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Abstract: Detection, tracking, and understanding of moving objects of interest in dynamic scenes have 

been active research areas in computer vision over the past decades. Intelligent visual surveillance 

(IVS) refers to an automated visual monitoring process that involves analysis and interpretation of ob-

ject behaviors, as well as object detection and tracking, to understand the visual events of the scene. 

Main tasks of IVS include scene interpretation and wide area surveillance control. Scene interpretation 

aims at detecting and tracking moving objects in an image sequence and understanding their behaviors. 

In wide area surveillance control task, multiple cameras or agents are controlled in a cooperative man-

ner to monitor tagged objects in motion. This paper reviews recent advances and future research direc-

tions of these tasks. This article consists of two parts: The first part surveys image enhancement, mov-

ing object detection and tracking, and motion behavior understanding. The second part reviews wide-

area surveillance techniques based on the fusion of multiple visual sensors, camera calibration and co-

operative camera systems. 
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1. INTRODUCTION 

 

Intelligent visual surveillance improves conventional 

passive surveillance systems through automated object 

recognition and tracking, scene interpretation, and 

indexing/retrieval of visual events. Visual surveillance 

techniques have initiated a wide variety of applications 

in access control, person specific identification, anomaly 

detection and alarming in academic community as well 

as industry and government [1]. Large research projects 

on visual surveillance have driven realization of practical 

visual surveillance systems. Successful visual surveil-

lance systems such as the Visual Surveillance and 

Monitoring (VSAM) [2], the Annotated Digital Video 

for Intelligent Surveillance and Optimized Retrieval 

(ADVISOR) [3], and the Smart Surveillance System of 

IBM [4] have been developed by combining computer 

vision, system engineering, and communication 

techniques.  

Recently visual surveillance research focuses on 

intelligent visual surveillance (IVS) in a wide area, as a 

Third Generation Surveillance System (3GSS) [5] 

concept. Research trends in IVS can be divided largely 

into image interpretation and wide area surveillance 

control techniques. The goal of image interpretation is to 

extract high-level information of a visual event from a 

dynamic scene. Image interpretation often includes 

motion detection, object recognition, tracking, and 

behavior understanding. Recent studies in image 

interpretation focus on robust image processing 

techniques such as motion detection in situations with 

changes in illumination and weather, object tracking in 

scenarios with occlusion and non-rigid deformation and 

behavior understanding for human motion analysis. Wide 

area surveillance techniques expand the range of 

surveillance area to a broader territory. Until the Second 

Generation Surveillance System (2GSS) [5], visual 

surveillance system research was limited to local area 

surveillance using local Closed Circuit Television 

(CCTV) camera networks. Current research focus to 

widen the surveillance area is multiple sensor control and 

cooperative camera systems. More specifically, camera 

calibration and camera installation methods, which aim 

at reducing redundant camera installations, have been 

developed using multiple sensor control. In order to 

handle occlusion problem and broaden the surveillance 

area, techniques for integrating data are important issue 

in the cooperative camera system  

This article reviews two major components of IVS 

systems: Image interpretation and Wide area surveillance 

control. The first part reviews research efforts related to 

image interpretation in IVS including motion detection, 

object tracking, and behavior understanding. The second 

part covers wide area surveillance control techniques and 

cooperative camera systems for distributed surveillance 

systems. Camera calibration and sensor installation are 

presented for the multiple sensor control.  
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2. IMAGE INTERPRETATION 

 

Image interpretation extracts high-level information on 

visual events from a sequence of scenes through image 

enhancement, motion detection, object tracking, and 

behavior understanding. At each individual image 

interpretation step, key issues are solving image 

occlusion problems, developing robust algorithms 

against illumination and weather changes in the scene, 

and reducing computation time to achieve real-time 

performance. This part includes surveys on each image 

interpretation module in IVS. The motion detection 

section covers background subtraction and motion 

detection using an active camera. The object tracking 

section reviews general tracking methods classified as 

point tracking, kernel tracking, and contour tracking 

methods, by their object representation methods. Finally, 

the behavior understanding section introduces research 

on human motion analysis. 

 

2.1. Image enhancement 

Image enhancement is to improve visual appearances 

of a scene captured in diverse environments. Image 

enhancement approaches can be divided into three major 

categories: Frequency-based, Histogram-based, and 

Transform-based approaches [6].  

Frequency-based approaches decompose an image 

onto high- and low-frequency signals. Homomorphic 

filtering and unsharp mask filtering are some of widely 

used frequency based techniques. Homomorphic filtering 

is a Fourier Transform-based technique that enhances the 

contrast of an image by removing the low frequency and 

amplifying the high frequency in the frequency domain. 

Seow and Asrai [7] improve a color digital image using a 

neural network algorithm in the homomorphic system. 

Unsharp mask filtering enhances the edges by 

subtracting a smoothed version of an image from the 

original image and then adding the difference back to the 

original image. The edge extraction block in an unsharp 

image is often implemented with a linear highpass filter 

such as a discrete linear Laplacian operator. In [8], the 

linear filter is extended to the quadratic volterra (QV) 

filter inspired by the Weber-Feshner law [9]. Moreover 

The QV filter, which has poor performance in noisy 

environments, is extended to the quadratic weighted 

median (QWM) filter [10].  

Histogram Equalization (HE) is commonly used 

method among histogram based image enhance 

approaches. Duan and Qiu [11] take the pixel distribution 

of the original image into account when performing the 

equalization process and control the degree of contrast 

enhancement. The Bi-Histogram Equalization (BBHE) 

[12] preserves the original brightness of an image to a 

certain extent, which is not possible in HE; however, an 

equal-area Dualistic Sub-Image Histogram Equalization 

(DSIHE) method [13] outperforms BBHE in brightness 

and image content (entropy) preservation. DSIHE can 

change the brightness to the level between the median 

and middle levels of the input image. The Minimum 

Mean Brightness Error Bi-Histogram Equalization 

(MMBEBHE) [14] can preserve the mean brightness 

which is not possible in BBHE and DSIHE. MMBEBHE 

separates the histogram using the threshold level which 

yields the minimum Absolute Mean Brightness Error 

(ABME). The Brightening Preserving Histogram 

Equalization with Maximum Entropy (BPHEME) [15] 

method finds the target histogram that maximizes the 

entropy, and then transforms the original histogram to 

the histogram of the target using histogram specification. 

