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Abstract—Rising concerns about the efficiency, reliability, eco-
nomics, and sustainability in electricity production and distri-
bution have been driving an evolution of the traditional electric
power grid toward smart grid. A key enabler of the smart grid is
the two-way communications throughout the power system, based
on which an advanced information system can make optimal
decisions on power system operation. Due to the expected deep
penetration of renewable energy sources, energy storage devices,
demand side management (DSM) tools, and electric vehicles
(EVs) in the future smart grid, there exist significant technical
challenges on power system planning and operation. Specifically,
efficient stochastic information management schemes should
be developed to address the randomness in renewable power
generation, buffering effect of energy storage devices, consumer
behavior patterns in the context of DSM, and high mobility of
EVs. In this paper, we provide a comprehensive literature survey
on the stochastic information management schemes for the smart
grid. We start this survey with an introduction to the smart grid
system architecture and the technical challenges in information
management. Various component-level modeling techniques are
presented to characterize the sources of randomness in the smart
grid. Built upon the component-level models, we further explore
the system-level stochastic information management schemes for
smart grid planning and operation. Future research directions
and open research issues are identified.

Index Terms—Demand side management, electric power sys-
tem, electric vehicle, information and communication systems,
microgrid, renewable energy, smart grid, stochastic control,
stochastic modeling, stochastic optimization.

I. INTRODUCTION

As named by the National Academy of Engineering (NAE)
in the United States, electrification is “the most important en-
gineering achievement of the 20th century”. Electricity (along
with natural gas and refined petroleum products) is and will
continue to be a major source of energy supply for residential,
commercial, and industrial sectors in the foreseeable future.
However, concerns have been raised about the efficiency,
reliability, economics, and sustainability of the decades-old
electric power grid. Penetration of renewable energy sources
is increasing at a rapid rate, thanks to government incen-
tives, falling installation costs, and rising fossil fuel prices.
According to the International Energy Agency (IEA) forecast,
electricity generation from renewable energy sources will be
nearly tripled from 2010 to 2035, reaching 31% of the world’s
total power generation. Hydro, wind, and solar are three of
the major renewable energy sources, which will provide 50%,
25%, and 7.5% respectively of the total renewable power
generation in 2035 [1]. On the other hand, to reduce the
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greenhouse gas (GHG) emissions in energy consumption, elec-
tricity customers have been participating and will continue to
participate in the demand side management (DSM) programs
which provide incentives via energy bill savings. For instance,
4.7 million smart meters have been installed in Ontario,
Canada, as of February 2012 and 3.8 million Ontarians are
on time-of-use rates [2]. In addition to the residential, com-
mercial, and industrial sectors which are the main consumers
of electricity, there is an inevitable trend of electrification in
the transportation sector to further reduce the GHG emissions.
According to the Electric Power Research Institute (EPRI), the
electric vehicle (EV) penetration level in the United States
can reach 35%, 51%, and 62% by 2020, 2030, and 2050,
respectively [3]. Also, it is estimated that there will be at least
500,000 highway-capable EVs on Canadian roads by 2018, as
well as a possibly larger number of hybrid-electric vehicles [4].
Innovated power transmission & distribution (T&D) systems,
microgrids, and energy storage devices will be developed to
ensure efficient and reliable power delivery to maximize the
utilization of renewable energy sources, EVs, and DSM tools.
However, there exist significant technical challenges in power
system operation and control, due to the intermittency of
renewable energy resources, buffering effect of energy storage
devices, consumer behavior patterns in the context of DSM,
and high mobility of EVs. In order to address these challenges,
an evolution of the traditional electric power grid to a “smart
grid” is underway.

One of the first references to the term “smart grid” is
an article published in the September/October 2005 issue
of the IEEE Power and Energy Magazine by Amin and
Wollenberg, entitled “Toward a smart grid” [5]. Due to the
complexity of involved technologies and the variety of visions
from stakeholders, the smart grid gives rise to a number of
definitions and explanations [6]. The following are a few
examples published by authorities such as U.S. Department
of Energy (DOE) [7], Independent Electricity System Operator
(IESO) [8], and the National Association of Regulatory Utility
Commissioners (NARUC) [9].

• DOE definition – “An automated, widely distributed en-
ergy delivery network, the smart grid will be character-
ized by a two-way flow of electricity and information
and will be capable of monitoring everything from power
plants to customer preferences to individual appliances.
It incorporates into the grid the benefits of distributed
computing and communications to deliver real-time in-
formation and enable the near-instantaneous balance of
supply and demand at the device level.”

• IESO definition – “A smart grid is a modern electric
system. It uses communications, sensors, automation and
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Fig. 1: An illustration of the smart grid system architecture [10].

computers to improve the flexibility, security, reliability,
efficiency, and safety of the electricity system.”

• NARUC definition – “The smart grid takes the existing
electricity delivery system and makes it ‘smart’ by linking
and applying seamless communications systems that can:
1) gather and store data and convert the data to intel-
ligence; 2) communicate intelligence omnidirectionally
among components in the ‘smart’ electricity system; and
3) allow automated control that is responsive to that
intelligence.”

Despite the variety in smart grid definitions, we can conclude
that smart grid is an electrical grid that uses information and
communication technologies to gather information and act
accordingly in an automated fashion to improve the efficiency,
reliability, economics, and sustainability of electricity produc-
tion, transmission, distribution, and consumption.

The IEEE 2030 standard on smart grid was introduced in
September 2011, which provides guidelines in understanding
and defining the interoperability of information and commu-
nication technology with the power system, end-user applica-
tions, and loads [10]. The smart grid architecture is defined
based on the interconnection of an electric power system, a
communication system, and an information system, as shown
in Fig. 1. In literature, there are several surveys and tutorials
on the architectural perspective of the smart grid with respect
to the following topics:
• Overview of the smart grid [11] [12];
• Smart grid information system architecture [13];
• Smart grid communication networks [14]–[18];
• Smart grid cyber security and privacy support [19]–[22].

The existing works summarize various approaches to integrate
renewable energy sources, energy storage devices, DSM tools,
and EVs in the smart grid, and two-way communication
techniques for information acquisition and notification, while
providing cyber security and privacy support. Further, it is
technically challenging to utilize the information acquired
through smart grid communications to make optimal decisions
on power system planning and operation. Some studies in the
area of computational intelligence are presented in [23] for
sensing, situational awareness, control, and optimization in the
smart grid. Nevertheless, a comprehensive literature review for

information management in the smart grid will help to develop
new solutions to meet the technical challenges.

In this paper, we focus on the information system of smart
grid. Various stochastic information management schemes are
surveyed to address the technical challenges on system plan-
ning and operation for integrating renewable energy sources,
energy storage devices, DSM tools, and EVs. The smart grid
system architecture is investigated, based on which the sources
of randomness in information management are identified.
Component-level modeling techniques are presented to charac-
terize the stochastic nature of these sources. The component-
level stochastic models are further incorporated in the system-
level stochastic information management schemes with respect
to all domains of the electric power system, including bulk
generation, transmission, distribution, and consumption.

The organization of this paper is shown in Fig. 2. Section II
describes the smart grid system architecture and briefly intro-
duces the three subsystems in smart grid, with a focus on
the technical challenges in information management. In Sec-
tion III, the component-level stochastic models are presented.
Since the system-level stochastic information management
is closely related to power system planning and operation
functions, Section IV presents an overview of these functions
and the associated theories and techniques that can be used
for stochastic information management. The state of the art
in stochastic information management for bulk generation and
transmission systems, distribution systems and microgrids, and
DSM is presented in Section V, Section VI, and Section VII,
respectively. Due to the unique features of EVs (such as their
mobility) in comparison with the traditional electric power
system components, we discuss the stochastic information
management schemes for EV integration in a separate sec-
tion, i.e., Section VIII. Section IX concludes this study and
discusses open research issues.

II. SMART GRID SYSTEM ARCHITECTURE
AND TECHNICAL CHALLENGES IN

INFORMATION MANAGEMENT

According to the IEEE 2030 standard [10] and as shown
in Fig. 1, the smart grid system architecture is based on an
interconnection of three subsystems:
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Fig. 2: Paper organization.

1) An electric power system which accomplishes the gen-
eration, transmission, distribution, and consumption of
electricity;

2) A communication system which establishes the connec-
tivity for information exchange among different systems
and devices; and

3) An information system which stores and processes data
information for decision making on power system oper-
ation and management.

Different service providers can participate in the electricity
market to provide electricity services to customers and utilities.

In comparison with the traditional electric power systems,
more renewable-energy-based distributed generation (DG)
units and energy storage devices (including EVs) are integrated
in the smart grid. As a result, the traditional electricity
consumers are being gradually transformed into electricity
“prosumers” who not only consume energy but can also
produce energy and feed it to the power grid. Therefore, the
basic assumption of unidirectional electricity delivery (from
centralized generators to electricity customers) in the tradi-
tional electric power system is no longer practical. Bidirec-
tional energy flows need to be established between electricity
customers and power distribution systems, as shown in Fig. 1.
Moreover, a number of DG units, energy storage devices, and
loads in close proximity can be interconnected as a microgrid,
which is able to operate in either a grid-connected mode or
an islanded mode for reliability enhancement while reducing
transmission and distribution losses.

Three kinds of communication networks can be established
in the smart grid. A wide area network (WAN) facilitates
the communications among bulk generators and transmission

facilities for wide-area situational awareness. A neighborhood
area network (NAN) or field area network (FAN) supports
the communications among distribution substations and field
electrical devices for power distribution and microgrid oper-
ation. Home area networks (HAN), business area networks
(BAN), and industrial area networks (IAN) can be deployed
within residential, commercial, and industrial buildings, re-
spectively, for communication among electrical appliances for
the DSM purpose. The research and development on smart
grid communication networks have been extensively carried
out. The smart grid communication network architectures,
performance requirements, research challenges, state-of-the-art
technologies, development aspects, and experimental studies
have been discussed in [14]–[18]. As more and more electric
devices in the critical power infrastructure are interconnected
via communication networks, cyber security has an immediate
impact on the reliability of smart grid. Furthermore, increased
connectivity of electrical appliances at the customer side can
enable personal information collection, which may invade
customer privacy. The cyber security requirements, network
vulnerabilities, attack countermeasures, secure communication
protocols and architectures, and privacy issues in the future
smart grid have been surveyed in recent literature [19]–[22].

Based on information acquired via the communication
system, the information system can make optimal decisions
on electric power system operation and transmit the con-
trol signals via the corresponding communication networks.
Although basic information management functionalities are
already in place in traditional bulk generation and transmission
systems based on the supervisory control and data acquisition
(SCADA) systems, developing an advanced information man-
agement system in the context of smart grid is technically
complex due to the following challenges:

• The output of renewable energy resources is intermittent
in nature, which results in large variations in power
supply. Although a large body of studies have been
carried out to forecast such an uncertain output, the
stochastic nature of renewable power generation should
be addressed in smart grid planning and operation;

• The buffering effect of energy storage devices not only in-
troduces more state variables in power system operation,
but also requires to account for the inter-period buffer
state transitions over the entire time frame (which can be
up to a week) under consideration. Efficient management
schemes should be designed for energy storage devices
at a low computational complexity;

• Customer behavior patterns in the presence of DSM are
more dynamic than in the traditional electricity grid,
which leads to large variations in load demand. The main
reason is that the usage of electrical appliances can be
shifted over time by electricity customers in response
to electricity prices. Moreover, different customers can
collaborate with each other to reduce their overall energy
bills, based on the information obtained via FAN/NAN
communications;

• EV drivers can select different charging locations in
response to electricity prices, which can lead to large
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Fig. 1. Power curve for VESTAS 600-kW wind turbine.Fig. 3: Power curve of a VESTAS 600 kW wind turbine [25].

variations in charging demand and poor accuracy of
charging demand estimation. Further, high EV mobility
can result in highly dynamic energy storage capacity of
the electric power system, taking account of the random
nature in route and/or commute schedules of EV drivers.

