, 2, 3, and obtainf(p1) = 3, f(p2) = 3 and
f(p3) = 4. At the first iteration,p1 and p2 both minimize
f(p); we choose to eliminate the sensor onp1 and find out
thatQ̄ is still transition distinguishable. At the second iteration,
we eliminate the sensor onp2 while at the third iteration,
we cannot eliminate any sensor and the algorithm ends with
V = (0 0 1)T . Using the “bottom-up” method, we initialize
S = ∅. At the first iteration, we findp3 which maximizes
f(p) and setS = {p3}. As f(S) = ub = 4, the algorithm
ends with theV = (0 0 1)T . For this particular example, both
algorithms give the optimal solution that we obtained earlier
using exhaustive search (in Example 3) and linear integer

5Instead of computing all partitions generated byS ∪ {p}, we can save
computation by computing the value off(S ∪ {p}) based on the value of
f(S) and the increment induced by placep (recall that Algorithm 2 iterates
through places in a bottom-up fashion).

programming solvers (in Example 5). �

Now we provide a simple analysis of the performance of
the “bottom-up” method by providing an upper bound on
the number of place sensors in the solution generated by
Algorithm 2. The upper bound ismin(n1, ub− lb +1), where
n1 is the number of observable places andub (or lb) is the
maximum (or minimum) value of the scoring function. The
reasoning is the following: at each iteration in Algorithm 2,
one place sensor will be added and the scoring function
increases at least bylb for the first picked place and at least
by 1 for the following picked places (otherwise, we will not
select the place sensor); therefore, the loop will be executed
at mostn1 times as there can be at mostn1 sensors to add,
and also at mostub − lb + 1 times as the value of the scoring
function increases from at leastlb to ub with the increment
being at least1. For the OPSS problem in Example 7, as
n1 = 3, ub = 4 and lb = 2, we get the upper bound
min(n1, ub − lb + 1) = min(3, 4 − 2 + 1) = 3; clearly,
the bound holds as there is only one sensor in the optimal
solution.

It can be shown that both Algorithm 1 and Algorithm 2 have
complexityO(n2m2); details are omitted due to lack of space.
We can obtain a better solution if we apply Algorithm 1 after
Algorithm 2 by settingVcurrent (at Line 4 of Algorithm 1) to
be the output of Algorithm 2 instead ofVmax; this is illustrated
in Section IX-A.

VIII. O PTIMAL TRANSITION SENSORSELECTION

PROBLEM

Section V showed that the optimalplace sensor selec-
tion problem is computationally hard by showing that the
corresponding decision problem isNP-complete. Perhaps
surprisingly, the optimaltransition sensor selection problem
is solvable with complexity that is polynomial in the number
of places and transitions. We first define the partition of
To generated by a place sensor configurationV , which is a
slightly modified version of Definition 9.

Definition 10 Given a partially observed Petri netQ and a
fixed place sensor configurationV , the partition of the set
of observable transitionsTo generated byV is defined to be
Ω(V ) = {S0, S1, S2, ..., Sk}, where

• S0 is a (possibly empty) set with the maximal number
of transitions{tj, ..., tl} that satisfytj , · · · , tl ∈ To and
DV (:, j) = · · · = DV (:, l) = 0||V || (where DV (:, j)
denotes thejth column of matrixDV );

• If S0 is ∅, then k is equal to the number of distinct
columns in the matrixDV ; if S0 is the same asTo, then
k is defined to be1 andS1 = ∅; otherwise,k is equal to
the number of distinct columns in the matrixDV minus
1;