Transform-domain enhancement techniques enhance 

the image by manipulating the transform coefficients and 

mapping the image intensity data into a given transform 

domain using a transform function such as the discrete 

cosine transform (DCT), Discrete Fourier transform 

(DFT), wavelet [16] and other fast unitary transforms 

[17]. Transform-based techniques [18] can be used for 

illumination correction, night vision, and noise reduction. 

Kober [6] proposes a real time sliding discrete transform 

to enhance the local contrast of a noisy image. In this 

method, a minimum mean-square error estimator is 

derived and a fast recursive algorithm for computing the 

sliding transform is utilized. Arslan and Grigoryan [19] 

split the 2-D Fourier transform into different groups of 

sample. They separately process all splitting-signals [17] 

and then calculate and compose 2-D DFT of the 

processed image by the processed new splitting-signals. 

In [20], they propose a fast implementation of the alpha-

rooting method by using one splitting-signal of the tensor 

representation with respect to the DFT. Agaian [21] 

proposes three methods for image enhancement: 

logarithmic transform histogram mapping and shaping, 

and logarithmic transform histogram shifting. 

Furthermore, they visualize the transform coefficient 

histogram and measure the overall contrast of the image. 

 

2.2. Motion detection 

Motion detection in IVS is to find moving target 

objects in an input image sequence. Conventional 

approaches for motion detection methods use 

background subtraction [22-25], temporal differencing 

[26], and optical flow [27]. With the growing use of 

active cameras in recent visual surveillance environ-

ments, motion detection algorithms using active cameras 

are becoming an important component for IVS. Motion 

detection using active cameras has been developed by 

making background mosaics [28], modified background 

subtraction methods which compensate for camera 

motion using optical flow [29], feature matching [30], 

and camera geometrical models [31] to detect moving 

objects by registering the current frame to the 

background image. This section reviews motion 

detection algorithms including background subtraction, 

temporal differencing and techniques for active cameras.  

 

2.2.1 Background subtraction 

Background subtraction is a widely used approach 

because of its accuracy and fast computation for 

detecting the foreground. In order to extract the 

foreground object, the background subtraction algorithm 

detects the difference between the current image and the 
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reference image, often called the “background image” or 

“background model.” Recent background subtraction 

algorithms focused on robust background modeling and 

updating to adapt to varying illumination conditions 

between night and day, geometry reconfiguration of 

background structure, background change from weather 

change, and repetitive motion from clutter. Stauffer and 

Grimson [22] proposed a background subtraction method 

for modeling a multiple modal background distribution. 

They use a mixture of Gaussian models to construct the 

distribution of each pixel location. Usually, three to five 

mixtures of Gaussian models are used. Each pixel value 

can be modeled as several backgrounds using a mixture 

of Gaussian models to cover the motion of tree or 

gradual image change. If there is a matched Gaussian 

model with a current pixel value, then the current pixel is 

decided as the background and updated Gaussian model 

using the current pixel value. Otherwise, the pixel is 

classified as the foreground and the Gaussian model with 

the lowest weight is replaced by a new one centered in 

the current pixel value. Although the decision of the 

number of Gaussian models and initialization of the 

Gaussian model is ambiguous and background modeling 

may fail when drastic illumination change occurs, this 

approach can robustly model and update the background 

for multiple modal distribution such as motion of leaves 

and a gradually changing background. Moreover, 

computation speed is fast and does not require a 

relatively large memory.  

Haritaoglu et al. [23] developed a statistical 

background modeling method by training background 

using pixel history. The background model is represented 

by the minimum (M) of pixel value, the maximum (N) of 

pixel value, and the maximum intensity difference (D) 

between frames observed during the training period. The 

current pixel is classified as a background when the 

difference between current pixel value and M, N is less 

than D; otherwise, the current pixel is classified as a 

foreground. A real-time surveillance technique [23] uses 

two different background update methods; the pixel-

based update and the object-based update. The pixel-

based update method updates the background 

periodically to adapt to illumination changes while the 

object-based update method updates the background to 

adapt to physical changes in the background scene. This 

statistical background model can adapt to illumination 

changes because of the training of historical pixel 

variance. Additionally, motion detection can be 

performed in real-time because of the simple 

computation manner in which background modeling and 

updating can be carried out.  

Oliver et al. [24] propose a background subtraction 

method using the Principle Component Analysis (PCA). 

A background model called the “eigen-background” is 

created using PCA and eigen-decomposition. The 

foreground of the current pixel is detected by subtraction 

between the eigen-background and the projected image 

of current image. Horprasert et al. [25] presented a novel 

algorithm for detecting moving objects from a static 

background scene which contains shading and shadows 

using color images. Shadows and highlights have similar 

chromaticity with the background but brightness is 

different. Using this property, this background model 

improved the weakness of traditional background 

subtraction against local illumination change, such as 

shadows and highlights, as well as global illumination 

changes. However, in [25], the background model is 

designed under an assumption that the background scene 

is static. This proposed background model may suffer 

from dynamic background changes such as the entrance 

of a new background object. Therefore, improvement of 

the adaptive background update problem still remains.  

 

2.2.2 Temporal differencing 

Temporal differencing [26] uses the pixel-wise 

differences between two or three consecutive images in 

image sequences to extract a moving object. Temporal 

differencing is adaptive to dynamic environments and its 

computation for extracting a moving pixel is simple and 

fast. Generally, temporal differencing is not effective in 

extracting all the relevant pixels of a target object. There 

may be holes left inside moving objects, and it is 

sensitive to the threshold value when determining the 

changes within differences of consecutive images. 

Additionally, temporal differencing cannot handle an 

active camera environment without a camera motion 

compensation algorithm.  