To address these technical challenges, first we establish proper
stochastic models to characterize randomness in renewable
power generation, buffering effect of energy storage devices,
consumer behavior patterns, and EV mobility. Then, we incor-
porate the stochastic models in the system-level information
management to facilitate smart grid planning and operation.

III. COMPONENT-LEVEL STOCHASTIC MODELS

In this section, we present stochastic models to characterize
the randomness in wind and solar power generation, customer
energy demand, EV mobility, and component outage. Models
for energy storage devices are discussed in comparison with
data buffer models in communication networks.

A. Wind Power Generation

Wind speed can be modeled as a random variable following
a Weibull distribution [24], with a probability density function
(PDF) given by

f(v) =
k

c

(v
c

)k−1
e−(v/c)

k

(1)

where c and k are the Weibull scale parameter and dimen-
sionless Weibull shape parameter, respectively, indicating the
wind strength at the location under consideration and the peak
of the wind distribution. The Weibull distribution has a high
value of k if the wind speed is very likely to take a certain
value. Given a wind turbine, the generation of active power
can be represented as a function of the wind speed, which is
typically referred to as the power curve. The power curve of
a VESTAS 600 kW wind turbine is plotted in Fig. 3 [25].

It is important to incorporate the variation in wind energy
during diurnal cycles [24]. The wind energy assessment based
on the Weibull distribution and average daily/seasonal wind
speeds may not accurately characterize the variation in wind
speed probabilities during day and night. This may cause
significant over/underestimation of wind power potential when
the wind power generation estimation is linked to electricity
loads. In order to establish the spatial and temporal correlation
in wind power generation, more sophisticated Markov chain
models can be used [26]. In a wind farm, the wind speed
profile is identical for wind turbines sharing the same row,
while the wind speed profile differs across rows [27]. The
characteristics should be modeled, such as by reducing the

Fig. 4: Typical variation of sunlight intensity in a day [29].

incident wind speed values from one row to the next, in the
direction of the incident wind.

B. Solar Power Generation

Solar power generation uses a photovoltaic (PV) system to
generate electricity. The output power of a PV system depends
on three factors, namely solar cell temperature, solar radiation
intensity, and PV system efficiency. Among them, the PV
system efficiency depends upon the other two variables. The
PV output power, PPV (t), at time t is given by

PPV (t) = ε(t)I(t) (2)

where ε(t) and I(t) represent the efficiency and radiation
intensity, respectively [28]. The efficiency is a function of the
radiation intensity and can be calculated as

ε(t) =

{
ηc
Kc
I(t), 0 < I(t) < Kc

ηc, I(t) ≥ Kc

(3)

where Kc is a threshold of radiation intensity beyond which
the efficiency is approximated to be a constant (ηc). The
radiation intensity, I(t), is a sum of deterministic fundamental
intensity Id(t), which is determined by solar altitude angle,
and stochastic attenuation amount ∆I(t) with respect to clouds
occlusion and weather effects. The intensity Id(t) depends on
the time of a day and the seasons of a year. The randomness in
∆I(t) can be modeled by a normal distribution [29]. A typical
curve of I(t) is shown in Fig. 4, which follows a quadratic
function, neglecting seasonal and sunrise/sunset time effect.

C. Energy Demand

Electricity consumption can be modeled based on a bottom-
up technique [30], where the load profile is constructed
based on elementary load components such as households
or even individual appliances. A simplified bottom-up model
is presented in [30], which incorporates the seasonal/hourly
and social factors in a probabilistic manner, and can be used
to generate realistic domestic electricity consumption profiles
on an hourly basis for up to thousands of households. An
energy demand model is proposed in [31], taking account
the user interactions in real world home energy management.
Two prediction algorithms are proposed to estimate the future
behavior of a smart home, including a day type model (DTM)
and a first order semi Markov model (SMM). The DTM
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Exponential distribution

Fig. 5: Distribution of the Kitchener metropolitan area
commuting distance to work, 2006 [35].

assumes a certain regularity of the appliance usage. In model
training, the complete record of action sequence is split into
day sequences. The days showing a comparable appliance
usage are grouped into a specific day type. A decision tree
induction technique is used to discover the association rules
between contexts and the day types. According to the SMM
model, on the other hand, a user action only depends on the
previous action and a probability for the transition between two
actions. Different from traditional continuous-time Markov
models which assume an exponential distribution for the
duration of a state transition, the SMM uses an arbitrary
distribution for the state duration which is more realistic. In the
model training, a count matrix is used to estimate the transition
probability between two action types.

D. Vehicle Mobility

The arrival of EVs at a specific charging station follows a
Poisson process [32]. This observation conforms with the vehi-
cle mobility models used in communication network research
and is verified by experiments [33]. As a result, the inter-arrival
time of EVs at a charging station is exponentially distributed.
To further capture the spatial and temporal dynamics of an EV
traffic flow, fluid traffic theory can be applied. A fluid model
is established in [56] based on partial differential equations
and the conservation equations of EV traffic flow. When
the commute patterns of EV drivers are taken into account,
more realistic EV mobility models can be established. A non-
stationary Markov chain model is presented in [34]. Three
states of the EV mobility are considered, i.e., home, work, and
commute, with potential extensions to include more locations
by increasing the state space. Taking account of the non-
stationary EV mobility, the state transition probabilities of the
Markov chain are time-dependent. Given state sn at period
n, the probability for the state sn+1 can be estimated from
historical commute data based on an exponentially weighted
moving average (EWMA) algorithm.

The energy demand (and thus the charging time for constant
charging power) of an EV can be modeled by an exponential
distribution [32]. An example of commute distance based on
the census in Kitchener Region [35] is shown in Fig. 5, which
confirms this assumption or approximation. Again, when some
historical commute data is available, the EWMA algorithm can
be used to estimate the energy demand of EVs [34].

Fig. 6: Three-state PV panel model [28].

E. Component Outage

The random outages and repair process of generators can be
modeled by a two-state continuous-time Markov chain [36].
Let p denote the availability probability of a generator and
q (= 1−p) its unavailability probability, and let µ and λ denote
the repair and failure rates of the generator, respectively.
Denote the availability of the generator at time t0 and t
(t > t0) as At0 and At, respectively, and let 1 and 0 represent
the up and down status, respectively. Then, the conditional
probability Pr (At = β|At0 = α) (α, β ∈ {0, 1}) associated
with the availability β of the generator at time t, given its
status α at time t0, is studied in [37]. This model can be
applied to hydro and gas generators, and can be potentially
extended to model the availability of transmission lines [36].

The failure of a PV panel due to weather effects is modeled
in [28], given the fact that a PV panel is more likely to fail in
a harsh weather condition (e.g., a lightning storm) in contrast
to a normal weather condition. A three-state PV panel model
is established in [28] as shown in Fig. 6, where both failure
rate (λ) and repair rate (µ) are taken into account. In Fig. 6,
state 1 and state 2 correspond to the states that the radiation
is larger and smaller than Kc, respectively. State 3 represents
an outage in which the PV panel generates no electricity. The
PV panel enters state 3 when there is no solar radiation or an
operation failure.

F. Energy Storage

Batteries are a widely used means of energy storage. Mi-
croscopic battery models are available in literature from a
power electronics point of view [38]. A Thevenin-based circuit
model is typically used, where the internal resistance of a
battery is a non-linear function of the state-of-charge (SOC).
As a result, the energy losses in battery charging/discharging
and self-discharging (when the battery is stored for a long
time) is dependent on the SOC. For each specific battery, the
internal resistance needs to be measured to establish a proper
microscopic battery model.

To reduce the modeling complexity and facilitate
system-level studies, macroscopic battery models can be
used [34] [39] [40]. The modeling of a battery is similar
to that of a data buffer in communication networks in a
sense that the buffering effect can be characterized by certain
arrival and departure processes. However, the data buffer
models cannot be directly applied because of the electricity
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characteristics of batteries. Specifically, the following unique
characteristics need to be considered when establishing a
macroscopic battery model:
• In each charge and discharge of a battery, a certain

amount of energy is lost because of the battery internal
resistance and energy conversion loss. The energy loss
can be modeled as proportional to the charged/discharged
energy based on an average loss rate;

• The lifetime of a battery is shortened after each charg-
ing/discharging cycle since the capacity of the battery
slowly deteriorates, depending on the depth-of-discharge
(DoD). Although the deterioration is almost imperceptible
on a daily basis, the loss of the battery value needs to be
considered as a cost, which is proportional to the charged
(or discharged) energy;

• At each time moment, the battery can be either charged or
discharged, but not both. In order to prolong the battery
lifetime, the SOC of the battery should not drop below a
certain threshold;

• Because of the self-discharge effect, the energy stored in
a battery decreases over time.

Quantized values of the above characteristics depend on the
types of batteries such as lead-acid, nickel metal hydride, and
lithium-ion batteries, and need to be estimated.

In addition to the batteries, there are other types of energy
storage devices such as flywheels and heat buffers. Their
models are different from that of the batteries. Flywheel stores
kinetic energy. The amount of energy stored in a flywheel
varies linearly with the moment of inertia and quadratically
with the angular velocity [41]. An increase in the angular
speed increases the energy stored in a flywheel, at the cost
of increased energy losses due to higher frictions and thermal
losses. On the other hand, a micro combined heat and power
(microCHP) unit can be combined with a heat buffer to provide
an efficient means for domestic energy storage [42]. However,
the cost of state transitions (such as the startup cost) needs to
be considered in the modeling of a microCHP unit.

IV. SYSTEM-LEVEL STOCHASTIC INFORMATION
MANAGEMENT

System-level information management deals with various
functions in the planning and operation of an electric power
system, such as system planning, system maintenance, unit
commitment, economic dispatch, regulation, control, and pro-
tection [43]. These functions are performed at different time
frames, as listed in Table I. The foundation of all planning and
operation functions is a power flow analysis. To illustrate the
concept of power flow analysis, we used a four-bus power
system [44] as an example, with its one-line diagram as
shown in Fig. 7. Each bus in the system is deployed at
a specific location (i.e., Birch, Elm, Pine, and Maple for
buses 1-4, respectively, in Fig. 7) and corresponds to a power
generator (for power generation) or a distribution substation at
a load center (for power distribution). In Fig. 7, there are two
generators G1 and G2 which are connected to bus 1 and bus 4,
respectively. Each bus i in the power system can be described
by four scalar parameters, i.e., net active power injections

G1

Birch

Pine Maple

Elm

G2

Bus 1

(P1, Q1, V1, δ1)

Bus 2

(P2, Q2, V2, δ2)

Bus 3

(P3, Q3, V3, δ3)

Bus 4

(P4, Q4, V4, δ4)

PF13X13

X12

X24

X34

Fig. 7: One-line diagram of a four-bus power system [44].

