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Abstract Robot Programming by Demonstration (PbD) has
been dealt with in the literature as a promising way to
teach robots new skills in an intuitive way. In this paper
we describe our current work in the field toward the im-
plementation of PbD system which allows robots to learn
continuously from human observation, build generalized
representations of human demonstration and apply such rep-
resentations to new situations.

1 Introduction and Related Work

Learning of skills and behaviours that can be applied to
solve a given task regardless of the current configuration of
the external world is a difficult problem because the search
space that needs to be explored is potentially huge [1]. The
size of the search space depends both on the number of de-
grees of freedom of the robot and on the objects involved
in the action. Furthermore, external objects can affect the
search space indirectly. To overcome problems arising from
high dimensional and continuous perception-action spaces,
it is necessary to guide the search process. One of the most
successful paradigms that can be used for this purpose is
imitation learning or robot programming by demonstration
[1, 2].

Several imitation learning systems and architectures
based on the perception and analysis of human demonstra-
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tions have been proposed (see [2–7]). In most of the pro-
posed approaches, the imitation process proceeds through
three stages: (1) perception and analysis of human demon-
stration, (2) representation of the demonstration, and (3) re-
production of the demonstrated task on the robot. Known
approaches in the literature can be divided between two
trends regarding the way demonstrations are represented,
and the way such representations are generated: trajectory-
level representations in the form of non-linear mappings be-
tween sensory and motor information [8–14], and symbolic-
level representations that decompose demonstrations into
sequences of more abstract perception-action units [15–20].
While trajectory-level representations allow different types
of motions to be encoded, they do not allow high-level tasks
to be generated. On the other hand, symbolic-level repre-
sentations allow action hierarchies and rules to be learned,
however they require pre-definded sets of motor controllers
for reproduction.

A key issue in all these approaches is to find a generic
action representation which (1) express actions as a com-
bination of meaningful elements called motor primitives,
(2) learn such motor primitives, and (3) use them to rec-
ognize and synthesize actions. In other words, such rep-
resentations should allow action planning, action recogni-
tion, and action synthesis. Several representations have been
proposed in the past; among the most successful are non-
linear dynamic systems [11] and hidden Markov models
[6, 13, 21], which have been demonstrated to enable both
action recognition and action synthesis. Several approaches
have dealt with the extraction of motor primitives from ob-
served human motion, the classification of demonstrated ac-
tivities and well as the learning and sequencing of the under-
lying motor primitives [22–26]. In addition, action descrip-
tion languages have been also proposed to express human
activities [27–29].
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2 Overview

In Programming by Demonstration, two different lines of
research can be identified based on the representation of
manipulation knowledge: subsymbolic and symbolic. In this
work, a subsymbolic approach, see Sect. 3, based on learn-
ing Dynamic Movement Primitives (DMP) [11], and a par-
tially symbolic approach, see Sect. 4, based on learning
the parameterization of predefined movement primitives,
are presented. In the first approach, markerless human mo-
tion capture and a predefined, general mapping interface,
the Master Motor Map (MMM), are used to map a human
demonstration to a sequence of DMPs. Each DMP repre-
sents an attractor landscape described by a second order
dynamical system, which is a single, abstract, subsymbolic
representation of a set of demonstrations. In the second ap-
proach, human demonstrations are mapped to sequences of
predefined motion primitives, i.e. grasp, ungrasp and move,
which are implemented using constrained motion planning.
In this context, symbolic pre- and post-conditions can be
learned automatically [16]. The identification of object fea-
tures, which are relevant for a given task, is a prerequisite for
learning and generalization of manipulation knowledge. In
Sect. 5, the required attributes to model interaction tasks of
a service robot, e.g. in a kitchen environment, are analyzed.
The derived basic actions contain movement primitives, like
grasp, ungrasp and move, and perception primitives, which
can’t be learned in our current system. The object attributes
relevant to each basic action are derived, which is the basis
for assigning symbolic information, e.g. labels like heavy or
light, to movement primitives and learn the dependence of
subsymbolic information on object properties.

The connection of both research lines, i.e. between high-
level, symbolic information and low-level, subsymbolic in-
formation, is challenging. In the first approach, the learned
DMPs are enriched manually with symbolic information and
a symbolic planner can be used to generated sequences of
DMPs to solve a problem on the task level. The subsymbolic
information, which can be efficiently adapted to changes in
the start and goal, is used to generate robot motions online.
In the second approach, the parameterization of the con-
strained motion planner, which is used to implement grasp,
ungrasp and move, is automatically learned. The learned pa-
rameterization, which is called manipulation strategy, is a
flexible, constraint-based representation of the search space.