 

2.2.3 Motion detection on active camera platform 

With the growth of active camera usage in recent 

visual surveillance environments, there are attempts to 

develop an active camera surveillance system. However, 

background subtraction or temporal differencing 

algorithms cannot be used directly to detect a moving 

motion in a moving active camera. Modified motion 

detection algorithms have been developed to register 

moving current images into background images. 

Modified motion detection algorithms can be classified 

into the following different approaches by their 

registering method: background mosaic approach, optical 

flow approach, feature matching approach, and camera 

geometrical model approach.  

Bevilacqua et al. [28] propose a background mosaic 

method to extract a moving object in an active camera 

image. These papers present a real-time framework for 

making an image mosaic without camera information 

and scene geometrical information. In [28], once the 

background mosaic is constructed, the background 

subtraction can be used to detect moving objects by 

subtracting between the registered current image and the 

correspondent background region within the background 

mosaic. There are two main stages in making a 

background mosaic: image spatial registration and tonal 

alignment. At the image spatial registration stage, image 

registration is done by a camera motion estimation 

computed using corner point matching and projective 

model assumption with a subsample image in real-time. 

At the tonal alignment stage, the histogram specification 

technique is used to align the color around the image 

junction in order to overcome the errors arising from 
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photometric misalignments. This method is robust and is 

a real-time background subtraction algorithm on an 

active camera. Color background mosaic is made in real-

time and does not need any camera parameter or scene 

information.  

Cucchiara et al. [29] compute camera ego-motion 

using a dominant optical flow to detect moving objects 

on an active camera. In this paper, dominant camera 

motion is estimated by selecting the peak of direction 

histogram based on the angle of optical flow. Optical 

flow is computed using the Lucas-Kanade [32] method, 

and camera motion is modeled through the translation 

model. Motion detection is performed by aligning and 

temporal differencing between the current frame and the 

previous frame using the estimated camera motion. The 

direction histogram proposed in [30] makes the 

clustering step which aims to select the dominant optical 

flow faster than the existing complex and time-

consuming way. Therefore, motion detection can be 

performed in real-time. However, this method needs 

assumptions that the background is dominant over the 

moving objects and camera motion can be approximated 

with pure translational model although camera moves 

little by little.  

Micheloni and Foresti [30] propose a camera motion 

compensation algorithm which registers the current 

image to the background image using a feature tracking 

method. Shi and Tomasi [33] develop a feature 

extraction/selection method representing image se-

quences, which aligns consecutive frames by estimating 

the best displacement between feature sets, assuming 

translation model. Moving objects are extracted through 

temporal differencing the aligned consecutive frames. In 

the paper, the motion detection algorithm on an active 

camera is presented using robust tractable feature 

matching. However, when it is impossible to select a set 

of tractable features, for example, the zoom is too high 

and the scene contains a wide moving object in a close 

up shot or uniform background, the camera motion 

compensation method proposed in [33] may fail to 

estimate camera motion.  

Murray [31] built a motion tracking system that 

detects moving objects using an active camera. Camera 

motion is compensated by calculating the estimated pixel 

position using the camera’s intrinsic parameter (focal 

length) and extrinsic parameter (pan and tilt angles), and 

moving pixels are segmented by the temporal 

differencing method. The paper presents a novel way to 

suppress the “ghost” in different images between 

consecutive images through the logical operations 

between the ghost image and edge image of the current 

frame. This way, the accurate estimation of the next pixel 

position using camera parameters can be achieved during 

motion tracking on an active camera; however, this paper 

needs an accurate measurement of camera parameters. 

Usually, there are many variances in the measurement of 

camera parameters (e.g., camera shaking by internal 

motor movement) in a surveillance environment. In order 

to compensate camera motion using this method, a 

method for handling the measurement noise of camera 

parameters should be included for robust performance. 

 

2.3. Object tracking 

The goal of object tracking is to find a moving object 

detected in motion detection stage from one frame to 

another in an image sequence. The performance of the 

high level image interpretation module such as behavior 

understanding is depends highly on the object tracking 

result. Difficulties in tracking an object can arise from 

abrupt object motion, changing appearance of object and 

scene, self-occlusion, occlusion by structure. Thus, these 

difficulties should be solved to track the target object 

accurately. In this section, we review the object tracking 

by classifying it as point tracking, kernel tracking, and 

contour tracking according to the object representation 

method [34]. 

 

2.3.1 Point tracking  

The point tracking method represents the target being 

tracked by points which are detected in consecutive 

frame with the tracking procedure. Point representation 

of a target object has robustness to the changes of 

rotation, scale, and affine transform [35]. Point tracking 

can be classified into the deterministic and the statistical 

methods depending on the matching method used for 

finding point correspondences. The deterministic method 

uses proximity, maximum velocity, common motion, and 

rigidity constraints to match point correspondence. In 

[36], the point tracking method involving constraints has 

been proposed. On the other hand, the statistical method 

represents an object by the state-space of object 

parameters such as position, velocity, and size. When 

tracking is performed with state-space representation, the 

state is estimated using the dynamic model of state 

transition, and updated by the correction stage using the 

measurement from the image. Representative methods 

for estimating the dynamic model in statistical point 

tracking include the Kalman filter [37] and the particle 

filter [38]. The particle filter calculates state probability 

using the sequential importance sampling method and 

corrects state probability using the measurement. It can 

handle non-Gaussian state and non-Gaussian noise. Thus, 

a particle filter can track a point in a general environment. 

However, if the state and noise distribution follow the 

Gaussian distribution, then the Kalman filter provides a 

better optimal solution. 

 

2.3.2 Kernel tracking  

The kernel tracking represents a target object by a 

primitive object region such as a rectangular, ellipse, or 

circle, and tracking is performed by computing object 

motion from one frame to the next. Usually, the motion 

of the object is assumed in the form of a parametric 

model such as translation, conformal, and affine 

transform. Kernel tracking is a popular method, because 

it is robust to uncertain spatial deformations and its broad 

range of convergence. Kernel tracking can be classified 

into template model and appearance model.  