• S0 ∪ S1 ∪ S2 ∪ · · · ∪ Sk = To andSi ∩ Sj = ∅ if i 6= j;
• Si for i = 1, 2, ..., k is a (possibly empty) set with

the maximal number of transitions{tj, ..., tl} that satisfy
tj , · · · , tl ∈ To and DV (:, j) = · · · = DV (:, l) being
nonzero.
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Essentially, any two transitions that have the same column
in DV fall into the same partition inΩ(V ). After computing
the partitionΩ(V ), we need to configure transition sensors to
distinguish/detect all transitions inS0 by assigning a unique
label to each transition inS0 because no token changes are
available for these transitions; we also need to configure transi-
tion sensors to distinguish all transitions inSi for i = 1, 2, ..., k

by assigning a unique label to any|Si|−1 transitions inSi (the
transition that is left without a label can be distinguishedby the
token changes inV ). The minimum number of labels needed is
equal to|Σ|min = max(|S0|, max(|S1|, |S2|, . . . , |Sk|)−1). If
|Σ| < |Σ|min (i.e., if the number of available transition sensors
is less than|Σ|min), then by Dirichlet’s drawer principle,
either some transition inS0 cannot be detected or at least two
transitions in someSl for 1 ≤ l ≤ k cannot be distinguished.
Based on this idea, we have Algorithm 3 for the OTSS
problem.

Algorithm 3 Algorithm for OTSS
Input: A partially observed Petri netQ and a fixed place

sensor configurationV
Output: A valid labeling functionLmin : T → Σ ∪ {ε}

satisfyingLmin(t) = ε for any t ∈ Tuo

1: Determine whether there exists an optimal labeling func-
tion using Theorem 2; if one does not exist, exit;

2: Compute the partitionΩ(V ) to getS0, S1, S2, . . . , Sk;
3: |Σ| ⇐ max(|S0|, max(|S1|, |S2|, . . . , |Sk|) − 1). If |Σ|

is 0, exit with Lmin(t) = ε for t ∈ T ; else, Σ ⇐
{e1, e2, . . . , e|Σ|};

4: Assign a unique label fromΣ to each transition inS0 if
S0 is nonempty;

5: for l = 1 to k do
6: if |Sl| is 1 then
7: Assign the empty label to the unique transition inSl;
8: else if |Sl| > 1 then
9: Assign a unique label fromΣ to each transition

among any|Sl| − 1 transitions inSl, and assign the
empty label to the remaining transition;

10: end if
11: end for
12: Lmin(t) ⇐ ε for t ∈ Tuo and outputLmin.

We briefly explain Lines 3-12 of Algorithm 3. After com-
puting Ω(V ), at Line 3 we set|Σ| (the number of transi-
tion sensors) to bemax(|S0|, max(|S1|, |S2|, . . . , |Sk|) − 1)
as discussed previously. If|Σ| = 0, then no transition
sensor is required; otherwise, we need|Σ| transition labels
e1, e2, . . . , e|Σ|. Then we define the labeling functionLmin

for observable transitions in Lines 4-11 (and for unobservable
transitions at Line 12). At Line 4 we assign a unique label to
each transition inS0 if S0 is not empty. In thefor loop from
Line 5 to Line 11, we assign labels to each transition inSl

for l = 1, ..., k. There are two cases: i) if|Sl| is 1, then the
token change can uniquely identify the only transition inSl

and therefore, we assign the empty label to this transition;ii)
if |Sl| is larger than1, then we assign a unique label from|Σ|

to each transition among any|Sl| − 1 transitions and assign
the empty label to the remaining transition. The way to assign
transition labels is possible due to the value of|Σ|. Lmin

and the givenV guarantee transition distinguishability and
therefore,Lmin is valid (and the number of transition labels
is also minimized). Note thatLmin is not necessarily unique as
there are no constraints on how to assign labels for transitions
within a setSl or two different setsSl1 andSl2 .

It can be shown that Algorithm 3 has complexityO(nm2);
details are omitted due to lack of space.