Pi, net reactive power injection Qi, voltage (magnitude) Vi,
and phase angle δi, where the net active and reactive power
injections, respectively, equal the active and reactive power
generation by generator minus load (denoted by arrow) at
the corresponding bus. There are three types of buses in the
system:

• A PQ bus is used to define a load bus, where the net active
and reactive power injections Pi and Qi (which equal the
negative values of the active and reactive power demand,
respectively) are determined by the corresponding load;

• A PV bus is used to define a generator bus, where the
net real power injection Pi and voltage Vi are specified
by the corresponding generator;

• One of the generator buses in the system should be
selected as a slack bus, where the voltage Vi and phase
angle δi are used as the system reference. Since the net
power injections Pi and Qi are adjustable, the slack bus
can balance the active and reactive power in the system
and compensate for the losses.

According to the above definition, two parameters are known
for each bus in the system while the other two parameters need
to be calculated. The buses in the system are connected via a
set of transmission lines as shown in Fig. 7. An impedance,
Xij , is specified for the transmission line connecting a pair of
two buses i and j.

Power flow analysis is performed to calculate the unknown
parameters of each bus in the power system. Based on circuit
analysis, power flow equations can be established, which are
typically a system of non-linear equations. Since the number
of known and unknown parameters are equal in the system, the
power flow equations can be solved based on typical methods
such as Gauss-Seidel and Newton-Raphson methods [44].
Based on the solution, all parameters of all buses can be
obtained, which can be further utilized to calculate the active
and reactive power flows through each transmission line. For
instance, the active power flow PFij from bus i to bus j (e.g.,
PF13 from bus 1 to bus 3 in Fig. 7) is given by

PFij =
ViVj
Xij

sin(δi − δj). (4)

The power flow on each transmission line should be limited
without violating the line flow limit (or thermal limit) of
the transmission line. Otherwise, the power generation by
generators need to be re-dispatched or re-scheduled to change
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TABLE I: Electric power system planning and operation functions.
Function Time frame Activity
System planning 1 – 10 years or longer Plan for system installation and expansion to meet future demand
System maintenance 1 week – 1 year Development of power generator maintenance schedules
Unit commitment 4 hours – 1 week Decision on which power generators should be on-line over time

Economic dispatch 10 minutes – 4 hours Decision on which power generators should bear load increments or
decrements based on load forecast

Regulation, control,
and protection 10 minutes or shorter Power generation control, voltage regulation, and frequency regulation;

Protection against faults, disturbances, and short-circuits

the values of Pi’s for PV buses, such that feasible power
flow solutions can be obtained. Sometimes, a feasible solution
cannot be obtained by merely re-dispatching. In such a case,
electric loads need to be curtailed to increase the values of
Pi’s and Qi’s of PQ buses, which typically causes blackouts
for some electricity customers.

All the decisions on power generation scheduling and load
curtailment should be made by an information management
system for power system operation. The basic requirement of
power system operation is to balance the amount of electric
power production and consumption at each time instant, while
satisfying the power system constraints such as the capacity
limit (i.e., maximum active and reactive power generation) of
each generator and the line flow limit of each transmission
line. In this paper, we focus on the following functions of
information management for power system operation:

• Unit commitment – The unit commitment problem can
be stated as finding the optimal decision on which power
generator should be on-line (or active) over time, which
minimizes the operation cost of the system. Three kinds
of costs need to be considered, i.e., fixed cost of on-line
generator, power generation cost, and power generator
startup cost [45]. Consider the example in Fig. 7. If
the load demand is low and can be fully supported by
generator G1 at a low power generation cost, generator
G2 can be shut down to avoid an extra operation cost
incurred by the fixed cost of on-line generator. The
unit commitment decision should base on system load
dynamics, since it is not economical to frequently start
up and shut down a power generator because of the
startup cost;

• Economic dispatch – Economic dispatch makes short-
term decisions on the optimal power generation of each
on-line power generator in the system to meet the load
demand at a minimum cost, while satisfying power sys-
tem constraints to ensure reliable power system operation.
A second-order cost function Cg(·) is typically used
to represent the power generation cost of a generator
(g) [46], given by

Cg(Pg) = agP
2
g + bgPg + cg, g ∈ G (5)

where G is the set of generators in the system (e.g.,
G = {G1,G2} in Fig. 7), Pg is the active power output
of generator g, and ag , bg , and cg are the generation
cost coefficients. Consider the example in Fig. 7. If the

load demand is high and needs to be shared among the
two generators, there may exist an optimal tradeoff point
between the power generations by the two generators
(without violating the power system constraints) due to
the nonlinearity of the cost function (5), which corre-
sponds to an optimal economic dispatch decision;

• Power generation control – Based on the economic dis-
patch decisions, power generation control (also referred to
as the automatic generation control in traditional electric
power systems) can be performed to adjust the output
of generators in a power system, in response to instant
changes in the load [47]. Since power generation and load
demand should be balanced closely in a power system,
frequent adjustments to the outputs of generators are
necessary. The adjustments can be performed based on
system frequency, which increases if there is more power
generation than load demand, and vice versa.

Another critical function of the information management is
system planning, which aims at finding the optimal combina-
tion, design, and sizing of energy sources and energy storage
devices to meet the future electricity demand at a minimum
lifecycle cost, while taking into account the environmental
issues [48].

Despite a rich literature on the planning and operation
of traditional electric power systems, the proposed schemes
cannot be directly applied to the future smart grid with a
deep penetration of renewable energy sources, energy storage
devices, DSM tools, and EVs. Specifically, the randomness in
renewable power generation, buffering effect of energy storage
devices, consumer behavior patterns in the context of DSM,
and high mobility of EVs should be considered. To address
this problem, system-level stochastic information management
schemes should be developed by incorporating the component-
level stochastic models discussed in Section III into the
planning and operation of different domains of the electric
power system, including bulk generation and transmission,
distribution, and customers. Stochastic modeling, optimization,
and control techniques are studied recently in literature for the
system-level stochastic information management, which have
a potential for application in the future smart grid. A brief
summary of the basic theories and techniques is given below:

• Convolution technique – Given two random variables
X and Y with PDFs fX(x) and fY (y), respectively,
in a linearized system, the PDF of an output random
variable Z = X + Y can be calculated as fZ(z) =
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∫∞
−∞ fX(x)fY (z − x)dx. The convolution relation pro-

vides an efficient means for power flow analysis when
some of the bus parameters (e.g., load demand) are
represented by independent random variables due to un-
certainties [49]. A linearization of the system is required;

• Interval based technique – The technique uses an interval
to represent the uncertainty in electric power system
variables (e.g., the net active power injections by renew-
able energy sources), without investigating their detailed
distributions [50]. Focusing only on the upper and lower
bounds of the interval, the computational complexity in
system analysis can be reduced;

• Moment estimation – Instead of the PDF, the statistical
moments such as expectation and variance of system
performance metrics (e.g., the power flows on trans-
mission lines in power flow analysis) can be estimated
based on the distributions of input random variables
(e.g., the net active power injections by renewable energy
sources) [51]. The technique can be used to reduce the
computational complexity in system analysis;

• Dynamic programming – Dynamic programming is a
method for solving a complex problem by breaking it
down into simpler subproblems (e.g., over time). Each
subproblem is solved once and the solution is recorded.
By combining the solutions of the subproblems, an over-
all solution of the complex problem can be obtained.
Since power system operation problems are typically for-
mulated over time with multiple operation periods [52],
dynamic programming can be used to obtain the optimal
system operation decisions based on some prior knowl-
edge about inter-period system state transition behaviors,
such as the Markov chain based wind/solar generation,
load demand models, and the buffering effect of energy
storage devices as discussed in Section III;

• Stochastic control – Stochastic control combines stochas-
tic learning and decision making processes to ensure
system reliability, while achieving certain system oper-
ation objectives. Stochastic control is an efficient tool
for real-time power system operation when the stochastic
behaviors of power system components are not known a
priori and need to be estimated [53];

• Stochastic game – Stochastic game represents a class of
dynamic games with one or more players via probabilistic
state transitions. It can be used to model competitions
among multiple electricity customers in a dynamically
changing system such as a real-time electricity mar-
ket [54];

• State estimation – State estimation is a technique which
reconstructs the state vector of a system based on online
simulations in combination with available measurements.
State estimation is widely used in wide area system
measurement under power generation and demand un-
certainties [55];

• Queueing theory – Queuing theory can be used to analyze
the performance of waiting lines or queues of customers.
Based on the stationary distribution of a queue, the perfor-
mance metrics such as queue length and customer waiting
times can be calculated. Since an EV charging station can

be modeled as a queueing system, the queueing theory
can be applied for EV charging station planning and
operation [56]. Moreover, an energy storage device can
be modeled as a queue based on an analogy between the
energy stored in the device and the number of customers
in a queue [57];

• Stochastic inventory theory – The theory is concerned
with the optimal design of an inventory (or storage)
system to minimize its operation cost. Different from
the queueing models, the ordering (or arrival) process
of an inventory can be regulated. The inventory theory
studies the optimal decision making process in terms of
when and how much to replenish the inventory based
on the stochastic information of future demands. It can
be applied for energy storage device operation based on
an analogy between the energy storage and inventory
level [34];

• Monte Carlo simulation (MCS) – MCS generates sce-
narios according to certain distributions of the random
variables in the system. A deterministic problem (e.g.,
power flow analysis) is solved for each scenario [58] [59].
The system performance metrics are evaluated based
on the solutions of the deterministic problems and the
probability that each of the scenarios is generated. MCS
can be applied to performance evaluation of stochastic
information management in electric power systems when
high accuracy can be achieved in system dynamics mod-
eling. Although MCS is computationally expensive, the
results obtained via MCS can be used as the benchmarks
to evaluate the performance of other stochastic infor-
mation management techniques such as the convolution
technique and moment estimation technique.

Various stochastic information management schemes are pro-
posed in literature based on these basic theories and techniques
and their variations and/or modifications, to be discussed in
details in the following sections. The literature associated with
each of domains in the electric power system (in terms of bulk
generation and transmission, distribution, and consumption) is
summarized according to the functions of smart grid planning
and operation as listed in Table I.

V. BULK GENERATION AND TRANSMISSION SYSTEMS

The bulk generation and transmission systems for smart grid
are mostly evolved from those of the traditional electric power
grid, while more renewable energy sources and advanced
information and communication systems are incorporated. An
overview of the bulk generation and transmission systems is
given in Fig. 8, which is based on the Ontario case [60].
Specifically, the bulk generation refers to the generators of
electricity in bulk quantities, including both conventional and
renewable energy sources such as nuclear, coal, gas, solar, and
wind. Since electric power is typically generated at a relatively
low voltage like 30 kilovolt (kV), step-up transformers are
used to increase the voltage and transfer the electric power to
the high-voltage (e.g., 230/500 kV) transmission lines, such
that electricity can be transmitted at low losses. Through long-
distance transmissions (typically tens or hundreds of kilome-
ters), the electric power reaches the distribution substations
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1. Generating station: large nuclear, coal, gas, and renewable

2. Step-up transformer: allows the power to travel a long way

3. Transmission line: long-distance 500/230 kilovolt (kV) lines

4. Step-down transformer: allows the power to be divided up

5. Transmission lines: shorter-distance 115 kV lines

6. Step-down transformer: distributes the power

7. Distribution lines: local 27.6 and 13.8 kV lines

8. Electricity: enters your home at 120 or 240 volts

Bulk Generation

Transmission

Distribution

Customer

Fig. 8: An overview of bulk generation and transmission
systems [60].

which are typically deployed at the load centers. Then, the
voltage is reduced by step-down transformers (deployed at
the distribution substations) to a relatively low level (e.g.,
27.6/13.8 kV) and the electric power is distributed in the
distribution systems. The voltage is further reduced by the
pole-mounted transformers (e.g., down to 120/240 volt) such
that it can be used by customers. In practical applications,
an additional subtransmission system at a medium voltage
level (e.g., 115 kV) can be installed between the transmission
and distribution systems to further reduce transmission losses.
The transmission system typically forms an inter-connected
(or meshed) network as in Fig. 7 to increase the trans-
mission capacity, while maintaining an electric power flow
in the presence of transmission line outages. In the future
smart grid, sensors and actuators will be widely deployed
and connected to an operation center via WAN to achieve
pervasive monitoring and control of the bulk generation and
transmission systems. However, because of the integration
of renewable energy sources, there are significant technical
challenges on the information management for power system
operation. Stochastic information management schemes should
be designed to address the challenges, to be discussed in the
following subsections. A summary of the stochastic informa-
tion management schemes in bulk generation and transmission
systems is given in Table II.