The template model matches the target using a 

similarity measure between the template and a candidate 
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image. Rectangular and ellipse templates have been 

widely used to characterize the object, and histogram of 

the template and their intensity values are used to 

calculate the similarity score. Sum of squared differences 

(SSD) [39], normalized cross-correlation [23], and 

Battacharya coefficient [40] are popular similarity 

measures. The template model approach has been widely 

used because of its computational simplicity. The VSAM 

[2] system uses cross-correlation method to track the 

object detected by a motion detection module. In W4 

[23], cross-correlation function is also used to track 

human body parts. In [39], the object tracker uses an 

SSD similarity function, and the mean-shift tracker [40] 

uses the Battacharya coefficient as a similarity 

measurement. Recently, there have been some attempts 

to make the computation speed of similarity function 

faster, or to reduce the search area of similarity 

measurement to shorten the computation time. In VSAM 

[2], the object tracker uses the sub-sampling method with 

motion information to reduce the computational cost in 

the template matching process. In [40], Comaniciu and 

Meer proposed a real-time object tracking method based 

on the mean-shift procedure, which can find the mode of 

a probability density function (PDF) through only a few 

iterations. The mean-shift tracker is a popular kernel 

tracking method, which uses a weighted color histogram 

to represent the object. This work is extended in [41], 

where the Linderbug’s scale theory [42] is combined 

with the mean-shift tracker to solve the scale problem. In 

[43], a new object description method using a histogram 

is proposed to extend the description efficiency of the 

original mean-shift tracker. 

In multi-view appearance-based kernel tracking, the 

appearance model of the target is trained using an offline 

learning machine, and the target object in the current 

frame is tracked by computing the classification score of 

the learning machine. Usually multi-view appearance 

model provides robust tracking performance in the 

changes of viewpoint. For example, Black and Jepson 

[44] proposed a subspace-based algorithm (so-called 

eigenspace) to compute the affine transformation using 

eigenvectors. Based on the eigenspace, object tracking is 

performed by estimating the affine parameters iteratively 

until the difference between the input image and the 

projected image is minimized. The eigenspace-based 

similarity in [44] provides a robust property for image 

distortion by illumination changes. Lim et al. [45] 

propose an incremental subspace-based tracking 

algorithm to update the appearance model, where object 

tracking is performed by using a particle filter and 

motion model (affine transform). Although this method 

can track the object in scenarios with illumination 

changes, the subspace update method does not consider 

occlusions. Avidan [46] presented an object tracking 

method by integrating the support vector machine (SVM) 

classifier into optical flow based tracker [47]. SVM is a 

general classification scheme to discriminate two classes 

(positive or negative class) by finding the best separating 

hyperplane which has the biggest margin between classes. 

In this paper, multi-view images of the target object are 

used for positive training samples, and negative training 

samples consists of all things that are not to be tracked 

(usually, background region). Object tracking is 

performed by maximizing SVM classification score over 

image regions. This method uses knowledge about the 

background object that makes the tracker more robust 

against complex background clutter image. 

 

2.3.3 Contour tracking  

Contour tracking method iteratively evolves an initial 

contour which represents the target object using an 

outline contour from the previous image to the next. 

Contour’s representation ability provides an efficient 

tracking method to a target object with a complex shape 

and various changes of shape over time. Thus, recent 

studies have applied contour tracking method to the non-

rigid object such as human tracking. In [48], Paragios 

developed a multiple object tracking algorithm using a 

geodesic active contour method and level set formulation 

scheme. Freund [49] proposed people tracking using a 

new active contour model based on the Kalman filter in 

spatio-velocity space. Isard [50] presented a contour 

tracking method based on the particle filter, as known as 

the Condensation algorithm. Condensation algorithm is 

the first application to use particle filtering for object 

tracking in the computer vision community. It can handle 

the non-Gaussian distribution of the state and the noise to 

overcome the limitations of the Kalman filter in a 

complex cluttered image, showing non-Gaussian distri-

bution. Yilmaz [51] considered occlusion conditions and 

proposed an object tracking method using the active 

contour. In the paper, the contour evolution is performed 

by minimizing the energy function defined by the sum of 

image energy and shape energy. Image energy is defined 

by the color and texture around the contour band, while 

shape energy is defined by using past contour 

observation to cover occlusion problems. In the paper, 

energy function is minimized by the level set method 

[52]. Since this method does not use background 

subtraction to initialize contours, this method can be 

performed on a mobile camera. Also, robust tracking is 

possible for occlusion situations because of the shape 

model.  

Contour tracking is generally better than kernel 

tracking when tracking objects with complex shape 

changes. However, the performance of contour tracking 

is sensitive to the initial contour. Therefore, contour 

tracking may fail to track the object when it encounters 

difficulties in extracting contours, such as when dealing 

with noisy images, blurred images, or low contrast 

images. 

 

2.4. Behavior understanding: human motion analysis 

The behavior understanding task is one of the 

representative high-level vision tasks in visual 

surveillance, which analyzes object behaviors and gives 

warnings to the human operator. Behavior understanding 

task is mainly focused on human motion analysis. 

Human motion analysis studies can be classified as gross 

level, intermediate level, and detailed level depending on 
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the analysis level of the detail [53]. At the gross level, 

individual people are represented as distinct moving 

bounding boxes or ellipses, and the pattern of the 

trajectories or motion patterns of these boxes or ellipses 

are analyzed to recognize human motion [54]. At the 

intermediate level, individual people are represented by 

their body parts such as head, torso, arms, and legs, and 

human motion analysis is performed by tracking and 

recognizing each body part [55]. At the detailed level, 

recognition of human activities is performed in terms of 

single body parts such as hand gesture recognition, face 

and head gesture recognition. Visual surveillance often 

employs gross and intermediate level recognition, and 

detailed level recognition mainly aims for developing the 

gesture based human-computer interfaces (HCI) [56]. In 

particular, hand gesture recognition has been studied by 

many researchers in HCI research. In the recent visual 

surveillance system, human body segmentation, defining 

basic motions, occlusion handling, and handling of time-

ordered correspondence have been the focus of 

researches for accurate recognition of human motion. In 

this section, low-level tasks for modeling the human 

body and high-level tasks for recognizing human activity 

are reviewed.  