The main advantage of the first approach is the fast,
online adaptation to perturbations in the environment and
learning of complex robot motions. The second approach of-
fers generalization based on symbolic information, e.g. ob-
ject properties, and planning of robot motions in the full con-
figuration space of the robot. In contrast to the first approach,
global and self collision avoidance can be easily integrated
but online adaptation to fast changes in the environment is

not possible since planning time dominates the execution
time. The advantages and disadvantages of both approaches
are complementary. Current research focuses on the connec-
tion of subsymbolic and symbolic approaches. Future direc-
tions and current limitations will be discussed in Sect. 6.

3 Learning Imitation Strategies

3.1 Markerless Human Motion Capture

Markerless human motion capture is a prerequisite for learn-
ing from human observation in a natural way. The sensor
system to be used for this perceptual capability is the wide
angle camera system built-in in the head of ARMAR-III.
The two main problems are to capture real 3D motion de-
spite the small baseline of 90 mm as well as to meet the real-
time requirements for online imitation learning. As prob-
abilistic framework, a particle filter is used. In our ear-
lier work [30], we have introduced the integration of a 3D
head/hand tracker as an extra cue into the particle filter. This
additional cue allows to reduce the effective search space by
dragging the probability distribution into a relevant subspace
of the whole search space. In our more recent work [31, 32]
we have focused on improving the accuracy and smoothness
of the acquired trajectories by analyzing and solving the typ-
ical problems with markerless human motion capture using
particle filters. In order to achieve this goal, a prioritized fu-
sion method, adaptive shoulder positions, and adaptive noise
in particle sampling have been introduced. Furthermore, the
redundant inverse kinematics of the arm, given a hand and a
shoulder position, were integrated into particle sampling, in
order increase robustness to unexpected movements, to al-
low immediate recovery from mistrackings, and to support
application of the system at lower frame rates. After sam-
pling a subset of the particles according to the redundant
inverse kinematics, several runs of an Annealed Particle Fil-
ter [33] are performed to refine the probability distribution.

3.2 Master Motor Map

To allow the reproduction of human motion acquired from
different human motion capture systems on different robot
embodiments as well as to allow the development and eval-
uation of action recognition systems independent from the
data source, we have specified the so-called Master Motor
Map (MMM) as an interface for exchanging motor knowl-
edge between different embodiment, and as a framework for
decoupling data from various sources accounting for per-
ception, visualization, reproduction, analysis, and recogni-
tion of human motion. The MMM is defined as a three-
dimensional reference kinematic model of the human body
enriched with body segment properties. The strategy with
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respect to the kinematic model is to define the maximum
number of degrees of freedom (DoF) that might be used by
any applied module [34].

3.3 Action Representations

To generate graping and manipulation tasks through imi-
tation, motor knowledge learned from human observation
must be represented in a way, which allows the adaptation
of learned actions to new situations. For this purpose, we
investigated and applied Dynamic Motor Primitives (DMP)
as proposed in [11]. A DMP provides a representation of a
movement segment by shaping an attractor landscape de-
scribed by a second order dynamical system. Using this
formulation, discrete and periodic movements can be de-
scribed. In [35], we applied a motion representation based
on dynamic movement primitives (DMPs), which has the
advantage that perturbations can be directly handled by the
dynamics of the system. Starting from the observation of
a human performing a specific task, motion data is ob-
tained, which is segmented automatically regarding the ve-
locity and position changes of the hand or the object motion.
After mapping automatically these motion segments onto
the robot using the MMM Interface, DMPs are learned and
stored in a motion library. Semantic information is added
manually to the movement primitives such that they can
code object-oriented actions. To reproduce these actions on
a robot, a sequence of DMPs is selected and chained, either
manually or through a symbolic planner, to achieve the task
goal. The imitation of a pick-and-place action consists e.g.
of learned DMPs for the different movement segments: ap-
proach, place and retreat. At the moment, human input is re-
stricted to generating learning examples, defining the MMM
Interface, which is valid for all imitation tasks, and to add
semantic information to learned movement primitives.