A. Probabilistic Power Flow

One prerequisite information of the traditional power flow
analysis is the net active power injection Pi of each generator
bus (i.e., PV bus) i, as shown in Fig. 7, which is based
on the economic dispatch decisions. However, because of
the potential high penetration of renewable energy sources
in the future smart grid, the value of Pi becomes a random
variable which depends on weather conditions. As a result,
the traditional power flow analysis needs to be extended to
a probabilistic power flow (PPF) analysis. The PPF is a
technique to derive the probability distribution of the output
variables of power flow analysis such as bus voltages and line
flows, given that the input variables such as power generation
and load are represented by random variables following certain
distributions. The PPF analysis was originally proposed to
address the randomness in load demand, and is recently
extended to investigate the randomness in renewable power
generation of an electric power system.

MCS combined with simple random sampling (SRS) is a
popular method in literature for solving PPF problems with
load uncertainties [58]. The original technique can be extended
to take into account the stochastic nature of DG output [59],
where the uncertainties in both locations and on/off state of
the DG units are incorporated in the problem formulation,
and a Newton-Raphson method can be used to solve the
power flow equations. In order to calculate the correlation
between the stochastic inputs, a multidimensional stochastic
dependence structure can be used in MCS [61], where the
mutual dependence is addressed by either stochastic bounds
or a joint normal transform method.

Given a large sample size, the MSC with SRS can provide
accurate solutions for PPF problems, but at the cost of a
heavy computational burden. In order to address this problem,
a stratified sampling technique - Latin hypercube sampling
(LHS), with random permutation, can be used [62] [63].
However, when the LHS is used to solve multivariate input
random problems, the accuracy is affected by the correlations
between samples of different input random variables. In order
to minimize the undesired correlations between samples to
improve the accuracy of a PPF solution, an efficient sam-
pling method, namely the LHS combined with Cholesky
decomposition (LHS-CD) method, can be applied [64]. The
probabilistic distributions of input random variables can be
well captured by the LHS, while the undesired correlations
between samples of different input random variables are
reduced by Cholesky decomposition. To better characterize the
correlated wind speeds of different wind farms, an extended
Latin hypercube sampling algorithm can be used to solve PPF
problems [65]. By employing rank numbers of the sampling
points to generate correlated wind speed samples for different
wind farms, negative wind speed values can be avoided during
the transformation from uncorrelated samples to correlated
samples, which improves the sampling accuracy. To further
reduce the computational complexity of MCS, the scenario
reduction technique can be used. A probabilistic distribution
load flow (PDLF) algorithm is presented in [25] to study the
effect of connecting a wind turbine to a distribution system.
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TABLE II: Methodology for stochastic information management in bulk generation and transmission systems.
Applications Theory or Technique Variations and/or Modifications

MCS with SRS [58] [59] [61]
MCS with LHS [62] [63]

MCS MCS with LHS-CD [64]
MCS with extended LHS for wind farms [65]
MCS with classification based scenario reduction [25]
Basic convolution technique [49]
Convolution technique with Fast Fourier Transform [66]

PPF analysis Convolution technique Convolution technique with Von Mises method [67]
Convolution technique with combined Cumulants and Gram-
Charlier expansion theory [68]
Combined convolution technique and MCS [69]

Interval based technique Interval arithmetic [50]
Affine Arithmetic method [70] [71]
MCS with SRS [73] [74]

MCS MCS with scenario tree model [75] [76]
Unit commitment MCS with forward selection based scenario reduction [77]

Interval based technique Comparison with MCS based optimization techniques [72]
Dynamic programming Partially observable Markov decision process [78]
MCS MCS with classification based scenario reduction [80]

First-order second-moment method [51]
Point estimation method [81]

Economic dispatch Moment estimation Two-point estimation method [82]
Extended point estimation method with dependent input ran-
dom variables [83]

Dynamic programming Multi-timescale scheduling [52]
Adaptive critic design [53] [84] [85]

Stochastic control Two-level stochastic control [87]
Power generation control Kalman-Bucy filter [88]

Stochastic game Zero-sum stochastic game [54]
State estimation Discrete algebraic Riccati equation [55]

Wide area measurement Uncertainty propagation theory [94]
Stochastic control Adaptive critic design [99]

For scenario reduction, the original wind speed levels are re-
classified into a reduced number of levels by re-defining the
ranges of wind speed. The reduced scenarios are incorporated
in MCS to solve the PDLF problem. Although the PDLF
problem is formulated for power distribution systems, the
scenario reduction technique is general and can be applied
to bulk generation and transmission systems.

Mathematical analysis is another important approach to
solving PPF problems. The convolution technique is typically
used based on linearized power flow equations, such that the
output random variables (e.g., line flows and bus voltages)
can be represented by a linear combination of input random
variables in terms of the power injection at each bus [49].
However, the computational complexity of the convolution
technique is high when the system is large. Improvement
over the convolution technique can be made based on Fast
Fourier Transform [66], Von Mises method [67], and combined
Cumulants and Gram-Charlier expansion theory [68]. The
convolution technique can also be combined with MCS to
solve PPF problems [69]. The PDF of a requested dependent
generation (RDG) random variable can be obtained by the

convolution technique since the variables involved are inde-
pendent or linearly dependent. Then, the realizations of the
RDG random variable are generated via MCS, based on which
deterministic power flow equations are solved to obtain bus
voltages, phase angles, and line flows.

In literature, interval based techniques are applied to solve
PPF problems. Interval arithmetic can be used to provide strict
bounds to the solution of PPF problems, where the interval
linear power flow equations are solved by either explicit
inverse of matrices or by iterative methods [50]. However,
the solution accuracy is limited because of the linearization
process. In order to address this problem, an Affine Arithmetic
based method can be used to represent the uncertain variables
in an affine form [70]. The method is further extended in [71]
in a way that a mixed complementarity problem is developed
to solve the deterministic power flow problem, considering
reactive power limits and voltage recovery. Then, the intervals
of power flow variables are obtained based on the Affine
Arithmetic method. In comparison with MCS, the Affine
Arithmetic method is faster and does not need any information
regarding the probability distribution of random variables.
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However, the estimate bounds of the power flow variables are
relatively conservative.

B. Unit Commitment

The traditional unit commitment problem becomes signifi-
cantly complicated when renewable energy sources and DSM
tools are incorporated in the system, since new dimensions
of randomness should be considered in the unit commitment
decision making. Specifically, the power system needs to have
a plan for alternative backup generation in a case that the day-
ahead forecast of renewable power generation is not consistent
with the actual realization, or the real-time power consumption
deviates greatly from the load forecast in the presence of DSM
tools. With a high penetration of renewable energy sources, the
dependency of power systems on renewable energy sources
can result in additional supply risks associated with the
variability of renewable power generation. On the other hand,
when DSM is widely adopted by electricity customers, the
inaccuracy of price-sensitive load forecast may pose risks
on real-time generation/load balance [72]. To address these
challenges, the traditional unit commitment schemes need to
be extended to incorporate the randomness in renewable power
generation and customer behavior patterns in the presence
of DSM.

A stochastic unit commitment scheme can be used to sched-
ule various power resources such as DG units, conventional
thermal generation units, and DSM tools [73]. The DSM
tools, interruptible loads, DG units, and conventional thermal
generators can be used to provide reserves to compensate for
the randomness in DG output and load demand. The resources
connected to the distribution system can participate in whole-
sale electricity market through aggregators based on com-
munication technologies. In [74], an optimal strategy for the
declaration of day-ahead generation availability is investigated
for the Availability Based Tariff regime in India. The expected
revenue of the generator is maximized by considering various
stochastic parameters, such as the availability of the generation
unit, unscheduled interchange, and load. The state transition of
the generation unit is modeled as a Markov process, while the
unscheduled interchange and load are modeled using discrete
probability distributions and are related to grid frequency. An
iterative approach based on MCS and SRS is performed to
solve the problem.

To reduce the computational complexity of MCS, sce-
nario reduction techniques are proposed in literature to solve
stochastic unit commitment problems. A stochastic decompo-
sition method can be applied to solve a large-scale unit com-
mitment problem with future random disturbances to minimize
the average generation cost [75]. The random disturbances (or
outages) in the system are modeled as a scenario tree, which is
constructed based on an either fully or partially random variant
method. For the deterministic problem with respect to each
scenario, an augmented Lagrangian technique can be applied,
which provides satisfactory convergence properties. On the
other hand, the traditional electricity market clearing schemes
cannot fully integrate the stochastic nature of renewable power
generation [76]. To address this problem, a short-term forward

electricity market clearing problem is formulated in [76]
based on a stochastic security framework, where a scenario
tree is used to model the net load forecast error. To reduce
the computational complexity, unlikely inter-period transitions
are not included in the scenario tree. In comparison with
the traditional deterministic approaches based on worst-case
scenario wind and demand conditions, the stochastic approach
puts higher weights to the conditions which are more likely
to happen. As a result, the economic performance of the
market is improved via taking advantage of the freely-available
wind power by reducing reserve scheduling and classic hy-
drothermal generation unit commitment costs. The impact
of intermittent wind power generation on short-term power
system operation in terms of electricity market prices, social
welfare, and system capacity is investigated in [77]. The MCS
is used to generate scenarios of wind power generation, while
a forward selection algorithm is applied to obtain a reduced
set of scenarios. The reduced scenarios are incorporated into
the unit commitment problem formulation under a locational
marginal price (LMP) based electricity market settlement and
an economic dispatch model.

In [72], a comparison between MCS based and interval
based optimization techniques is presented in the context
of stochastic security-constrained unit commitment (stochas-
tic SCUC). The stochastic SCUC problem is formulated
as a mixed-integer programming (MIP) problem and solved
based on the two techniques. The uncertainty of wind power
generation is considered. In the MCS, a large number of
scenarios are generated to simulate wind speed uncertainty,
which follows the Weibull distribution with an autocorrelation
factor and diurnal pattern. For the interval based approach, the
optimization problem for the base case without wind power
generation uncertainty is updated with respect to the lower
and upper bounds of wind power generation. It is shown that
the MCS based optimization is not sensitive to the number
of scenarios, at the cost of a high computational complexity.
On the other hand, the interval based optimization has a
lower computational complexity. However, how to determine
the uncertainty interval is critical for obtaining the optimal
solution.