 

2.4.1 Human body modeling - low level vision  

Human body modeling can be divided into two 

approaches, the model-based approach and the 

appearance-based approach, based on whether a prior 

shape model is used or not. The model-based approach, 

which uses a prior shape model, can represent complex 

motion by efficiently integrating the human body model. 

However, the model-based approach usually requires 

additional processing steps of model selection and 

parameter estimation to fit the model to the input image. 

On the other hand, the appearance-based approach, 

which does not use a prior shape model, does not require 

additional steps but is sensitive to noise.  

These two approaches commonly employ a stick 

figure, 2-D contour, and 3-D volumetric figure to 

represent a human body. The stick figure representation 

regards the human body as a composition of sticks and 

joints. VSAM [2,57] employs the stick figure 

representation, as known as the star skeleton, to analyze 

human gait such as running and walking, by using the 

cyclic motions of a stick figure. The 2-D contour figure 

representation regards the human body as a cardboard 

[58], ribbon [59], silhouette contour [60], and blob model 

[23]. A 3-D volumetric figure representation attempts to 

describe the detailed human body in 3-D space by using 

cylinders [61], generalized cones [62], and spheres [63]. 

From the stick figure to the 3-D volumetric figure, the 

complexity of the model increases along with the level of 

detail.  

 

2.4.2. Human activity recognition - high level vision  

Human activity recognition is a high-level task in 

human motion analysis. Human activity recognition can 

be divided into two approaches: (1) the general sequence 

matching approach which recognizes human activity by 

matching the pre-defined image sequences of human 

activity and the input image sequences and (2) the 

approach using prior knowledge for recognition. In the 

general sequence matching approach, general sequence 

classification schemes such as DTW, HMM, and DBN 

are widely used to cover variances of time interval 

between human activity sequences. In the approach using 

prior knowledge for recognition, human activity 

recognition is performed using rule-based inference, 

physical constraints, causal analysis, and syntactic 

analysis. In this section, we review general sequence 

matching approaches and approaches using prior 

knowledge for human activity recognition.  

 

A. Human activity recognition using general sequence 

matching approaches  

For human activity recognition using general sequence 

matching, human activity recognition is simply regarded 

as a classification problem of the time varying feature 

sequence of the human body. Therefore, general time 

varying feature classification schemes such as Dynamic 

Time Warping (DTW) [64], Hidden Markov Model 

(HMM) [65], and Dynamic Bayesian Networks (DBN) 

[66] have been widely used to recognize human activity. 

Additionally, temporal template matching and finite state 

machine approaches have also been developed for human 

activity recognition.  

DTW has been widely used in speech recognition in 

the early days, which is a template-based dynamic 

programming matching technique that measures the 

similarities between two sequences using operations such 

as, deletion-insertion, compression expansion, and 

substitution of subsequences. The advantage of DTW is 

the conceptual simplicity and robust performance in the 

classification of time varying sequences. However, DTW 

lacks the consideration of interactions between nearby 

subsequences occurring in time. Bobick [67] proposed a 

gesture recognition method using DTW matching by 

defining gesture as a sequence of state. The algorithm 

proposed in [67] showed that the test sequences and 

reference sequences can be successfully matched even 

though they have different time scales.  

HMM is a stochastic state machine for analyzing time-

varying data with spatio-temporal variability. HMM is 

superior to DTW in handling uncertainty of consecutive 

data. Therefore, HMM has been widely applied for 

matching human motion sequences. In [68], HMM is 

used for human intention recognition and skill learning, 

and in [69], sign language algorithm is proposed using 

HMM. In VSAM [2], to recognize actions (e.g., object 

appearing, moving, stopping, and disappearing), 

interactions (e.g., near, moving away from, moving 

toward), and no interaction between humans, vehicles, 

and human groups, matching reference sequences and 

input sequences using HMM is performed. Oliver [70] 

proposed and compared two different learning architec-

tures, namely, HMM and Coupled Hidden Markov 

Model (CHMM) for modeling people’s behavior and 

interactions, such as following and meeting each other. 

CHMM is much more efficient and accurate than HMM.  
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A significant limitation of the HMM is that it cannot 

handle more than two independent processes efficiently 

[70]. To alleviate this problem, researchers have 

developed Dynamic Bayesian Network (DBN) as a 

generalization of HMM [66]. DBN is a Bayesian 

network that represents sequences of variables. Park [71] 

proposed a hierarchical Bayesian network to recognize 

two-people interactions such as pointing, punching, 

pushing, and hugging. In this architecture, the low level 

Bayesian network estimates the human body part poses, 

and the high level Bayesian network estimates the 

overall body poses. In [71], a hierarchical framework is 

used for representing multiple levels of event; from the 

body-part level, to the multiple-bodies level, and finally, 

to the video sequence level. Furthermore, occlusions 

occurring in human interactions are handled through 

Bayesian network inference. 

Template matching recognizes human activity by 

comparing input sequences represented by a static shape 

pattern to a pre-stored activity prototype [72]. In [73], a 

temporal template using an accumulated image history is 

proposed to represent human activity. Temporal template 

matching using this template has conceptual simplicity 

and real-time computation. However, the proposed 

method can only recognize human activity when all 

motions in the image are incorporated into the temporal 

template. Thus, this method cannot handle inter-people 

interactions or human activity with occlusions. The 

advantage of template matching is its low complexity 

and simple implementation. However, it is usually more 

sensitive to noise and the change of the duration of the 

activity than DBN or HMM. Moreover, it is viewpoint 

dependent.  

Finite State Machine (FSM) can be used to recognize 

human activity by representing human activity as a 

sequence of states. The state is defined by the 

representative static pose, and the state transition 

function is also predefined according to the specific 

application. The state transition function is the most 

important feature of FSM. Human activity recognition is 

performed by a matching tour of its state. In [74], FSM is 

used to recognize natural gesture. In addition, Bremod et 

al. [75] used hand-crafted deterministic automata to 

recognize airborne surveillance scenarios. However, 

selecting the optimal number of state and defining 

appropriate state transition remain a difficult issue.  