Example 8 We consider the OTSS problem as stated in
Example 4. Recall that the optimal labeling function exists
if we are given place sensor configurationV = (0 0 1)T .
The partition of To generated byV is S0 = {t1, t2} and
S1 = {t3, t4} by examining the matrixDV = (0 0 1 1 −1).
Therefore, we can set|Σ| = max(|S0|, |S1|−1) = 2 andΣ =
{e1, e2}. Labeling functionL defined asL(t1) = L(t3) = e1,
L(t2) = e2 andL(t4) = L(t5) = ε is one optimal solution.�

Remark 5 Though there can be multiple optimal labeling
functions, we may form preferences depending on other cri-
teria; for example, using the results in [32], we may want to
minimize the number of possible states that are consistent with
the observation of labels in case of place sensor failures.�

In the OTSS problem, we have made one implicit assump-
tion: a nonempty label can be associated to any subset of
observable transitions. This assumption may not be realistic
in certain applications due to other constraints. For example,
the labeling function may be required to be injective over
observable transitions, which means every observable tran-
sition should be associated with a unique (possibly empty)
label. For the OTSS problem under this constraint, it can be
shown (following almost the same reasoning as for the OTSS
problem) that the minimum number of transition labels|Σ| is
|S0|+ max(|S1|+ |S2|+ · · ·+ |Sk| − 1, 0) as we can assign
the empty label to one of these observable transitions (which
cause token changes in observable places with sensors). More
specifically, |Σ| is equal to |To| if S0 = To, and |To| − 1
otherwise.

IX. EXAMPLE : AUTOMATED GUIDED VEHICLES

In this section, we first consider a practical example to
demonstrate the two approximation algorithms and then dis-
cuss how to modify our heuristics to solve the OPSS problem
with arbitrary nonnegative integer costs.

A. Automated Guided Vehicles

In this subsection, we consider the OPSS problem in a
flexible manufacturing cell modeled as a Petri net with64
places and53 transitions (first introduced in [10]), and use this
example to compare our approximation algorithms against the
method based on linear integer programming solvers. The cell
includes three workstations, two part-receiving stationsand
one completed parts station. Five automated guided vehicles
(AGV’s) transport material between pairs of stations and they
may collide with each other in shared regions. For more details
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on the Petri net model of the cell, refer to Fig. 2 in [10] (but
keep in mind that for our simulations on sensor selection, we
do not need the control places in that figure). In [10], the
collision avoidance problem was studied under the assumption
that the current marking of the system is known. The same
problem was also studied in [33] under the assumption that
all transitions are observable. However, these methods cannot
be directly applied when only part of the system state is known
or when there are unobservable transitions.

We model the cell as a partially observed Petri net and
assume that all64 places and all53 transitions are observable
so that we do not need to worry about the existence of a
solution to the OPSS problem. To test the effectiveness of our
approximation methods, we need to generate labeling func-
tions. First, we specify the number of transition labelsi. Then,
we let i take values10, 13, 16, 20, 24, and for each value of
i, we randomly generate5 labeling functions in the following
manner: we allow each transitiont (among all53 transitions)
to have any of thei labels with equal probability. In total, we
have25 randomly generated labeling functions; then we solve
the 25 OPSS problems using Algorithm 1, Algorithm 2, and
the MIP-based method (the solver we used is the open source
mixed-integer programming solver [30]). Simulation programs
were written in Matlab and were run on a1.4Ghz laptop. The
results obtained using the two approximation algorithms and
the MIP-based method are shown in Table I. In this table, “i”
refers to the number of transition labels and “# constraints”
refers to the parameterq in Problem 5 of Section VI. Note that
the exhaustive search method is prohibitive for this example
as there are264 = 1.8447× 1019 possibilities.

We compare the two approximation algorithms with the
MIP-based method using the difference between the number
of sensors in their respective solutions, and their running
time. Table II shows the comparison results when considering
the difference∆ between the number of sensors given by
approximation algorithms and the number given by the MIP-
based method. For the “bottom-up” method, nearly one half
of 25 simulations give solutions with the same number of
sensors6 as the MIP-based method and also nearly another
one half give a solution that is only slightly worse (namely,
the difference∆ satisfies ∆ = 1). For the “top-down”
method,4 of 25 simulations give solutions with the same
number of sensors as the MIP-based method and over one
half among the25 simulations give a solution that is only
slightly worse (namely,∆ = 1). When comparing the two
approximation algorithms directly, the “bottom-up” method
gives better solutions for13 simulations while the “top-down”
method gives better solutions only for1 simulation; there
are 11 simulations in which the two methods give solutions
with the same number of sensors. Table I shows that the
running time of the “bottom-up” method is slightly longer
than the running time of the “top-down” method; the running
time of both approximation algorithms is much shorter than
the running time of the MIP-based method, especially when
there are fewer labels. For example, in the last simulation

6Though the place sensor configurations given by the “bottom-up” method
and the MIP-based method have the same number of place sensors, they are
not necessarily identical.