Dynamic programming can be used to address the stochastic
unit commitment problem [78]. The basic assumption in the
problem formulation is that the renewable power generation
can be characterized based on a hidden Markov model, while
the stochastic power demand can be modeled by a Markov-
modulated Poisson process. Structural results are derived by
transforming the unit commitment problem as a partially
observable Markov decision process.

C. Economic Dispatch and Optimal Power Flow

Due to the large-scale integration of renewable energy
sources, traditional economic dispatch schemes, which rely
on an accurate forecast of power generation and load de-
mand, cannot be directly applied in the future smart grid.
As discussed in Section III, the randomness in renewable
power generation is characterized based on stochastic models.
Without taking into account the randomness, traditional eco-
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nomic dispatch schemes may schedule more (resp. less) con-
ventional energy sources such as coal-fired or gas generators
and under- (resp. over-) utilize the renewable energy sources,
which increase power generation cost and decrease power
system reliability. Stochastic models need to be developed for
economic dispatch to address the randomness in renewable
power generation. Note that the economic dispatch problem
described in Section IV was first introduced by Carpentier
in 1962. Later, it is also named as the optimal power flow
(OPF) [79]. In the following, the terms economic dispatch
and OPF are used interchangeably.

Wind power generation scenarios can be generated via
MCS and incorporated in a stochastic LMP electricity market
model to examine the impact of wind power generation on
price settlement, load dispatch, and reserve requirements [80].
Scenario reduction can be used to reduce the computational
complexity of MCS by classifying the wind power generation
into specific levels based on wind speed.

Another way to reduce the computational complexity of
MCS is to use the moment estimation technique. System
demand can be modeled as a random vector with correlated
variables such that the dependency between load type and
location can be characterized [51]. Then, a probabilistic OPF
problem can be formulated, and a first-order second-moment
method can be applied to evaluate the stochastic properties
of a specific solution of the probabilistic OPF problem. Point
estimation methods are widely used in literature to achieve
moment estimation in probabilistic OPF problems. The first
attempt is made in [81]. For a system with m uncertain
parameters, only 2m calculations of load flow equations are
needed to obtain the statistical moments of the distribution of
a load flow solution, by weighting the value of the solution
evaluated at 2m locations. A two-point estimation method is
proposed in [82] to address uncertainties in the OPF problem,
which are caused by the economic pressure that forces mar-
ket participants to behave in an unpredictable manner. The
proposed approach uses 2n runs of the deterministic OPF
for n uncertain variables to obtain the first three moments of
output random variables. Another advantage of the two-point
estimation method is that it does not require derivatives of
nonlinear functions in the computation of the probability distri-
butions, which reduces the computational complexity. In order
to investigate the dependencies among input random variables,
an extended point estimation method can be used [83]. A
computationally efficient orthogonal transformation is applied
to transform the set of dependent input random variables into
a set of independent ones, which can be processed based on
existing point estimation methods.

The procurement of energy supply from conventional base-
load generation and wind power generation can be investigated
based on a multi-timescale scheduling in a dynamic program-
ming framework [52]. Specifically, the optimal procurement of
energy supply from base-load generation and day-ahead price
is determined by day-ahead scheduling given the distribution
of wind power generation and demand. On the other hand, the
optimal real-time price to manage opportunistic demand for
system efficiency and reliability is determined via real-time
scheduling given the realizations of wind power generation.

D. Power Generation Control

In real-time power system operation, the power generation
and load demand should be balanced closely. However, when
the penetration rate of renewable energy sources is high,
significant power flow redistributions in power transmission
may occur in a relatively short period of time. Specifically, a
large increment or decrement of renewable power generation at
one bus may cause a temporary generation-demand imbalance,
followed by the generation adjustments at other buses and a
redistribution of power flows across the electric power system.
Because of the limited capability of automatic generation
control in a traditional electric power system, transmission
line overloading and bus over-/under- voltage may occur [53].
Stochastic control techniques should be developed to address
this problem by taking into account the randomness in renew-
able power generation.

To provide a coordinating control solution to multiple grid-
connected energy systems, dynamic stochastic optimal power
flow (DSOPF) control strategies can be used [53] [84] [85].
The DSOPF controller is to replace the traditional automatic
generation control and secondary voltage control, while pro-
viding nonlinear optimal control to the system-wide AC power
flow. A DSOPF control algorithm is based on the concep-
tual framework of adaptive critic design [86] to incorporate
prediction and optimization over power system stochastic
disturbances. In this way, system analytical models are not
required in the optimal controller design. To further investigate
the potential of the DSOPF control algorithm for large power
systems, a 70-bus test system with large wind plants is de-
veloped in [87] based on a two-level DSOPF control scheme.
The lower-level area DSOPF controllers control their own area
power networks, while the top-level global DSOPF controller
coordinates the area controllers by adjusting the inter-area tie-
line power flows. In this way, the control and computational
load is distributed to multiple area DSOPF controllers, which
can facilitate a practical application of the DSOPF controller
in a large power network.

A non-stationary Markov chain can be used to model the
time transient household load in the smart grid, where the time
variant parameters of the Markov chain are estimated based
on a maximum likelihood estimator [88]. Based on the load
mode, a Kalman-Bucy filter based load tracking scheme can
be applied for utility-maintained central power plant to ensure
grid reliability, under time-varying load demand and renewable
power generation.

The impact of communication systems on power generation
control is discussed in [54]. Specifically, if wireless commu-
nication systems are used for wide area system monitoring
and control, a jammer can send strong interference to jam the
data transmission to cause denial-of-service attacks. Multiple
channels can be used to avoid jamming interference [54].
The jamming and anti-jamming are modeled as a zero-sum
stochastic game, while a quadratic function can be used as
the payoff function to facilitate the linear quadratic Gaussian
(LQG) control in the power system.
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E. Wide Area Measurement

In traditional bulk generation and transmission systems,
wide area measurement is mainly performed by remote ter-
minal units (RTUs) of the SCADA system [89]. The most
commonly used measurements include active/reactive power
flow along transmission lines, active/reactive power injection
of buses, and the voltage magnitude of buses. The measure-
ment and control are performed once every a few seconds or
even longer. In the future smart grid, with the advancement of
clock synchronization via the global positioning system (GPS),
phasor measurement units (PMUs) can achieve more accurate
and timely (typically 30 samples per second) measurements
in comparison with the traditional RTUs. Accordingly, two
additional measurements in terms of voltage and current
phasors (i.e., the phase angles and magnitudes) of buses and
along transmission lines, respectively, can be obtained. The
primary benefits of a PMU-enabled wide area monitoring
system include [90]:

• Providing early warning of deteriorating system condi-
tions based on which the operators can take corrective
actions;

• Providing wide-area system visibility such that the cas-
cading effect of disturbances can be limited;

• Improving transmission reliability and allowing for im-
mediate post-disturbance analysis based on monitoring
data.

Power system control schemes can be designed by leveraging
wide area monitoring [91] [92]. However, due to the ran-
domness of renewable power generation in the future smart
grid, stochastic modeling and optimization techniques should
be used for the placement and operation of PMUs.

In literature, there is a large body of research on optimal
placement of PMUs, aiming at ensuring power system observ-
ability with the minimum number of PMUs and at determining
the locations of the PMUs. The discrete algebraic Riccati
equation can be used for a quantitative measure of the steady-
state covariance of dynamic state estimation uncertainties [55].
Then, the PMU configuration with the least expected uncer-
tainty is selected among many alternatives, where each al-
ternative ensures the network observability with the minimum
number of PMUs [93]. The uncertainty propagation theory can
be used to assign appropriate weight factors for both conven-
tional and PMU measurements in a hybrid state estimator [94].
This approach helps to obtain accurate state estimation with
a small variance in the presence of random measurement
errors, and can facilitate various energy management system
applications. The greedy randomized adaptive search proce-
dure can be combined with Monte Carlo simulation for PMU
placement to record voltage sag magnitudes for fault location
in distribution system [95]. The procedure minimizes the error
in the distance between the true fault location and predicted
fault location. The PMU placement problem can also be
addressed based on an information-theoretic approach, which
adopts Shannon entropy as a measure of uncertainties in the
system states to qualitatively assess the information gain from
PMU measurements [96]. In [97], an ant colony optimization
technique is used to solve the PMU placement problem, and

the convergence speed is improved by introducing stochastic
perturbing progress. On the other hand, wide-area measure-
ment can facilitate the operators in enhancing power system
quality and control. An analysis of frequency quality, such as
the total duration of under frequency and its correlation with
time, is discussed in [98]. The analysis can be helpful for
frequency control in the presence of electricity markets and
increased use of renewable energy sources. Further, DSOPF
controllers based on wide-area measurements can incorporate
adaptive critic design to provide nonlinear optimal control of
power generator [99].

VI. DISTRIBUTION SYSTEMS AND MICROGRID

The distribution system is a part of electric power system
that delivers the electric energy to consumers. The units below
the step-down transformer station in Fig. 8, including distri-
bution lines (27.6 and 13.8 kV) and pole-mounted transform-
ers, illustrate the distribution system. Distribution networks
usually have radial or looped feeder line configuration for
power distribution as opposed to meshed configuration (i.e.
redundant connections) of transmission network [100] [101].
Traditionally, a distribution system was not designed for the
connection of power generating stations. On the other hand,
the smart grid is anticipated to organically move from tradi-
tional centralized generation to a DG approach [11]. DG unit
is an electric energy source connected directly to the distri-
bution network [101]. Synchronous generator, asynchronous
generator and power electronic converter interface are three
basic generation technologies ranging from kilowatt (kW) to
few Megawatt (MW) generation capacity in DG. The addition
of DG units in the distribution system has impacts on the
following aspects [101]:
• A DG unit increases the voltage variation in the distri-

bution system when its operation is not coordinated with
local loads;

• DG units can supply energy to local loads to help reduce
T&D losses by decreasing the amount of energy drawn
from the main grid (or utility grid);

• A sudden and large variation of DG unit outputs can
cause voltage flickering, while the use of power electronic
devices in the DG units can introduce harmonics in the
distribution system, thereby degrading power quality;

• The protection system needs modification in overcurrent
protection becuase of the changes in power flow caused
by DG units;

• System reliability can be enhanced when DG units are
used as back up energy sources.

In order to accommodate an integration of DG into the
distribution system, the system approach is commonly known
as ‘microgrid’.

Microgrid is an emerging system approach to integrate the
DG units, storage, loads, and their control into a single sub-
system as a controllable unit operating in either grid connected
or islanded mode [102], thereby realizing a low-emission and
energy efficient system. A typical architecture of a microgrid,
as illustrated in Fig. 9, is assumed to have three feeders (A,
B, and C) with radial feeder line configuration to transfer
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TABLE III: Methodology for stochastic information management in distribution systems and microgrid.
Applications Theory or Technique Variations and/or Modifications
Microgrid planning MCS MCS with SRS [29] [107] [108]

MCS with classification based scenario reduction [109]
MCS MCS with classification based scenario reduction [110]

Microgrid operation MCS with scenario tree model [111]
Stochastic control Model predictive control [112]
MCS MCS with SRS [114]

Energy storage management Dynamic programming Approximate dynamic programming [115]
Queueing theory GI(t)/G(t)/∞ queue [57]

Fig. 9: A typical microgrid architecture [104].

electric power from source to load. The microgrid is connected
to the main grid via a separation device (also referred to
as point of common coupling) that islands the microgrid
during disturbance at either the main grid or the microgrid
itself. Beside the energy from the main grid, the microgrid
is supplied by a diverse set of microsources and/or energy
storage devices, commonly referred to as the distributed energy
resource (DER). The microsources are usually low emission
and low voltage sources such as renewable energy sources,
fuel cells, CHP units that provide both heat and electricity
in the vicinity. A microsource is connected to the microgrid
via a power electronic interface which consists of an inverter
and a microsource controller [103]. The microsource controller
is responsible for controlling the power and voltage of mi-
crosource within milliseconds in response to load changes
and disturbances, without any communication infrastructure,
to enable plug and play capability. The power flow controllers
in feeders A and C (having critical loads) regulate the power
flows as prescribed by the energy manager. Feeder B contains
a non-critical load that can be curtailed. The energy manager
is responsible for calculating the economically optimal energy
flow within a microgrid, and between the microgrid and
main grid. The protection coordinator controls the circuit
breaker to isolate a faulted area within the microgrid. Hence,
the microgrid architecture identifies three critical functions,
namely microsource control, system optimization, and system
protection [104] [105].