 

B. Human activity recognition approaches using prior 

knowledge 

The sequence matching approach for human activity 

recognition performs accurately at well-defined activity 

situations, but not for complex interaction or activities 

that have flexible representations. For these situations, it 

is hard to define a general motion sequence to allow the 

use of a general sequence matching approach. To 

overcome this limitation, human activity recognition 

approaches using prior knowledge have been studied. As 

a result, more universal schemes to recognize general 

situation of human behavior using contextual 

information have been found. In this section, human 

activity recognition research using prior knowledge is 

introduced. Several studies recognize human activity 

using scenarios that are set of rules manually constructed, 

namely, the rule-based inference approach. Intille and 

Bobick [76] built a rule network using a temporal graph 

to interpret American Football games.  

Physical laws can be used as effective causal 

constraints at interaction recognition because every 

object in the world is under some physical law. Mann et 

al. [77] developed a universal scene understanding 

method using the kinematic and dynamic properties of 

the scene. In the paper, interactions between human and 

objects, for example, “lifting a can” and “pushing a can,” 

can be interpreted in terms of physical laws such as 

gravity and friction. In this way, they present a 

computational theory that can derive force-dynamic 

representations directly from camera input. 

Although physical constraints provide useful causal 

constraints for human activity recognition, understanding 

human activity needs more abstract and meaningful 

schemes than pure physical constraints. Brand and Essa 

[78] proposed a recognition method for arm gestures, 

such as “lifting,” “pushing,” “resting,” and “opening,” 

using the kinematic and dynamic relationships of body 

parts. They formulate the knowledge about causal 

processes of body kinematics and dynamics in terms of 

position, velocity, and acceleration of wrists, elbows, and 

shoulders. For example, “the greatest acceleration of 

hands occurs at the beginning of different actions” can be 

formulated as segmentation constraint. Thus, these 

constraints can detect different motion types. In this way, 

complex human activity is interpreted using more 

generalized causal constraints.  

Syntactic analysis uses contextual knowledge to 

recognize a visual event assumed to be composed of 

primitive prior knowledge. Recently, a grammatical 

approach has been used for behavior understanding. 

Ivanov and Bobick [79] described a stochastic parser to 

the detection and recognition of temporally extended 

behaviors and interactions between multiple agents. In 

this work, recognition of human activity is divided into 

two levels; the lower level performing temporal behavior 

detection step such as HMM and the higher level which 

uses the result of the lower level to recognize behavior 

by analyzing syntactic relations using the stochastic 

context-free parser proposed in [79]. In a similar way, 

Ayer and Shah [80] interpret human activity such as 

“entering room,” “opening cabinet,” and “picking up a 

phone,” in a static room. 

 

3. WIDE AREA SURVEILLANCE CONTROL 

TECHNIQUES 

 

Wide area surveillance control technique is a large-

scale data analysis and management skill for covering a 

broad territory in IVS. Wide area surveillance control 

technique can be divided into multiple sensor control 

technique and cooperative camera systems. The multiple 

sensor control technique has been developed to cover a 

wide area with multiple sensors. Representative research 
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areas for multiple sensor control technique are camera 

calibration of various types of camera and efficient 

sensor installation. Cooperative camera system is another 

major research topic for wide area surveillance. In this 

part, we review these three topics related to wide area 

surveillance control technique. 

 

3.1. Multiple sensor control techniques 

The accuracy of image interpretation of a visual event 

is affected critically by the deployment of sensors and 

sensor parameter settings. Thus, in order to achieve a 

good performance, a good multiple sensor control 

scheme is fundamental and essential for IVS because a 

wide area surveillance system uses many sensors to 

cover a broad territory. A number of studies have been 

carried out for low cost sensor settings, such as camera 

self calibration and efficient sensor installation to reduce 

redundancy of sensor deployment. 

 

3.1.1 Camera self calibration 

Images from a camera can be different from the real-

world scene because of distortions from the compound 

lens and A/D converter. Particularly, in occlusion 

situations, camera distortion directly causes an error in 

the interpretation algorithm. Thus, an efficient camera 

calibration algorithm is needed for an IVS system using 

multiple cameras. In a wide area surveillance 

environment, camera calibration cost is very high 

because of the large number of cameras is used. Thus, a 

self-calibration algorithm for a camera is important for 

wide area surveillance systems. Recent self-calibration 

researches widely use projective geometry constraints, 

camera motion constraints, and scene constraints to 

compute the camera’s intrinsic parameter. Also, the 

parameter setting algorithms for adjusting camera zoom 

and focus are dealt within in camera calibration 

researches. Collins and Tsin [81] proposed an outdoor 

camera calibration method for active cameras. The 

intrinsic parameter is calculated without any information 

of the 3D scene using optic flow obtained by rotating and 

zooming the active camera. Extrinsic parameters are 

calculated by actively rotating the camera to sight a 

sparse set of surveyed landmarks over a virtual 

hemispherical field of view leading to a well-conditioned 

pose estimation problem. In [82], the camera calibration 

method for a PTZ camera deployed in a wide area is 

developed. The calibration method proposed in [82] 

models pan and tilt rotations as they occur around 

arbitrary axes in space. A survey of different techniques 

for camera calibration can be found in [83]. 

 

3.1.2 Sensor installation 

The deployment of sensors has a great influence on the 

performance and the cost of the surveillance system. 

Redundant sensors increase the processing time and the 

cost of installation. On the other hand, lack of sensors 

may cause blind regions which reduce the reliability of a 

surveillance system. Thus, it is important to deploy 

sensors so that the configuration covers the entire area 

with the minimum number of sensors. In [84], an 

optimum algorithm for deploying multiple cameras in 

parking lots is proposed using field of view (FOV) 

overlapping constraints. The basic idea of the paper is to 

deploy one camera on a desired position, then another 

camera (camera 2) is installed to cover the 25~50% 

overlap region between the fields of view of camera 1 

and camera 2. The rest of the cameras are placed one by 

one to keep the cameras from having an overlapping 

region (25~50%). This way, FOV overlapping 

constraints make the camera calibration more accurate. 

