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We present a new supervised learning procedure for systems composed 
of many separate networks, each of which learns to handle a subset of 
the complete set of training cases. The new procedure can be viewed 
either as a modular version of a multilayer supervised network, or as 
an associative version of competitive learning. It therefore provides 
a new link between these two apparently different approaches. We 
demonstrate that the learning procedure divides up a vowel discrimi- 
nation task into appropriate subtasks, each of which can be solved by 
a very simple expert network. 

1 Making Associative Learning Competitive 

If backpropagation is used to train a single, multilayer network to per- 
form different subtasks on different occasions, there will generally be 
strong interference effects that lead to slow learning and poor gener- 
alization. If we know in advance that a set of training cases may be 
naturally divided into subsets that correspond to distinct subtasks, inter- 
ference can be reduced by using a system composed of several different 
"expert" networks plus a gating network that decides which of the ex- 
perts should be used for each training case.' Hampshire and Waibel 
(1989) have described a system of this kind that can be used when the 
division into subtasks is known prior to training, and Jacobs ef al. (1990) 
have described a related system that learns how to allocate cases to ex- 
perts. The idea behind such a system is that the gating network allocates 
a new case to one or a few experts, and, if the output is incorrect, the 
weight changes are localized to these experts (and the gating network). 

'This idea was first presented by Jacobs and Hinton at the Connectionist Summer 
School in Pittsburgh in 1988. 
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So there is no interference with the weights of other experts that special- 
ize in quite different cases. The experts are therefore local in the sense 
that the weights in one expert are decoupled from the weights in other 
experts. In addition they will often be local in the sense that each expert 
will be allocated to only a small local region of the space of possible input 
vectors. 

Unfortunately, both Hampshire and Waibel and Jacobs et al. use an 
error function that does not encourage localization. They assume that the 
final output of the whole system is a linear combination of the outputs of 
the local experts, with the gating network determining the proportion of 
each local output in the linear combination. So the final error on case c 
is 

where 0," is the output vector of expert i on case c, p: is the proportional 
contribution of expert i to the combined output vector, and d" is the 
desired output vector in case c. 

This error measure compares the desired output with a blend of the 
outputs of the local experts, so, to minimize the error, each local expert 
must make its output cancel the residual error that is left by the combined 
effects of all the other experts. When the weights in one expert change, 
the residual error changes, and so the error derivatives for all the other 
local experts change.2 This strong coupling between the experts causes 
them to cooperate nicely, but tends to lead to solutions in which many 
experts are used for each case. It is possible to encourage competition by 
adding penalty terms to the objective function to encourage solutions in 
which only one expert is active (Jacobs et 41. 1990), but a simpler remedy 
is to redefine the error function so that the local experts are encouraged 
to compete rather than cooperate. 

Instead of linearly combining the outputs of the separate experts, we 
imagine that the gating network makes a stochastic decision about which 
single expert to use on each occasion (see Fig. 1). The error is then the 
expected value of the squared difference between the desired and actual 
output vectors 

Notice that in this new error function, each expert is required to pro- 
duce the whole of the output vector rather than a residual. As a result, 
the goal of a local expert on a given training case is not directly affected 
by the weights within other local experts. There is still some indirect 

2For Hampshire and Waibel, this problem does not arise because they do not learn the 
task decomposition. They train each expert separately on its own preassigned subtask. 
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Figure 1: A system of expert and gating networks. Each expert is a feed- 
forward network and all experts receive the same input and have the same 
number of outputs. The gating network is also feedforward, and typically 
receives the same input as the expert networks. It has normalized outputs 
I?, = exp(.r,)/ C, exp(.r,), where .T] is the total weighted input received by out- 
put unit J of the gating network. The selector acts like a multiple input, single 
output stochastic switch; the probability that the switch will select the output 
from expert J is pJ.  

coupling because if some other expert changes its weights, it may cause 
the gating network to alter the responsibilities that get assigned to the ex- 
perts, but at least these responsibility changes cannot alter the sign of the 
error that a local expert senses on a given training case. If both the gating 
network and the local experts are trained by gradient descent in this new 
error function, the system tends to devote a single expert to each training 
case. Whenever an expert gives less error than the weighted average of 
the errors of all the experts (using the outputs of the gating network to 
decide how to weight each expert's error) its responsibility for that case 
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will be increased, and whenever it does worse than the weighted average 
its responsibility will be decreased. 