High penetration of renewable energy resources with in-
termittent generation, random outages of components such as
distribution lines, and random demands from consumers are
the major factors for the introduction of stochastic phenomena
in modeling a microgrid. The planning and operation of mi-
crogrids with consideration of such randomness are important
and challenging. A summary of the stochastic information
management schemes for distribution systems and microgrids
is given in Table III.

A. Microgrid Planning

Microgrid planning refers to making a decision on mixture
of DER and its sizing under economical, environmental, and
reliability considerations over a span of years [48]. Microgrids
can exist in different forms with a unique objective. For
example, a remotely located microgrid needs to operate in
an isolated manner, an industrial microgrid needs to serve
critical loads, and a utility microgrid needs to facilitate the
main grid [106]. In order to fulfill its objective, each form of
microgrids will have a unique combination of DER. A utility
microgrid may survive with only renewable energy sources
and batteries with support of utility supply. On the other
hand, a remotely located microgrid cannot operate with only
renewable energy sources and batteries. Without a continuous
energy supplier, it would fail to maintain the required level of
SOC in batteries. Hence, it needs to be served by dispatchable
sources, such as microhydro and diesel generators.

An economical consideration refers to reduction in various
costs such as fuel cost, electricity cost, cost of load cur-
tailment, and incentives (negative cost) of supplying energy
back to utility. Similarly, an environmental consideration refers
to low emission of GHG (due to the use of fossil fuel
in generation). The reliability is usually measured through
various reliability indices such as system average interruption
frequency index (SAIFI), system average interruption duration
index (SAIDI), customer average interruption frequency index
(CAIFI), expected energy not supplied (EENS), and loss of
load expectation (LOLE), which also act as performance
indices in microgrid planning.

A random output of renewable energy sources can be
modeled as discussed in Section III and the randomness of
system component (such as a DG unit and a section of
microgrid) failure and repair can be modeled with indepen-
dent and exponentially distributed time-to-failure and time-to-
repair [107] or with double-Weibull distribution as discussed
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in [108]. After such modeling, the MCS with SRS can be
used to generate scenarios with different combinations of DER
over a span of one year [107] [108] [29], for instance. The
scenario reduction technique can be used to reduce the number
of scenarios for computational efficiency [109]. Based on the
generated scenarios, different reliability indicies, total cost and
total emission can be computed thereby deciding the right
combination and sizing (such as power rating and energy
rating) of the DER. In addition, a decision on adding protection
devices (such as circuit breakers) can be made according to
the analysis of its impact on reliability [108].

In [48], software HOMER is used to solve the microgrid
planning problem, to find out different combinations and sizes
of DER units (such as diesel, solar, microhydro, and batteries)
for the least cost microgrid, taking into account environmental
impact. An evaluation methodology of reliability with consid-
eration of pure stochastic generation and influence of supply-
to-load correlation is demonstrated in [107]. An MIP problem
is formulated in [109] for economically optimal energy storage
system sizing. These studies demonstrate that the microgrid
planning can aim at the sizing of particular DER, fulfilling
economical and reliability objectives separately.

B. Microgrid Operation
Microgrid operation usually aims at reducing an overall

cost by providing optimal schedule and coordination between
DER and load. Similar to the microgrid planning, microgrid
operation focuses on obtaining economical and environmental
benefits, and achieving power quality and reliability. The
power quality and reliability is commonly measured with
parameters, such as SAIDI, SAIFI, and CAIDI, which cap-
ture the outage of components due to voltage fluctuations.
Microgrid operation should maintain the supply and demand
balance instantaneously and economically over a time horizon
for power quality and reliability, under system component
physical constraints (such as voltage limit, line flow limit). As
the microgrid operation is a time process with uncertainties,
the model predictive control with dynamic programming can
be used to optimize over the future behavior with uncertainties
(handled by stochastic dynamic programming) [112]. Simi-
larly, a stochastic optimization problem can be formulated to
minimize the average cost of energy over all random scenarios.
The random scenarios can be represented by distribution func-
tions of random sources, randomly generated demands, and
renewable generation based on the distribution of uncertainties
(such as i.i.d. and Gaussian [111]), and random outages of
components (modeled by two-state Markov-chain with failure
and repair rate [110]). The scenarios are generated using MCS
and scenario reduction techniques to bundle a large number
of close scenarios (in terms of statistical metrics) into a small
number of scenarios with corresponding probabilities.

A stochastic security-constrained unit commitment problem
can be formulated based on MIP to reduce DG cost, including
startup and shutdown costs, cost of energy supplied from the
main grid, and opportunity cost due to microgrid load curtail-
ment [110]. Integrated scheduling, and control of supply and
demand by capturing its randomness [111], are examples of
microgrid operation optimization, incorporating randomness.

C. Energy Storage Management

An addition of an energy storage device in the power
system can 1) enhance system reliability by supporting the
local load during outage of power generation, and 2) reduce
energy cost by drawing energy from the grid when electricity
price is low, and by feeding energy back to the grid and/or
supplying the local demand when electricity price is high.
Operation analysis of energy storage devices needs to capture
the temporal dependency, in which the current state of energy
storage devices depends upon previous states.

Analytical frameworks are presented in literature to evaluate
the impact of energy storage on the distribution system. A
probabilistic modeling framework [113] is developed for active
storage devices, which not only can consume but also can
supply electricity to a power system. The bounds on the
probability of a load curtailment event are derived based on
asymptotic probability theory via limited observable charac-
teristics of the devices. A Karhunen-Loeve framework can be
used to model the solar radiation intensity to characterize the
PV unit output under a variety of conditions and at different
geographical locations [114]. The capacity of energy storage
devices is represented by a deterministic model, using an
artificial neural network to estimate the capacity reduction
over time. Given an appropriate stochastic load model, the
MCS can be used to evaluate the probabilistic behavior of the
system. Queueing models are developed for PV panels with
energy storage [57]. The arrival process of queue corresponds
to the non-stationary solar irradiation, while the departure
process of the queue represents the energy selling to the grid
or used by local loads. The GI(t)/G(t)/∞ queueing analysis
is conducted for performance evaluation.

To achieve optimal operation of energy storage devices,
stochastic control schemes should be developed. Approximate
dynamic programming (ADP) driven adaptive stochastic con-
trol (ASC) for the smart grid is studied in [115]. A specific
application of economic dispatch is investigated, where the
DG unit is linked to an energy storage device. Since a
multidimensional control variable is involved in the ASC
problem formulation, an ADP algorithm is developed to solve
the problem, which achieves performance close to the optimal
at a low computational complexity. The energy storage device
operation problem is further studied by considering the varia-
tions in wind, load demand, and electricity prices. It is shown
that the ADP scheme is efficient in solving high dimensional
energy allocation problems, provided that the basis functions
of approximate policy iterations are properly selected.

VII. DEMAND SIDE MANAGEMENT

It was 1980s when the ERPI introduced the DSM publicly,
as an energy crisis started to emerge [116] [117]. The DSM
provides a basis of adjusting the consumption level to provide
instantaneous balance of generation and demand. The DSM,
also known as energy demand management, represents a
large group of schemes (such as load management, energy
efficiency, energy saving, and smart pricing) adopted by
utilities that motivate the consumers to change their energy
usage patterns to achieve better economy and load factor
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TABLE IV: Methodology for stochastic information management in DSM.
Applications Theory or Technique Variations and/or Modifications

MCS MCS with SRS [121]
Interval based technique Robust optimization [121]

Markov decision process [124] [125]
Stochastic dynamic programming [126]

Demand response Dynamic programming Approximate dynamic programming [127]
Lyapunov optimization [120]
Risk of loss minimization [129]

Stochastic game Cooperative game [130]
N -person nonzero-sum stochastic differential game [131]

Load prediction Stochastic control Kalman filter [122] [123]
Cellular network and Queueing theory M/M/c/c queue [134]
IDC operation M/M/c queue [135]

Dynamic programming Lyapunov optimization [136]

(defined as the average load divided by the peak load). Energy
efficiency and energy saving schemes address long term issues
of environmental impact, whereas load management schemes,
commonly referred to as demand response, addresses short
term issues of supply and demand balance [117]. Utilities view
DSM as load shaping objectives which comprises of six fun-
damental categories, namely for peak clipping, valley filling,
load shifting, strategic conservation, strategic load growth, and
flexible load shape, as shown in Fig. 10 [116]. Among them,
peak clipping, which reduces system peak loads, is achieved
by direct load control. Valley filling, which builds up off-peak
load, can be achieved by electrification such as EV charging
during night time. Load shifting is to shift loads from on-peak
to off-peak hours. Strategic conservation and strategic load
growth are general decrement and increment in sales, respec-
tively. Flexible load, related to reliability, is the willingness of
customers over variations in quality of services by possessing
interruptible or curtailable loads, but with certain incentives.
The Federal Energy Regulatory Commission (FERC) defines
demand response as: “Changes in electric usage by end-use
customers from their normal consumption patterns in response
to changes in the price of electricity over time, or to incentive
payments designed to induce lower electricity use at times
of high wholesale market prices or when system reliability is
jeopardized.” Beside the load management program or demand
response, the authors of [118] discuss the smart pricing that
motivates customers to consume wisely and efficiently, which
is beneficial for both customers and utilities economically and
environmentally. In this section, we focus our discussion on
demand response which is the major component of DSM in the
future smart grid. The demand response components such as
dynamic demand-sensitive real-time pricing in the electricity
market, uncertain human behavior patterns [119], intermittent
generation sources [120], and stochastic noise in energy me-
tering devices or sensors are the factors introducing stochastic
nature into the system. Accordingly, stochastic information
management schemes need to be developed, and some related
works in literature are summarized in Table IV.

Based on the preferences in residential appliances, the
operation tasks in demand response can be categorized into

Fig. 10: All the basic load shaping objectives of DSM [116].

deferrable/non-deferrable and interruptible/non-interruptible
ones [121], while Gaussian distributions can be used to
model the dynamics in real-time electricity prices. To reduce
the computational complexity of MCS for real-time demand
response, an interval based technique - robust optimization
can be used [121] to determine price uncertainty intervals
for simulating the real-time price uncertainty. The worst case
scenario with respect to the uncertainty intervals is considered,
given that the electricity prices can be uncertain in a given
number of time slots. Although the robust optimization can
achieve lower computational complexity, the electricity bill of
the residential customer is higher in comparison with that of
the MCS scheme with a higher computational complexity.