 

3.2. Cooperative camera system 

In order to perform visual surveillance with multiple 

sensors in a wide area, collecting and analyzing data 

from multiple sensors to obtain meaningful information 

is important. Recent researches for IVS are mainly 

focused on cooperative camera systems which integrate 

data from multiple sensors. In the cooperative camera 

system, the synchronization of cameras, finding 

corresponding objects in multiple sensors, and 

communication method for data transmission are the 

main issues of research. In [85], an indoor surveillance 

system consisted of a cooperative camera network 

(CCN) using a network of nodes, is proposed. In the 

system, each node is composed of a PTZ camera and a 

PC, and all nodes are connected to the central console to 

give information to the human operator. The CCN’s 

purpose is to monitor potential shoplifters in department 

stores by reporting the presence of people, which is 

represented by an individual visual tag. 

In [86], a surveillance system for parking lots has been 

developed using a cooperative camera system. The 

cooperative camera system is consisted of Active 

Camera Subsystems (ACS) and Static Camera 

Subsystems (SCS). Data fusion of each multi-tracker is 

performed using the Mahalanobis distance, and tracking 

is done through Kalman filtering. At the SCS, object 

detection and tracking is performed by integrating data 

from cameras. Once the SCS starts to track the object, 

the ACS selects the object to capture a high-resolution 

image. In [87], a human tracking system is proposed 

using two sets of stereo cameras in the living room. A 

stereo module is composed of each set of cameras 

connected to a PC, and a tracker module is composed of 

two sets of stereo modules connected to one PC. This 

system outputs the position and identity of a human in 

the room. The identity of the human is derived by 

calculating color histogram from the stereo module. 

Depth information and background subtraction result 

from the stereo module are used to track the human in 

the room. The system runs fast enough and tracks 

multiple people standing, walking, sitting, occluding, 

entering, and leaving the space. However, if there are 

people who wear clothes of similar color, the 

performance is reduced due to the poor color clustering.  

In [88], a multi-tracking camera surveillance system 

for indoor environments is developed. The system 

divides the tracking task between the cameras by 

assigning the task to the camera that has better visibility 

of the object, taking occlusions into account. Each 
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camera module performs human tracking using the 

Kalman filter. However, this system has an assumption 

that FOV overlaps between cameras, thus an object 

which reappears would be tracked as a new object. 

MaKris et al. [89] propose an outdoor distributed multi-

camera tracking system that can track across blind 

regions without camera calibration. Unsupervised 

probabilistic learning algorithm is developed to link 

different camera views using a large amount of 

observation. In this system, the camera network can 

automatically learn its structure as an initial step of “plug 

n play”. Installation and tracking across “blind” regions 

of the network FOV can be supported by providing 

probabilistic estimates of the location and the time with 

which a target may reappear. Additionally, this system 

does not need manual camera calibration, which is a 

resource consuming process. Thus, the method proposed 

in [89] provides an efficient and low cost multiple 

camera system framework for tracking.  

In [90], a multi sensor wide area surveillance system is 

proposed as a part of the VSAM project. This system 

provides object detection, tracking, and simple activity 

recognition using calibrated cameras. The distinctive 

feature of this cooperative camera system is that the 

localization of an object is determined by a ray 

intersection interaction with a full terrain model. 

Moreover, the tracking handoff and sensor slaving 

algorithm are developed for more robust object tracking. 

The handoff algorithm is to track objects seamlessly by 

coordinating multiple sensors with the 3-D real-world 

location of the object. The sensor slaving method keeps 

track of all objects in the scene while simultaneously 

gathering high-resolution. ADVISOR [3] is the metro 

station surveillance system using multiple cameras. In 

ADVISOR, human individual tracking, human group 

tracking, and human action recognition using predefined 

scenarios are performed in real-time to monitor metro 

stations. In particular, the crowd monitoring module can 

recognize crowd behavior such as “overcrowding and 

blocking of areas,” “stationary objects and people,” 

“congestion of pre-defined areas,” and “counter-flow” by 

calculating crowd density.  

In [91], a football player tracking system using 

multiple static cameras is proposed. The algorithm is 

consisted of two stages; the single camera tracking stage 

and the multi camera tracking stage. At the single camera 

stage, tracking is performed using an adaptive 

background method in the image plane. Data integration 

for single camera tracking is performed using the 

Kalman filter to estimate the position and velocity of 

player. However, to track the player accurately, the 

homography consistency of cameras must be maintained 

over time. Also, occlusion between players must be 

handled at single camera stage since the single camera 

stage is designed to output one measurement per player; 

thus, the occluded group is recognized as one player. 

Mittal and Davis [92] presented a system, called the M2 

tracker, which is capable of segmenting, detecting, and 

tracking multiple people in a cluttered scene using 

multiple synchronized surveillance cameras located far 

away from each other. In the M2 tracker, a densely 

located multiple object can be tracked by segmenting and 

calculating its position on a 3-D ground plane. The M2 

tracker is fully automatic and does not require any 

manual input or initializations. Furthermore, it is able to 

handle occlusions and partial occlusions caused by the 

dense location of multiple objects.  

Kang et al. [93] proposed a continuous tracking 

algorithm using a combination of stationary and moving 

cameras. There are two models to address the tracking 

problem; the motion model and the appearance model. 

The motion model is obtained using a Kalman filtering 

process, which predicts the position of the moving object, 

while the appearance model is obtained using multiple 

color distribution components to describe the object. 

Tracking is performed by maximizing the joint 

probability of two models. The moving camera and the 

stationary camera are registered using a homography 

transform. Occlusion handling, deriving accurate motion 

measurements, and camera handoff are performed 

through fusion of these cameras. Javed et al. [94] 

proposed a multi-camera tracking algorithm which can 

track even when observations of objects are not available 

for relatively large time periods due to non-overlapping 

camera views without camera calibration. In this paper, 

the object tracking of non-overlapping view is performed 

by learning camera topology and path probability of an 

object using the Parzen window [95]. During the training 

phase, inter-camera time intervals, location of 

exit/entrances, and velocities of objects are jointly 

modeled to constrain correspondences in the Bayesian 

framework. Once learning is complete, the object 

correspondences are assigned using the maximum a 

posteriori (MAP) estimation framework and learned 

parameters are updated with trajectory changes. 