The error function in equation 1.2 works in practice but in the sim- 
ulations reported below we used a different error function which gives 
better performance: 

The error defined in equation 1.3 is simply the negative log probability 
of generating the desired output vector under the mixture of gaussians 
model described at the end of the next section. To see why this error 
function works better, it is helpful to compare the derivatives of the two 
error functions with respect to the output of an expert. From equation 1.2 
we get 

while from equation 1.3 we get 

(1.4) 

(1.5) 

In equation 1.4 the term 11; is used to weight the derivative for expert i. 
In equation 1.5 we use a weighting term that takes into account how well 
expert i does relative to other experts. This is a more useful measure of 
the relevance of expert i to training case c, especially early in the train- 
ing. Suppose, for example, that the gating network initially gives equal 
weights to all experts and lid' - of11 > 1 for all the experts. Equation 1.4 
will adapt the best-fitting expert the slowest, whereas equation 1.5 will 
adapt it the fastest. 

2 Making Competitive Learning Associative 

It is natural to think that the "data" vectors on which a competitive net- 
work is trained play a role similar to the input vectors of an associative 
network that maps input vectors to output vectors. This correspondence 
is assumed in models that use competitive learning as a preprocessing 
stage within an associative network (Moody and Darken 1989). A quite 
different view is that the data vectors used in competitive learning cor- 
respond to the output vectors of an associative network. The competitive 
network can then be viewed as an inputless stochastic generator of output 
vectors and competitive learning can be viewed as a procedure for mak- 
ing the network generate output vectors with a distribution that matches 
the distribution of the "data" vectors. The weight vector of each com- 
petitive hidden unit represents the mean of a multidimensional gaussian 
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distribution, and output vectors are generated by first picking a hidden 
unit and then picking an output vector from the gaussian distribution 
determined by the weight vector of the chosen hidden unit. The log 
probability of generating any particular output vector 0'' is then 

where I is an index over the hidden units, pL is the "weight" vector of 
the hidden unit, k is a normalizing constant, and p ,  is the probability of 
picking hidden unit i ,  so the pz are constrained to sum to 1. In the statis- 
tics literature (McLachlan and Basford 1988), the p ,  are called "mixing 
proportions." 

"Soft" competitive learning modifies the weights (and also the vari- 
ances and the mixing proportions) so as to increase the product of the 
probabilities (i.e., the likelihood) of generating the output vectors in the 
training set (Nowlan 1990a). "Hard" competitive learning is a simple 
approximation to soft competitive learning in which we ignore the pos- 
sibility that a data vector could be generated by several different hidden 
units. Instead, we assume that it must be generated by the hidden unit 
with the closest weight vector, so only this weight vector needs to be 
modified to increase the probability of generating the data vector. 

If we view a competitive network as generating output vectors, it is 
not immediately obvious what role input vectors could play. However, 
competitive learning can be generalized in much the same way as Barto 
(1985) generalized learning automata by adding an input vector and mak- 
ing the actions of the automaton be conditional on the input vector. We 
replace each hidden unit in a competitive network by an entire expert 
network whose output vector specifies the mean of a multidimensional 
gaussian distribution. So the means are now a function of the current 
input vector and are represented by activity levels rather than weights. 
In addition, we use a gating network which allows the mixing propor- 
tions of the experts to be determined by the input vector. This gives us 
a system of competing local experts with the error function defined in 
equation 1.3. We could also introduce a mechanism to allow the input 
vector to dynamically determine the covariance matrix for the distribu- 
tion defined by each expert network, but we have not yet experimented 
with this possibility. 

3 Application to Multispeaker Vowel Recognition 

The mixture of experts model was evaluated on a speaker independent, 
four-class, vowel discrimination problem (Nowlan 1990b). The data con- 
sisted of the first and second formants of the vowels [i], [I], [a], and [A1 
(usually denoted [A]) from 75 speakers (males, females, and children) ut- 
tered in a hVd context (Peterson and Barney 1952). The data forms two 
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Figure 2: Data for vowel discrimination problem, and expert and gating net- 
work decision lines. The horizontal axis is the first formant value, and the 
vertical axis is the second formant value (the formant values have been lin- 
early scaled by dividing by a factor of 1000). Each example is labeled with its 
corresponding vowel symbol. Vowels [il and [I] form one overlapping pair of 
classes, vowels [a] and [A] form the other pair. The lines labeled Net 0, 1, and 2 
represent the decision lines for 3 expert networks. On one side of these lines the 
output of the corresponding expert is less than 0.5, on the other side the output 
is greater than 0.5. Although the mixture in this case contained 4 experts, one 
of these experts made no significant contribution to the final mixture since its 
mixing proportion p ,  was effectively 0 for all cases. The line labeled Gate 0:2 in- 
dicates the decision between expert 0 and expert 2 made by the gating network. 
To the left of this line p z  > PO, to the right of this line po > pz.  The boundary 
between classes [a] and [A] is formed by the combination of the left part of Net 
2's decision line and the right part of Net 0's decision line. Although the system 
tends to use as few experts as it can to solve a problem, it is also sensitive to 
specific problem features such as the slightly curved boundary between classes 
[a1 and [A]. 

pairs of overlapping classes, and  different experts learn to concentrate 
on  one pair of classes or the other (Fig. 2). 