3.4 Action Reproduction

The proposed framework was used to implement grasp sce-
nario and a shell game scenario. For the grasp scenario, three
primitive classes of human movements have to be captured
and added to the library of DMPs: approach, pick and place,
and retreat. Concerning the approach and retreat movement,
each class includes two DMPs assuming that, e.g. an ap-
proach movement is targeting an object in front of the robot,
while the object position may vary along the vertical axis.
For the pick and place class, we generate four DMPs, which
enable placing of objects from back to the front, from left
to right and vice versa (see Figs. 1 and 2). The shell game
scenario features a higher complexity, hence, in addition to
the existing DMPs which were applied on grasping, sliding
movements were demonstrated to the robot. For this pur-
pose, the human user was asked to move the object along

Fig. 1 Image samples of demonstrated of human motions

Fig. 2 Image samples of the online imitation of human motion by the
humanoid ARMAR-IIIb

a figure eight trajectory. Segmentation led to four distinct
movements, which can be distinguished whether the cup was
moved from left to right, away or towards the robot. Adding
the four sliding DMPs to the library, a set of movement
primitives is obtained which cover the motion needed for
performing the shell game. As depicted in Fig. 3, the shell
game could be reproduced successfully by the humanoid
robot ARMAR-III. No failures were encountered in both
examples. The similarity of the generated robot motions to
the human demonstrations using the DMP framework is de-
scribed in [35].

4 Learning Manipulation Strategies

The PbD process is summarized in Fig. 4. A human operator
demonstrates the task on real objects in an environment [36]
being observed by multiple sensor systems including a 6D
motion tracking device for the wrist position and orienta-
tion and two datagloves measuring 22 degrees of freedom
of the human hands. The sensor data is filtered, segmented
and mapped to the symbolic predefined movement primi-
tives: grasp, ungrasp and move. Each movement primitive
is implemented using constrained motion planning. In gen-
eral, the search space for grasp and move differ in the di-
mensionality of the problem and two different approaches
are investigated. In the case of grasping, heuristics for the
constrained motion planning are learned from the human
operator, which is regarded as a complex parameter of the
grasp movement primitive. In the case of moving, the search
space itself depends on the task to learn and is automati-
cally learned based on the human demonstration. The search
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Fig. 3 The humanoid robot ARMAR-IIIb playing shell game through learning from human observation

Fig. 4 Programming by demonstration: process overview, [38]

space is represented as a complex network of temporal and
domain constraints, which is regarded as the parameter of
the move movement primitive.

For each grasp operator, the example-trajectory is ob-
tained by storing the wrist and fingertip trajectories rela-
tive to the grasped object. The demonstrated trajectories
are mapped to the robot hand by using virtual fingers [37],
which abstract a group of real fingers applying similar forces
to the object to a single virtual finger, and by locally solv-
ing an optimization problem, which minimizes the distance
of the robot finger tips to the tips of the virtual fingers and
the distance of the robot wrist to the human wrist. Based
on this initial mapping a probabilistic model based on fac-
tor graphs is learned, which explicitly models the optimiza-
tion and modeling errors. This learned variation model rep-
resents a time dependent sampling distribution of the robot
configuration space, that is used in a probabilistic motion

planer to generate valid solutions for grasps of similar ob-
jects in new environments. By explicitly modeling the out-
come of the transformation process as a stochastic process,
an automatic weighting between exploitation of the knowl-
edge demonstrated by the human operator and the fast ex-
ploration of the configuration space is achieved. The com-
plete process is shown in Fig. 5.

In the execution environment, probabilistic motion plan-
ning is used to generate grasping motions for the robot sys-
tem based on the learned variation model. The variation
model is efficiently evaluated by sampling from the prod-
uct distribution of the marginals, which are calculated us-
ing loopy belief propagation. This non-uniform sampling
distribution is used in the probabilistic motion planner as
a heuristic to guide the search process, allowing for the
automatic weighting between exploitation of the learned
task-dependent knowledge and the exploration of the search
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Fig. 5 Mapping of grasping
strategies: overview, [38]

space. The incorporation of variations into the strategy rep-
resentation allows for the flexible application of the learned
strategy to different objects and environments. The advan-
tages of using motion planning are generalization to envi-
ronments with different obstacles and self collision avoid-
ance. The generality of the approach has been demonstrated
on two different experiments on a real anthropomorphic
robot system with seven different objects. Details are given
in [38].

For task knowledge representation we developed a par-
tially symbolic representation of manipulation strategies
that explicitly describes the search space for trajectories con-
sistent with the strategy by a complex network of tempo-
ral and domain constraints. Based on the structure of con-
straints, manipulation strategies can be efficiently learned
using the PbD paradigm and generalized to different robots,
objects and environments on a symbolic level. Recent ad-
vances in the field of constraint motion planning are incor-
porated to plan robot trajectories based on a given manipu-
lation strategy.