TABLE II
COMPARISON OFAPPROXIMATION ALGORITHMS WITH MIP-BASED

METHOD OVER 25 SIMULATIONS

∆ Top-down Method Bottom-up Method
0 4 12
1 14 12
2 7 1

of 10 labels, the “top-down” method ran in0.406 seconds
and the “bottom-up” method ran in2.312 seconds while the
MIP-based method ran in6287.8 seconds. These simulations
suggest that the two approximation algorithms run faster
and can find reasonably good solutions compared with the
MIP-based method. In particular, the “bottom-up” method is
quite promising in terms of running time and quality of the
approximation.

A better solution can be achieved if we apply Algorithm 1
after Algorithm 2 by settingVcurrent (at Line 4 of Algo-
rithm 1) to be the output of Algorithm 2 instead ofVmax.
In one simulation withi being 20, both the “top-down”
method and the “bottom-up” method obtain place sensor
configurations with18 sensors; however, the combined method
obtains a place sensor configuration with17 sensors, which is
the same as the number of sensors obtained by the MIP-based
method.

B. OPSS with Arbitrary Nonnegative Integer Costs

In this subsection, we consider a weighted version of the
OPSS problem. More specifically, we associate with each
observable placepi a nonnegative integercost(pi) which
captures the cost of a sensor on placepi. Given a par-
tially observed Petri netQ and a fixed labeling function
L, we try to find a valid sensor configurationVmin such
that for any other validV , CT Vmin ≤ CT V , whereC =
(cost(p1) cost(p2) · · · cost(pn1

))T .
The existence condition for an optimal solution is still given

by Theorem 1, which can be proved in a way similar to that
of Theorem 1. To solve the problem, we can transform it
into an integer programming problem by setting the vector
c (in Problem 5 of Section VI) to beC. Notice that integer
programming solvers will give the optimal solution for this
problem but will be slow for large problem instances. To
employ the “top-down” method developed in Section VII, we
use the following modified scoring functionf ′(pi) = f(pi)

cost(pi)
,

where f(pi) is the scoring function defined in Section VII.
The justification is the following: i) the larger the value of
f(pi), the fewer place sensors are needed based on the result
in Section VII; ii) the smaller the value ofcost(pi), the
smaller the total cost. To use the “bottom-up” method, we can
generalizef ′(pi) to a set of placesS asf ′(S) = f(S)

∑

p∈S
cost(p)

.

Other scoring functions with properties similar to i) and ii)
above can also be used but are not studied here in the interest
of space.

To compare the two modified approximation algorithms and
the MIP-based method for the OPSS problem with costs, we
still use the AGV example. In our simulations, we randomly
generate a labeling function with20 labels and choose5
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TABLE I
SIMULATION RESULTS OFTWO APPROXIMATION ALGORITHMS AND MIP-BASED METHOD

Top-down Method Bottom-up Method MIP-based Method
i time (s) # sensors time (s) # sensors time (s) # sensors # constraints

24
0.343 18 2.079 17 1.421 16 56
0.359 17 2.079 17 2.703 16 59
0.359 17 1.891 16 1.094 15 47
0.344 17 1.875 16 0.984 16 56
0.344 16 1.969 16 2.641 16 52

20
0.375 19 2.093 18 16.391 17 67
0.359 19 2.032 18 16.813 17 68
0.344 18 1.953 17 5.578 17 69
0.391 20 2.359 18 32.250 18 60
0.375 18 2.125 18 20.875 18 69