Kalman filtering is widely used for load prediction in the
process of demand response. An efficient interaction infras-
tructure between utility and distributed customers is proposed
in [122], where each interaction cycle includes demand re-
sponse and stochastic tracking control of conventional gener-
ation facilities. The sum of load demand signals serves as the
reference signal which needs to be tracked by conventional
generation. A Kalman filter based prediction scheme is devel-
oped to compensate for the delays of different customer load
demand signals. A uncertainty-aware minority-game based
energy management system can be used for energy resource
allocation in smart buildings with solar power generation and
main grid connection [123]. With multiple agents deployed
in the building and each agent corresponding to a smart con-
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troller, the stochastic noise from energy meters/sensors can be
reduced via Kalman filtering. Based on supervised learning of
uncertain energy profiles, the agents play a modified minority
game to allocate the limited solar energy resource.

Dynamic programming can be used to optimize the demand
response processes. Specifically, a Markov decision process
can be used to model individual devices participating in
demand response markets [124]. Four types of devices can be
defined, i.e., optional loads that can be curtailed (e.g. light dim-
ming), deferrable loads that can be delayed (e.g. dishwashers),
controllable loads with inertia (e.g. thermostatically-controlled
loads), and storage devices that can alternate between charging
and generating. The optimal price-taking control strategy can
be derived based on the Markov decision process model. In
the smart grid, the capital expenditure of using communication
networks for demand response may be nonnegligible [125]. In
such a case, the overall operation cost of demand response
should be jointly optimized with the communication cost.
Based on the LMP electricity market model, the problem of
determining when to inquire the power price can be formulated
as a Markov decision process [125]. Dynamic programming
is performed to obtain the optimal strategy while a myopic
approach can be used to achieve low computational complex-
ity. In [126], a stochastic dynamic programming problem is
formulated for energy usage in a micro-scale smart grid system
with a goal of optimizing a finite horizon cost function which
reflects both the cost of electricity and comfort/lifestyle. The
model is extended in [127], assuming that the key models
and forecasts are unknown and implicitly learned via a soft-
max algorithm with neighborhood updating. The algorithm
implements ADP to reduce the dependencies on models and
forecasting. In order to reduce the computational complexity
in dynamic programming with respect to a large state space
in demand response (typically referred to as the curse of
dimensionality [128]), a Lyapunov optimization technique can
be used to develop simple energy allocation algorithms [120],
and an upper bound of the objective function in optimal power
scheduling can be used to minimize the risk of loss for each
electricity customer [129].

Stochastic games can be formulated to model the competi-
tion among electricity customers. A dynamic pricing scheme
is typically used as an incentive for customers to achieve an
aggregated load profile suitable for utilities. A cooperative
game approach can be applied to reduce total cost and peak-
to-average ratio of the system when customers can share all
their load profiles [130]. On the other hand, when customers
have access only to the total load of the system, distributed
stochastic strategies need to be developed to exploit this
information for overall load profile improvement. In [131],
a dynamic game is used to model the distributed demand
side management. A two-layer optimization framework is
established, where the appliances of different players (e.g.,
households) are scheduled for energy consumption at the lower
level, while the interaction among different players in their
demand responses is captured through the market price. An
N -person nonzero-sum stochastic differential game with a
feedback Nash equilibrium can be used for the two-layer
optimization framework.

Due to the ever-increasing demand of mobile Internet
services and cloud computing, the energy bills associated
with the massive power consumption of cellular networks and
Internet data centers (IDCs) have laid a heavy burden upon the
operators. As a result, how to reduce energy consumption for
cellular networks and IDCs has attracted considerable atten-
tions recently [132] [133]. To achieve energy saving, the base
stations of a cellular network and the servers in an IDC can be
strategically switched off. However, different from traditional
electric loads, when a cellular network or IDC is powered by
the smart grid, quality of service (QoS) requirements of users
should be considered in addition to the real-time electricity
price. Queueing analysis is widely used in literature to model
the QoS provisioning to users. An M/M/c/c queueing model
is developed in [134], and the Erlang-B formula is used to
calculate the service blocking probability. To ensure acceptable
QoS in the cells whose base stations have been switched
off, coordinated multipoint (CoMP) technology is used. A
Stackelberg game with two levels (i.e., a cellular network
level and a smart grid level) is formulated for the active base
stations to decide on which retailers to procure electricity
from and how much electricity to procure. On the other
hand, to quantify the service level agreement (SLA) of each
server in an IDC, the steady-state results of an M/M/c queue
can be employed [135]. A bi-level programming problem is
investigated to minimize the operation risk of IDCs against the
uncertainties in dynamic workload and time-varying electricity
prices. The operation costs of an IDC can be further reduced
by utilizing the uninterrupted power supply (UPS) units as
energy storage devices [136]. The Lyapunov optimization
technique is used to develop an online control algorithm to
minimize the time average cost of an IDC. The algorithm
has a lower computational complexity in comparison with the
dynamic programming approach and does not require any prior
knowledge of the statistics of workload or electricity price,
which is suitable for real-time IDC operation in the presence
of workload and pricing uncertainties.

VIII. ELECTRIC VEHICLE INTEGRATION

With a fast-growing EV penetration rate, the charging
demand is expected to constitute a significant portion of the
total power demand in the future smart grid. On the other hand,
the battery storage of EVs can be better utilized to potentially
improve the efficiency and reliability of electricity delivery
via V2G systems. A key feature of the V2G systems is a
bidirectional energy delivery mechanism which enables the EV
to either draw energy from or feed energy back to the grid.
Different from traditional stationary energy storage systems,
the main issue in efficiently managing EV charging demand
and utilizing EV batteries for energy storage is the highly
dynamic vehicle mobility. Although domestic EV charging
demands can be well estimated based on the commute patterns
of EV owners which are relatively stable [137], the charging
station planning and operation are a relatively challenging
issue due to the uncertainty in EV arrivals to a charging
station and the randomness in EV energy demands. In order
to optimize EV charging infrastructure, the charging demand
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TABLE V: Methodology for stochastic information management in EV integration.
Applications Theory or Technique Variations and/or Modifications

M/M/c queue [56] [140] [141]
Charging station planning Queueing theory M/M/c/N queue [142] [143]

Two-dimensional Markov chain [144]
M/M/∞ queue [145]

Load flow analysis Queueing theory M/M/c queue [32] [146]
M/M/c/k/Nmax queue [32]
Mt/GI/∞ queue [147]
M/M/∞ queue [148]

Charging demand coordination Queueing theory M/M/c queue [149]
GI/D/1 queue [150]
Multi-queue system [151]

Queueing theory M/M/c queue [154]
V2G system Operation Stochastic inventory theory Modified backward iteration [34]

Policy adjustment [158]

should be forecasted based on EV mobility statistics. On
the other hand, the energy storage of EVs can be used by
the electric power system via V2G systems. In the presence
of EV mobility, stochastic models need to be established to
characterize the V2G system capacity. Table V provides a
summary of the stochastic information management schemes
in literature for EV integration.

A. Charging Station Planning

Various issues need to be considered when planing an EV
charging station, such as location and charging infrastructure
selection, aggregated charging demand estimation, metering,
and safety related issues [138]. An accurate estimation of
the aggregated charging demand is critical for the utility to
evaluate the transmission capability of the existing system for
the electricity delivery to the charging station. If available
transmission capacity is inadequate, an upgrade of the existing
system is needed.

Queueing theory can be used to analyze the aggregated
charging demand. Each charging station is modeled as a queue,
while the vehicles are modeled as customers in the queue.
According to the component-level models in Section III, the
arrivals of EVs at a specific charging station follow a Poisson
process. Given a certain capacity of the charging infrastructure
(e.g., a maximum charge power of 1.44 kW, 3.3 kW, and 150
kW for levels 1, level 2, and level 3 charging infrastructures
according to [139]), the charging time of each EV is directly
determined by the energy demand, which can be modeled
by an exponential distribution. According to the stationary
distribution derived based on the queueing analysis, key per-
formance metrics of the charging station can be obtained,
such as the probability distribution of the aggregated vehicle
charging demand, vehicle waiting time, and charging blocking
probability.

Multi-server queues are widely used in existing research.
An EV charging demand model is presented in [56] for a
rapid charging station at highway exit. Different from most
previous studies which assume a fixed charging location and
fixed charging time for each EV, the model captures the spatial

and temporal variations of EV charging demands. The arrival
rate of discharged vehicles is estimated based on fluid dynamic
model. Then, an M/M/c queueing analysis is performed for
a Poisson arrival process, exponential charging times, and c
identical chargers at a charging station, such that at most c
vehicles can be charged simultaneously. Based on the station-
ary distribution of the queue, the average charging demand
and expected number of busy chargers can be determined.
Similar queueing analysis is used in [140], where the EV
charging station is considered as a specific case of a microgrid
with controllable loads (electric vehicles), storage devices, and
grid interconnection. Investment, operational costs, physical
constraints, and different electricity pricing strategies can be
investigated in the planning problem. The M/M/c queueing
analysis can also be applied to charging station planning on
urban trunk roads [141]. The number of chargers within a
charging station is optimized with respect to a weighted sum
of charging service cost and customer waiting time. For a
limited waiting space, an M/M/c/N queueing analysis can
be performed, where c is number of chargers and N represents
the sum of the number of chargers and waiting locations [142].
Then, the performance metrics of the charging station can be
evaluated, such as the utilization of chargers (i.e., the ratio
of the average number of charging and waiting EVs to the
total number of chargers and waiting locations), the time of
waiting, and customer charging blocking probability can be
evaluated, based on which the number of chargers can be
optimized. Similar queueing models with truncation is used
in [143] to estimate the EV charging demand for different
charging technologies, i.e., fast charging and battery switching.

Local energy storage devices can be used to improve the
charging station service, where EV charging demand can be
satisfied by either an electric power grid or a local energy
storage device [144]. When the EV charging demand is high
and cannot be satisfied by the electric power grid due to its
transmission capacity limit, the energy in the local energy
storage device can be utilized to support additional charging
demand. A two-dimensional continuous-time Markov chain
model can be used for the performance analysis of such a
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charging station, where the two dimensions correspond to the
number of vehicles that can be charged simultaneously by
the station and the energy stored in the energy storage unit,
respectively. The quality of service (e.g., charging blocking
probability of EVs) can be evaluated, which provides useful
measures for the charging station and local energy storage
device sizing.

B. Power Flow Analysis with EV Charging Demand

Given sufficient transmission capacity of the electric power
system, the charging demand of EVs can be satisfied. However,
it is important to evaluate the impact of EV charging on the
electric power system. According to the power flow analysis
in Section V, EV charging demand can affect the net active
power injection of each bus and cause voltage deviations in the
system, which may result in unstable power system operation.
To characterize the impact of EV charging on the electric
power system, queueing theory is widely used.

If the number of chargers at a charging station is sufficiently
large, an M/M/∞ queueing analysis can be applied to
estimate EV charging demand [145]. The queueing model
and wind power generation model can be incorporated into a
probabilistic constrained load flow study. In [146], the electric
vehicle charging demand is modeled as a PQ bus while
taking into account the capacity limit of the load bus. The
randomness in the charging demand is characterized in an
M/M/c queueing analysis, where c is related to the charging
capacity of the load bus. The charging demand of the PQ
bus is given in a closed-form representation of charging time.
The MCS can be used for load flow analysis, where the
number of charging EV is randomly generated based on the
stationary distribution of the queue. It is observed in [32]
that the charging station and residential community should
be modeled in different ways, i.e., by an M/M/c queue and
an M/M/c/k/Nmax queue, respectively. In the latter scenario,
since the charging slots are generally privately owned or shared
only by the residents, the maximum number of customers
being served or waiting in the queue is limited to k, while
the maximum number of possible customers to be served is
Nmax. The stationary distributions of the two queues are used
to facilitate a PPF analysis.