A manipulation motion is defined as an unconditioned
motion of the robot system. The most common representa-
tion is a trajectory in the configuration space of the robot,
that can be learned by playback programming and directly
executed on the robot system. In general, generalization to
different domains, e.g. with different start, target and ob-
ject positions is not possible. In order to improve general-
ization, allowed variations of the trajectories can be learned
based on multiple demonstrations. In [39], Gaussian mixture
regression is used to determine a more flexible trajectory
representation based on Gaussians. The main advantages of
purely subsymbolic representations are fast learning times
and low effort for the transformation to the robot system.
Generalization to new objects and environments is compli-
cated, due to the lack of understanding of what the goals are
and why the solution is structured in a specific way. On the
other hand, background knowledge can be easily integrated
into a symbolic, e.g. STRIPS-like, representation. The sym-

bolic description allows for the generalization based on sym-
bolic properties, leading to a high degree of reusability,
i.e. actions can be applied to objects with equal proper-
ties. Due to the complexity of robot manipulation, purely
symbolic descriptions are insufficient to represent manipu-
lation motions as an input for motion planning techniques.
Consider the pour-in task, which could be described by the
target relation isFilled(Glass,Water) and runtime constraint
!isWet(Table). This simple symbolic description demands a
powerful planning system taking the water dynamics into
account. By mapping the relation !isWet(Table) to a subsym-
bolic constraint, that restricts the orientation of the bottle
to be “upright”, the problem complexity can be heavily re-
duced. Based on this observation, a representation capturing
symbolic and subsymbolic properties of manipulation mo-
tions has been developed. In general, manipulation motions
are heavily constrained, e.g. pushing a button requires the
robot to stay in contact with a small part of an object. In-
stead of viewing constraints as a way to restrict motions,
we regard constraints as the atomic element of manipulation
motions and strategies, which can be combined in sequence
and in parallel to describe the space of trajectories consis-
tent with the manipulation motion. By introducing object
depended constraints, e.g. staying on the table top, we de-
rive a representation, that can be easily transformed to new
environments based on its symbolic properties and easily ex-
ecuted based on the subsymbolic information provided by
domain constraints.

The novel representation of manipulation strategies is
based on atomic constraints. For each constraint, a formula-
tion known from motion planning has been employed, which
restricts the set of valid configurations by testing if a given
point stays within a given region. Learning of new manip-
ulation motions is reduced to learning the parameterization
of a specific region type, which optimally covers the tra-
jectory of a predefined point. The set of predefined points
contains a.o. the position, orientation (and its derivatives) of
object features and the robot manipulators. The set of region
types considered in the learning process consists of cones,
spheres, cubes and cylinders. For each class, the smallest
representative containing all values of a point on a given
trajectory can be efficiently calculated using a search algo-
rithm. The result of the supervised learning process is a ma-
nipulation motion, that can be visualized as a strategy graph.
By assigning regions to certain object features, the repre-
sentation is (partially) symbolic, which can be efficiently
exploited to reproduce the manipulation motion on differ-
ent robot systems in different environments. In the pour-in
experiment, the environment of the robot system contained
additional objects and the robot had grasped a different type
of cup. The learned manipulation motion was automatically
transformed into this environment by using the predefined
cylindrical region of the new cup and the developed con-
straint motion planning algorithm to incorporate collision
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avoidance. Consistent trajectories were planned, that dif-
fer fundamentally from the demonstrated trajectory, indicat-
ing that the relevant features of the manipulation had been
learned. Further details are given in [40].

5 Learning Object Models

The goal of our research is to create an object model hierar-
chy for robots. This hierarchy should be created by a human
user with little programming knowledge, supported by the
modeling system. As an application example, we use a typi-
cal kitchen environment. The next two sections describe first
the internal structure of the object models in more detail and
then lead to the deduction of the different modeling tasks
that need to be solved in such environments by intuitive user
interaction.

5.1 The Object Model Hierarchy

In order to represent all the different objects, an object model
needs to be very flexible and versatile. To achieve this, we
developed a model consisting of four main parts [41]: object
classes, object instances, features and attributes. In this con-
cept, object classes consist of features (and potentially addi-
tional attributes), whereas features in turn consist of one or
more attributes. Attributes are low-level descriptions of ob-
ject properties, such as geometry, weight, texture, etc. Fea-
tures describe higher level properties of objects which com-
bine different attributes, e.g. the feature is container which
implies attributes like filling state, content type, etc. On the
top end of the hierarchy, object classes represent complete
families of objects, such as cups, plates, forks or chairs. Ob-
jects of the same object classes share characteristic features
and attributes. By setting special default values for the at-
tributes of the object classes, sub-classes like e.g. wooden
chair can be specified. Finally, object instances represent
objects in a real world scene by instancing the appropri-
ate object class and thus, setting situation and object spe-
cific values for its attributes. A more detailed explanation
of this approach can be found in [42]. Based on this object
model concept, two questions need to be answered to create
a model for a real world scene: first, which attributes need
to be modeled to describe the objects in the scene properly?
And second, how can appropriate default values for these
attributes be set by the human user in an intuitive way? The
next section answers the first question whereas the second
part of this paper describes a possible answer to the second
question for two exemplary attributes.