We compared standard backpropagation networks containing a sin- 
gle hidden layer of 6 or  12 units with mixtures of 4 or 8 very simple 
experts. The architecture of each expert was  restricted so it could form 
only a linear decision surface, which is defined as the set of input vec- 
tors for which the expert gives an output of exactly 0.5. All models were 
trained with data from the first 50 speakers and  tested with data from 
the remaining 25 speakers. The small number of parameters for each ex- 
pert allows excellent generalization performance (Table l), and  permits 
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Average number 
System Train % correct Test % correct of epochs SD 

4 Experts 88 90 1124 23 

BP 6 Hid 88 90 2209 83 
BP 12 Hid 88 90 2435 124 

8 Experts 88 90 1083 12 

Table 1: Summary of Performance on Vowel Discrimination Task. Results are 
based on 25 simulations for each of the alternative models. The first column of 
the table indicates the system simulated. The second column gives the percent 
of training cases classified correctly by the final set of weights, while the third 
column indicates the percent of testing cases classified correctly. The last two 
columns contain the average number of epochs required to reach the error 
criterion, and the standard deviation of the distribution of convergence times. 
Although the squared error was used to decide when to stop training, the 
criterion for correct performance is based on a weighted average of the outputs 
of all the experts. Each expert assigns a probability distribution over the classes 
and these distributions are combined using proportions given by the gating 
network. The most probable class is then taken to be the response of the system. 
The identical performance of all the systems is due to the fact that, with this 
data set, the set of misclassified examples is not sensitive to small changes in 
the decision surfaces. Also, the test set is easier than the training set. 

a graphic representation of the process of task decomposition (Figure 3). 
The number of hidden units in the backpropagation networks was  cho- 
sen to give roughly equal numbers of parameters for the backpropagation 
networks and  mixture models. All simulations were performed using a 
simple gradient descent algorithm with fixed step size t. To simplify 
the comparisons, no  momentum or other acceleration techniques were 
used. The value of f for each system was  chosen by performing a lim- 
ited exploration of the convergence from the same initial conditions for 
a range of t. Batch training was  used with one weight update for each 
pass through the training set (epoch). Each system was trained until an  
average squared error of 0.08 over the training set was obtained. 

The mixtures of experts reach the error criterion significantly faster 
than the backpropagation networks ( p  >> 0.9991, requiring only about half 
as many epochs on average (Table 1). The learning time for the mixture 
model also scales well as  the number of experts is increased: The mixture 
of 8 experts has a small, but statistically significant (11 > 0.951, advantage 
in the average number of epochs required to reach the error criterion. 
In contrast, the 12 hidden unit backpropagation network requires more 
epochs (11 > 0.95) to reach the error criterion than the network with 6 
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Figure 3: The trajectories of the decision lines of some experts during one 
simulation. The horizontal axis is the first formant value, and the vertical axis 
is the second formant value. Each trajectory is represented by a sequence of 
dots, one per epoch, each dot marking the intersection of the expert’s decision 
line and the normal to that line passing through the origin. For clarity, only 5 
of the 8 experts are shown and the number of the expert is shown at the start 
of the trajectory. The point labeled TO indicates the optimal decision line for 
a single expert trained to discriminate [i] from [I]. Similarly, T 1  represents the 
optimal decision line to discriminate [a] from [A]. The point labeled X is the 
decision line learned by a single expert trained with data from all 4 classes, and 
represents a type of average solution. 

hidden units (Table 1). All statistical comparisons are based on a t test 
with 48 degrees of freedom and a pooled variance estimator. 

Figure 3 shows how the decision lines of different experts move 
around as the system learns to allocate pieces of the task to different 
experts. The system begins in an unbiased state, with the gating net- 
work assigning equal mixing proportions to all experts in all cases. As 
a result, each expert tends to get errors from roughly equal numbers of 
cases in all 4 classes, and all experts head towards the point X, which 
represents the optimal decision line for an expert that must deal with 
all the cases. Once one or more experts begin to receive more error 
from cases in one class pair than the other, this symmetry is broken and 
the trajectories begin to diverge as different experts concentrate on one 
class pair or the other. In this simulation, expert 5 learns to concentrate 
on discriminating classes [i] and [I] so its decision line approaches the 
optimal line for this discrimination (TO). Experts 4 and 6 both concentrate 
on discriminating classes [a] and [A], so their trajectories approach the 
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optimal single line (Tl) and  then split to form a piecewise linear approx- 
imation to the slightly curved optimal decision surface (see Fig. 2). Only 
experts 4, 5, and  6 are active in the final mixture. This solution is typical 
- in all simulations with mixtures of 4 or  8 experts all bu t  2 or 3 experts 
had  mixing proportions that were effectively 0 for all cases. 
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