Despite the convenience of queueing analysis, the assump-
tion of a constant vehicle arrival rate may lead to inaccurate
studies since vehicle arrival is semi-periodic in nature [147].
For instance, the vehicles arrive more frequently during the
evening and early night hours on each day. An Mt/GI/∞
queue can be used to address this problem, where vehicles
arrive with a time-dependant rate and are served according to
a general service time [147].

C. EV Charging Demand Coordination

Queueing theory can be applied to facilitate the EV charg-
ing demand coordination. A straightforward way is to set
a maximum number of available chargers (c) such that the
original M/M/∞ queue becomes an M/M/c queue. Taking
advantage of wireless communications, the charging demand
of an EV which is physically connected to a charger can be

deferred to reduce the peak demand of the grid, if the available
charging sockets are fully occupied [149]. A GI/D/1 queue-
ing model is used in [150], where a general arrival process
(specifically, a Gaussian process) is used to capture different
power consumption profiles of different EVs. A controllable
deterministic service process is used to model the threshold of
aggregated charing power specified by the utility. Based on the
queueing analysis, the smart grid can predict the occurrence
of an overage at the start of an epoch, based on which the load
shedding decisions are made to defer the charging process of
some EVs by limiting the total charging capacity.

Another way of controlling the charging demand is to
control the arrival rate of EVs at a charging station. Without
EV charging demand coordination, an M/M/∞ queue can
be used to estimate the probability of a distribution system
overloading [148]. The model is further extended to a variable-
rate version such that the arrival rate of EVs at the charging
station is a (controllable) function of the number of charging
EVs. Control algorithms are developed to adjust the arrival rate
of EVs such that the utilization of distribution system capacity
can be maximized while maintaining a negligible probability
of overloading. The reliance of the control algorithms on the
communication network is minimal since only rate-limited,
one-way, broadcast communication is needed for the notifica-
tion of the adjustment of the arrival rate of EVs. A multi-queue
system is used in [151] to model a group of charging stations,
where each charging station is modeled as an M/M/1 queue.
Based on the queuing analysis, the arrival rate of each queue
is optimized. Price control methods can be developed to find
the optimal arrival rate.

D. Vehicle-to-Grid (V2G) System Operation

Two kinds of services can be provided by V2G systems
[152] [153]. The ancillary services are used to ensure short-
term supply-demand balances in the electric power system.
Since the imbalances are temporary and small-scale in nature,
the ancillary services may not necessarily involve energy
delivery. On the other hand, the load shaving services use
the energy stored in vehicle batteries to compensate for the
peak load of the power system. From the vehicle owners
point of view, the energy cost can be relatively reduced by
drawing cheap energy from the grid, and vice versa. Since
a significant amount of energy transactions may deplete EV
batteries, providing efficient load shaving services is a more
challenging issue for the stochastic information management
in a V2G system.

Different from the EV charging, both power demand and
supply should be estimated for V2G load shaving services. The
M/M/c queueing model developed in [146] can be extended
to model both EV demand and supply in a V2G system [154].
The discharging time of an EV for V2G service provisioning
is modeled as an exponentially distributed random variable,
provided that a certain amount of energy is reserved in the
EV battery for a commute purpose. The amount is considered
to be pre-determined and insensitive to electricity price. The
amount of energy reservation can be facilitated by analyzing
the average commute energy demand of an EV [155] [156].
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However, this kind of estimates can lead to suboptimal so-
lutions for load shaving services. A practical example is
given in [157] where a vehicle driver may undertake an
unexpected journey and the commute energy demand depends
on the actual traffic condition. As a result, a significantly large
amount of energy should be reserved to address the uncer-
tainty [157]. In [34], the traditional energy store-and-deliver
mechanism for stationary battery management is extended to
an energy store-carry-and-deliver mechanism for EV battery
management. The energy cost minimization problem under
time-of-use electricity pricing is mathematically formulated.
Based on the stochastic inventory theory, a state-dependent
double-threshold policy is proved to be optimal. A modified
backward iteration algorithm based on estimated statistics of
plug-in hybrid electric vehicle (PHEV) mobility and energy
demand can be used to facilitate practical applications [34].
Stochastic inventory theory can also be used to solve a multi-
vehicle aggregator design problem by considering the power
system constraints. A policy adjustment scheme is developed
in [158] to adjust the two thresholds of the optimal policy
adopted by each PHEV, such that the aggregated recharging
and discharging power constraints of the power system can be
satisfied, while minimizing the incremental cost (or revenue
loss) of PHEV owners.

For V2G ancillary services, the energy constraint for V2G
system based frequency regulation is related to the SOC of
the EV battery. The energy deviation caused by a single
regulation signal is obtained in [159], based on which a
probabilistic distribution of successful regulation is estimated.
Random walk theory is employed for stochastic analysis of
the distribution. The distribution is averaged to form a weight
function, so that it can be associated with a cost function to
rate the current value of regulation.

IX. CONCLUSIONS AND DISCUSSIONS

In this paper, we have presented an overview of the state
of the art on stochastic information management for the smart
grid. Component-level stochastic models are investigated to
characterize the sources of randomness in the smart grid. The
models are further incorporated in the system-level stochastic
information management schemes to facilitate the planning
and operation of bulk generation and transmission systems,
distribution systems, and customer appliances, and to facilitate
the integration of renewable energy sources, energy storage
devices, DSM tools, and EVs.

Most of the existing stochastic information management
schemes evolve from those for traditional power system plan-
ning and operation. As a result, they do not provide effective
or efficient solutions to handle larger system dynamics in the
future smart grid. There are many open research issues:
• Optimal energy storage device operation – To reduce

the computational complexity in energy storage device
management, a suboptimal ADP technique can be used.
However, the policy and value function approximation
mechanisms incorporated in the ADP technique require
basic knowledge about the structure of the optimal control
policy. Based on our preliminary studies [34] [158], the

stochastic inventory theory is a powerful tool to charac-
terize the optimal operation policy of a single battery,
based on an analogy between the SOC of a battery and
the stock level of an inventory. The optimal operation
policy of a battery follows a double-threshold policy,
with the thresholds corresponding to battery charging
and discharging, respectively. However, how to apply the
stochastic inventory theory to establish optimal operation
over other energy storage devices with start-up cost needs
further investigation. One possible approach is to model
the cost as a fixed ordering cost in the stochastic inventory
model. The corresponding optimal threshold policy is of
an (s, S) type [160], where the energy-level thresholds
correspond to decisions on whether or not to start the
energy storage device respectively. Further, it is critical
to extend the ADP policies to the control of multiple
energy storage devices which may coexist in an electric
power system. New approximation techniques need to
be developed based on the fact that the value function
of an inventory model based on the (s, S) policy is a
K-convexity function. Accordingly, new ADP policies
should be developed based on the approximation for
computational complexity reduction of energy storage
device operation.

• Planning of interactive charging stations – Queueing
theory can be used for the planning of a single charging
station. However, for a distribution system with more
than one charging station, the single queue models are no
longer applicable. Interactions among different charging
stations depend on vehicle owners’ response to charging
prices and can affect the power flow in the distribution
system. Queueing network models should be developed
to address this problem, where each charging station
is represented by one queue in the queueing network.
The interaction among different charging stations can
be modeled by the routing probabilities among different
queues, which depend on EV user responses to charging
prices. According to studies on vehicular communication
networks, the BCMP queueing network can provide a
good estimation of vehicle traffic [161]. The product
form solution of the stationary distribution of the BCMP
queuing network can help reduce the computational com-
plexity. Based on the queueing network model, the proba-
bility distribution of the number of EVs in each charging
station can be obtained. Consequently, the probability
distribution of EV charging demand at each charging
station can be obtained, which can be incorporated in
PPF to facilitate the planning of charging stations.

• EV charging station selection – Vehicular communication
networks can assist EV charging station selection. EVs
can report their locations and path selection decisions via
vehicle-to-infrastructure (V2I) communications with the
roadside units (RSUs) which are connected to a vehicle
traffic sever. The optimal path of each EV is calculated
by the server and transmitted to the EV via RSUs. When
multiple charging stations are deployed within the same
distribution system, the maximum loading of the charging
stations is correlated with each other based on power
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flow analysis. The EV charging station selection should
depend on not only the traffic statistics but also the
power flow of the electric power system. Our recent
research has shown that the optimal EV charging station
selection problem can be simplified by establishing a
linear relation between the loading and voltage of each
distribution system bus [162]. Then, the Lagrange duality
optimization techniques can be used to solve the associ-
ated optimization problem;

• Information security and privacy support – Most ex-
isting research assumes that the stochastic information
provided via smart grid communications is authentic.
However, if some malicious nodes in the network inject
bad data [163] [164], the power system operation via
stochastic information management can be interrupted,
as the power generation/demand can no longer be bal-
anced and the frequency of the power system deviates
from the nominal frequency. Several existing works have
analyzed and modeled bad data injection attacks and
presented corresponding defensive strategies. For exam-
ple, to address the malicious meter inspection (MMI)
problem, a tree-based inspection algorithm is exploited
and analyzed [165], while the attack strategies and coun-
termeasures are introduced for the bad data attacks on
smart grid state estimation [166] [167]. However, there
are many new types of bad data injection attacks that
have not been tackled. To fill the gap, cognitive bad data
detection techniques based on machine learning should
be developed to not only identify but also address the
new types of attacks. On the other hand, customers’
private information (in terms of energy consumption and
EV mobility statistics) is needed for stochastic informa-
tion management. Once unauthorized entities access the
private data, customers’ privacy is violated [168]–[171].
Therefore, customers should be able to grant access to
their data so that only authorized entities can decrypt
and read the specific data. To this end, the development
of multi-authority and ciphertext-policy attribute based
encryption (CP-ABE) techniques to enable access control
in the future smart grid [172] can be an interesting future
research direction.

• Joint system planning – Consider the microgrid as an
example, which is evolved from traditional power distri-
bution systems and thus is cost-sensitive in nature. For
this reason, microgrid planning should take into account
not only the expenses on power system assets, but also
the cost of establishing a communication network. In
order to capture the impact of communication network
in microgrid, the interaction between communication
system and electric power system needs to be studied
based on a stochastic approach. For instance, a WiFi
or ZigBee network can be used for low-cost installation
and operation on a license-free radio frequency band.
However, the performance of power system operation
may degrade because of a system status report delay,
which is a random variable depending on the medium
access control and data traffic load [173] [174]. On
the other hand, a cellular network with dedicated radio

resources for a low communication delay can be used
to improve the efficiency and reliability of power system
operation. However, the operation cost by using a cellular
network on a licensed radio frequency band is non-
negligible [175]. Our recent research has shown a tradeoff
between the operation cost of a cellular network and
power generation cost in a microgrid based on economic
dispatch [176]. A joint planning of the communication
system and electric power system over a long time frame
is needed to facilitate the deployment of future smart grid.

In summary, extensive R&D efforts are required to develop
stochastic information management schemes to facilitate smart
grid planning and operation to achieve efficiency, reliabil-
ity, economics, and sustainability in electricity production
and distribution. The research is interdisciplinary in nature
and calls for a close collaboration among the researchers
from both information/communication system discipline and
power/energy system discipline.
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