16
0.375 20 2.297 21 266.797 19 87
0.360 21 2.297 20 192.984 19 74
0.359 19 2.172 19 101.391 19 85
0.360 21 2.391 21 801.890 20 80
0.359 21 2.266 20 1595.000 20 95

13
0.375 21 2.219 21 287.843 20 102
0.359 22 2.250 21 1782.700 21 108
0.391 22 2.140 22 1377.100 21 111
0.375 21 2.250 20 630.703 20 107
0.391 21 2.219 21 130.766 20 103

10
0.375 22 2.172 22 3899.1 22 137
0.406 23 2.203 22 2097.5 22 162
0.406 23 2.281 23 3575.9 22 140
0.407 24 2.328 22 3533.2 22 130
0.406 23 2.312 23 6287.8 22 135

cost functions: i) function1 has entries0 or 1 with equal
probability; ii) function2 (or 3, 4, 5) is a shifted version of
function1 by changing the expectation to be1.5 (or 2.5, 5.5,
10.5). The results are shown in Table III. In this table, “i”
refers to theith cost function, “cost” refers to the total cost
of the corresponding place sensor configuration. The results
show that the two approximation algorithms give solutions
close to the optimal one but with much less running time,
especially when the costs of places do not exhibit large relative
difference. If we fix the cost function but change the labeling
function (while keeping the total number of labels to be20),
the total cost and running time for all three methods do not
change much, and we omit the outcomes of these simulations.

X. CONCLUSION

This paper studies the optimal sensor selection problem to
achieve structural observability in partially observed Petri nets.
The OPSS problem is shown to be computationally hard, and
solvable optimally via a transformation into an MIP problem
or suboptimally via approximation algorithms. We propose
two such algorithms, a “top-down” method and a “bottom-up”
method, both of which have complexity that is polynomial
in the number of places and transitions. The example of
automated guided vehicles shows that the two algorithms,
especially the “bottom-up” method, work almost as well as
the MIP-based method but with significantly reduced running
time. Unlike the OPSS problem, the OTSS problem was shown
to be solvable with complexity that is polynomial in the
number of places and transitions.

The heuristics used in our approximation algorithms can
also be used in other settings. For example, they can be
easily adapted to the design of a minimal diagnoser [34] by
slightly modifying our approximation algorithms to choose

a set of places to put sensors on so that fault transitions
can be distinguished immediately. Another application of the
heuristics is in rough set theory [35] to compute a reduct
with a minimum cardinality of attributes among all possible
reducts; in this problem, a reduct is similar to a place sensor
configuration in the OPSS problem and attributes are similar
to sensors on observable places.

There are several future research directions. First, we plan
to consider the general sensor selection problem mentionedin
Section III. The goal is to choose a set of place sensors and
transition sensors of minimum cardinality such that the system
is structurally observable. The general problem is at leastas
difficult as the OPSS problem. The problem can be solved
optimally by exhaustively searching all possibilities. More
specifically, one first chooses a place sensor configurationV

among2n1 possible choices, solves the OTSS problem with
the fixed place sensor configurationV , obtains the minimum
number of transition labels required, and finally adds the
number of place sensors and the number of transition labels;
the solution selected for the general sensor selection problem is
the one with the minimum sum among all2n1 choices. Though
it is not clear how to transform the problem into an integer
programming problem due to the heterogeneity of place sensor
configurations and transition labeling functions, one might be
able to modify the heuristics in Section VII to approximate
the optimal solution to this general sensor selection problem.

We also plan to investigate a relaxed version of the OPSS
problem (based on the work in [32]) in which we allow
multiple states and select a minimum number of place sensors
to guarantee that the number of possible states can increase
no faster than a given function that is polynomial in the length
of the observation sequence.