5.2 From Tasks to Object Attributes

To create meaningful object classes to represent real world
objects, the core attributes that are common to all objects of

Fig. 6 Exemplary tasks and corresponding basic actions

the domain in question need to be identified and modeled.
The identification of these attributes was achieved through
a careful analysis of possible interactions with the observed
objects. This analysis consisted of three steps: the identi-
fication of the potential interaction tasks, the separation of
the tasks into basic actions and finally the derivation of
the attributes which are necessary to execute these basic
actions.

The setting of service robots in a kitchen was taken as
exemplary domain in our investigation. The analysis there-
fore concentrates on interaction tasks which service robots
will be able to carry out in the near future. In the following
two subsections, the derivation of basic actions from these
tasks and of required object attributes from actions are pre-
sented.

5.2.1 Deriving Basic Actions

For the chosen domain, we identified several important
tasks: For the fundamental recognition and localization of
objects, the encompassing task is perception. As Fig. 6
exemplifies, perception tasks can be subdivided into three
basic actions: classification, identification and localization.
Figure 6 also shows that other tasks like pick & place, too,
partly employ the same basic actions, but rely on additional
actions like approach, grasp, move etc. In the same way, the
remaining tasks of open/close, fill/empty and utilize were
broken down into several basic actions. The analysis re-
vealed that many of the basic actions are part of more than
one task. The aforementioned classification, identification
and localization, for example, are integral parts of each of
the analyzed tasks.

5.2.2 Deriving Required Attributes

Now that the basic actions are known, the useful attributes
required to perform these actions can be derived. Figure 7
shows this process at the example of moving an object. In
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Fig. 7 The process of action analysis (here: movement of an object)

this case spatial information is needed e.g. to avoid col-
lisions. This can be represented for example as a bound-
ing box, in form of a basic shape representation or through
highly detailed 3D geometry. When moving the object, me-
chanical and physical information is also crucial. Most im-
portant here are the movement restrictions, i.e. tilting an-
gles, maximum accelerations and maximum velocities. In
this fashion all of the basic actions, derived from the set of
possible interactions in the environment, were analyzed and
thus necessary object attributes extracted.

The most important resulting attributes for this domain
are: movement restrictions, basic shapes, weight, bounding
box, main axes, stable positions, grasp forces, grasp con-
tact points, deformability, environmental conditions, risk po-
tential, texture, colour graph, 3D geometry, type of locking
mechanism, closability, graph of potential usages, container
type and filling capacity. These attributes require different
approaches to achieve intuitive, fast and exact object model-
ing. Two such attributes, namely stable positions and move-
ment restrictions, and the way of their modeling in an inter-
active way are described in [41].

6 Conclusion and Future Work

In Programming by Demonstration, the connection between
high-level, symbolic information and low-level, subsym-
bolic information is challenging and remains unsolved. At
the symbolic level, generalization to different environments
and objects is possible based on properties and the rela-
tion of objects in the scene. Subsymbolic information is
missing to generate robot trajectories consistent with the
symbolic goals and runtime conditions. At the subsymbolic
level, information to adapt trajectories to perturbations in

the start, goal and scene is present but generalization to
different objects and environments is limited. In our cur-
rent work, these two different lines of research are repre-
sented by learning imitation strategies and learning manip-
ulation strategies. In both approaches, current work deals
with the connection of the symbolic and subsymbolic lev-
els. In learning imitation strategies, the subsymbolic infor-
mation represented by the Dynamic Movement Primitives
is enriched manually by symbolic pre- and post-conditions.
In future work, the human teacher will be taken out of the
learning loop by automatically attaching symbolic informa-
tion to the learned DMPs. In learning manipulation strate-
gies, the symbolic pre- and post-conditions of predefined
motion primitives are automatically learned. In this line of
research, current work focuses on learning the complex pa-
rameterization of the predefined motion primitives, clos-
ing the gap between the symbolic and subsymbolic level.
Generalization of learned manipulation knowledge to dif-
ferent objects and obstacles is a prerequisite for the de-
velopment of an autonomous robot, which acts in a large
domain, e.g. the human environment. In this work, rele-
vant object attributes were identified and future work will
concentrate on learning the connection between object at-
tributes and subsymbolic manipulation knowledge, which
is the basis for automatic generalization to different ob-
jects.
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