 

4. CONCLUSION 

 

Early visual surveillance systems have been highly 

dependent on human operators when monitoring a visual 

event and searching for a features in a video database. 

Those passive surveillance systems have suffered the 

cost and the efficiency of surveillance inevitably. 

Therefore, recent advances in visual surveillance have 

been focused on intelligence techniques including 

automatic image interpretation and wide area 

surveillance systems to reduce maintenance cost and 

dependency on human operators.  

To automatically analyze images and extract high-

level information, image enhancement, motion detection, 

object tracking and behavior understanding researches 

have been actively studied together or separately.  

In the research of motion detection on IVS back-

ground subtraction has been studied in deep depth re-

search because of computational effectiveness and high 

accuracy. In particular, many researchers have been pay-

ing attention to make a model for the background against 

multi-modal property and background changes by 

change of weather condition, deformation of object and 

moving background structure robustly and effectively. In 
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studies to date, probabilistic approach, statistical ap-

proach and pattern recognition approach are major ap-

proaches for modeling background. In the probabilistic 

approach, distribution of background has been estimated 

with probability theory such as Gaussian mixture model 

and kernel density estimation. In the statistical approach, 

statistical properties have used as constraint features for 

modeling the background such as median, mean, va-

riance of the background. Moreover, pattern recognition 

theory like spectral analysis of image has been focused 

as a method for finding background pattern. Eigen-

background is the representative pattern recognition ap-

proach by finding the fundamental pattern between im-

age sequences. Furthermore, in recent studies, motion 

detection algorithm for moving platform has been active-

ly studied to relax limitations of conventional motion 

detection algorithm such as assumption of using fixed 

cameras. 

The research on object tracking can be classified as 

point tracking, kernel tracking and contour tracking ac-

cording to the representation method of a target object. 

In point tracking approach, statistical filtering method 

has been used to estimating the state of target object. 

Kalman filter and particle filter are the most popular fil-

tering method. In kernel tracking approach, various esti-

mating methods are used to find corresponding region to 

target object. Mean-shift tracking and particle filter 

tracking are the most famous kernel tracking research 

recently. Contour tracking can be divided into state-

space method and energy function minimization method 

according to the way of evolving contour. Contour track-

ing has been applied to track the object with a complex 

shape and various changes of shape due to a good repre-

sentation ability of contour. Especially, Condensation 

algorithm has caused big impact due to its good perfor-

mance to non-rigid object. The recent issues of object 

tracking are to find the way of handling the occlusion, 

tracking non-rigid shape object during changing object 

shape and illumination of the scene. Particularly, particle 

filter has been often referenced regardless of representa-

tion method of object due to the ability of robust estima-

tion by handling a non-Gaussian distribution. 

In the behavior understanding, researches for human 

body modeling, estimation of body part location, and 

human activity recognition have been organically related 

for automatically recognizing the human action. On hu-

man body modeling research, stick figure, 2d contour, 

and 3d volumetric figure are commonly used to 

representing the human body as a whole unit or separated 

body part unit. Localizing the human body part is per-

formed with body part tracking method. In the research 

on estimation of body part location, there are two main 

classes of estimation, top-down approach and bottom-up 

approach. Top-down approach matches a projection of 

the human body with the input image. On the other hand, 

bottom-up approach tracks human body part by assem-

bling individual body part into the human body model 

with specific constraints. Moreover, combining top-down 

and bottom-up approach are widely used in the recent 

research to compensate for the disadvantages of each 

approach combining. For human activity recognition, 

researches can be divided into general feature sequence 

matching and prior knowledge based approach. In the 

general feature sequence matching approach, human ac-

tivity recognition is simply regarded as a classification 

problem of the feature sequence usually treating time 

varying feature sequences. Therefore, HMM, DTW and 

DBN are widely used due to ability for matching time 

varying. Instead, several studies recognize human activi-

ty by using prior knowledge such as physical law, con-

textual information.  

Along with image interpretation task, wide area sur-

veillance task using multiple sensors to widen the scope 

of the surveillance area has been also under active study, 

especially synchronizing sensor, effective installation of 

multiple sensors and integrating numerous data to extract 

high-level information. 

Increasing number of cameras makes the research of 

camera calibration and the installation method of mul-

tiple sensors more important. In a wide area surveillance 

environment, camera calibration cost is very high be-

cause of large number of cameras. Thus a self-calibration 

of camera has been important research area. Moreover, it 

is also important to find an optimal deployment of sen-

sors so that the configuration of sensor covers the entire 

area with the minimum number of sensor. 

In the same context, researches for integrating numer-

ous data increased by adding sensors have been impor-

tant. To solve difficulties of occlusion situation and error 

correction in motion detection, it is important to attempt 

of combining contextual information between different 

types of sensor. Cooperative camera system with PTZ 

and fixed camera and referencing stereo modules are the 

representative examples. In particular, seamless tracking 

via sharing the local network of camera has been inten-

sively studied by integrating data from neighbor cameras. 

It is also mainly studied to find corresponding object 

among multiple sensors, estimating camera topology and 

moving path of object on cooperative camera system 

research. 

We have represented researches related to IVS includ-

ing image interpretation and wide area surveillance tech-

niques. There have been a lot of researches as reflecting 

the growing demand and the importance for safety and 

security. According to our survey, automation of surveil-

lance and reduction of cost are main subject in IVS. In 

order to make surveillance system automatic, there are a 

lot of attempts combining pattern recognition and data 

mining researches based on computer vision techniques. 

Especially, it will be contribute significantly in improv-

ing accuracy and effectiveness of surveillance, if algo-

rithm can handle an uncertainty of the scene such as il-

lumination change, non-rigid object, occlusion between 

object and an undefined human activity. To reduce the 

cost of surveillance, distributed system and data commu-

nication techniques are well combined based on multiple 

sensors network. Also, when installation of sensor and 

integrating data from sensor network can be performed 

with minimal manual reconfiguration, this will contribute 

in expanding surveillance area enough.  
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