Another research direction is to consider a variation of the
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TABLE III
SIMULATION RESULTS FOROPSSWITH COSTS

Top-down Method Bottom-up Method MIP-based Method
i time (s) # sensors cost time (s) # sensors cost time (s) # sensors cost
1 0.391 18 7 0.938 38 3 0.125 23 3
2 0.375 18 24 2.297 36 37 1.781 19 20
3 0.390 18 45 2.109 21 42 5.250 17 36
4 0.375 18 103 2.015 19 98 13.266 17 90
5 0.391 18 193 2.000 18 186 74.266 17 178

OTSS problem, in which only physically close transitions
can share the same label. More specifically, the following
constraints can be imposed on transition sensors: i) there are
only d types of transition sensorsT1, T2, ..., Td; and ii) each
type Ti covers a subset of observable transitions while some
transitions may not be covered and some transitions may be
covered by more than one type of sensors. We believe the
approaches to solve the OPSS problem proposed in this paper
could be useful to solve this constrained OTSS problem, and
we plan to investigate them in the near future.

Finally, we plan to analyze performance guarantees for
the “bottom-up” method. Note that we can reduce the OPSS
problem to the set cover problem and solve the constructed
set cover problem using a standard greedy algorithm (refer to
[36] for the algorithm and its performance guarantee) which
selects the subset that can cover the most uncovered elements
so far in the universe. This greedy algorithm guarantees a place
sensor configuration with the number of place sensors within
OPT ∗ Hq, whereOPT is the minimum number of place
sensors used in an optimal solution,q is the parameter in
Problem 5 andHq = 1 + 1

2 + ... + 1
q

= O(ln q). Directly
establishing a performance guarantee for the “bottom-up”
method (perhaps in comparison to the solution provided by the
set cover greedy algorithm) is an interesting research question.

APPENDIX A
EQUIVALENCE BETWEEN STRUCTURAL OBSERVABILITY

AND K -DELAYED STRUCTURAL OBSERVABILITY

We now establish the equivalence between structural ob-
servability andK-delayed structural observability.

Proposition 5 Given a place sensor configurationV and a
labeling functionL, a partially observed Petri netQ being
structurally observable is equivalent toQ being K-delayed
structurally observable.

Proof: Structural observability=⇒ K-delayed structural
observability. If structural observability holds,K-delayed
structural observability also holds by definition.

K-delayed structural observability=⇒ structural observ-
ability. SupposeK ≥ 1 (the case forK = 0 is trivial).
If K-delayed structural observability holds, then the system
state at time stepi may not be determined uniquely based on
the observation sequence generated by transitions up to time
stepi but can be determined after no more thanK additional
transition firings. In other words, some of the possible states at
time stepi given the observations up to time stepi vanish due
to lack of tokens in certain places (i.e., there are not enough
tokens to enable firing sequences up to time stepi + K).

However, these states will still be possible even afterK time
steps if enough tokens are added in the initial marking while
generating the same observation. Since the property has to hold
for an arbitrary initial state, we have reached a contradiction.
Therefore, the system state at time stepi has to be uniquely
determined by observations up to time stepi, which implies
that structural observability holds.

APPENDIX B
PROOF OFPROPOSITION3

To determine transition distinguishability using Proposi-
tion 2, for each labele ∈ Σ ∪ {ε} satisfying |Te| ≥ 2,
we need to check whether their corresponding columns in
De

V are pairwise different. In the worst case, we need to
invoke ||V || ×

(

|Te|
2

)

comparisons. Forε, we need to also
check whether any of its transitions corresponds to a zero
vector, which needs||V || × |Tε| additional comparisons. Let
∑

e∈Σ∪{ε},|Te|≥2 |Te| = m1 ≤ m. Then

#comparisons= ||V || × |Tε| + ||V || ×
∑

e∈Σ∪{ε},|Te|≥2

(

|Te|

2

)

= ||V || ×



|Tε| −
m1

2
+

∑

e∈Σ∪{ε},|Te|≥2

|Te|2

2





≤ n ×

(

m −
m1

2
+

m1
2

2

)

≤
nm2 + nm

2
(2)

where Eq. (2) follows from the fact that
∑n

i=1 a2
i ≤

(
∑n

i=1 ai)
2 for positive ai’s, ||V || ≤ n and |Tε| ≤ m.

Therefore, transition distinguishability can be determined with
complexityO(nm2).
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