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ABSTRACT   

This paper introduces a homogeneity assessment method for the printed versions of uniform color images. This 
parameter has been specifically selected as one of the relevant attributes of printing quality. The method relies on image 
processing algorithms from a scanned image of the printed surface, especially the computation of gray level co-
occurrence matrices and of objective homogeneity attribute inspired of Haralick's parameters. The viewing distance is 
also taken into account when computing the homogeneity index. Resizing and filtering of the scanned image are 
performed in order to keep the level of details visible by a standard human observer at short and long distances. The 
combination of the obtained homogeneity scores on both high and low resolution images provides a homogeneity index, 
which can be computed for any printed version of a uniform digital image. We tested the method on several hardcopies 
of a same image, and compared the scores to the empirical evaluations carried out by non-expert observers who were 
asked to sort the samples and to place them on a metric scale. Our experiments show a good matching between the 
sorting by the observers and the score computed by our algorithm. 
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1. INTRODUCTION  

Printing has evolved significantly the last few years, due to first a diversification of processes, and also to the digital 
revolution [1] including an automation of the processes without the expertise of the printman at the printing time. With 
this rapid evolution, the quality of color images reproduced on hard supports has considerably increased, and the 
amazing diversification of these techniques permitted by the new digital technologies provides a large panel of solutions 
for image reproduction. This leads to an issue for comparing the different techniques in terms of quality, an intuitive 
concept which is generally well appreciable visually but difficult to assess with objective, measurable values. Scientific 
concern for printing quality is recent: In [2], the printing quality is explored by defining various quality attributes: color, 
lightness, sharpness, contrast, physical, artifacts. These attributes were estimated from psycho-visual experiments carried 
out by a panel of 15 observers with various expertise. In contrast with Pedersen et al. [3], [4], we believe that an 
important distinction should be made between printing quality (related to the degradation of the original digital image 
when transferred to the paper or plastic support) and image quality (including printing quality plus the perceived quality 
of the original image). Our opinion is that, contrast, lightness, and color rather qualify the image quality. The present 
work focuses on the homogeneity of tones i.e. the homogeneity of any surfaces on which is printed an originally uniform 
digital color image. This attribute is considered as relevant in the standard ISO 13660: 2001, the only international 
standard describing a wide range of attributes of image quality dedicated to quality assessment for binary or 
monochrome printing systems. [5]. In this standard, mottling is defined as a type of homogeneity default of paper-like 
surfaces and an index is suggested in the spatial domain. A pass-band method was proposed [6] as an alternative able to 
better take into account the sensitivity of the human visual system. A pass-band assessment funded on wavelets, 
followed by a second-order statistics calculation on the gray-level co-occurrence matrix was achieved in [7] to form an 
homogeneity index. Our aim here is to integrate human vision data into both the filtering step and the second-order 
statistics calculation. As in [6], our approach first consists in the digitalization of the printed surface using a high 
resolution flatbed office scanner, the scanned image being then processed in order to compute an homogeneity index. It 
then consists in comparing this score for many samples (several versions of a same digital image printed on different 
supports with different printing techniques) with the empirical evaluation by observers of these samples on a scale.  
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In the next sections, we first explain how the surfaces are digitalized and which tool of image processing we use before 
developing in details our method and its tunable parameters. We finally compare the score provided by the method with 
empirical assessment by observers on four sets of samples. 

2. DIGITALIZATION OF THE PRINTS 

For the digitalization of the samples, a scanner is used. An initial study on scanners have led to the conclusion that it is a 
reliable tool for image acquisition due to its remarquable reproductability, mainly performed by a uniform illumination, 
and good geometry that avoids specular reflections when the surface is flat. However, spatial and color distortions 
induced by the acquisition systems should be taken into account when assessing quality. 

The color gamut of our human visual system is much larger than that of the scanner, which is unknown but can be 
assumed to be quite close to sRGB. Because of this, the color distortion problem is twofold: First, the so-called "seen by 
the scanner" colors are displaced within the very gamut of the scanner, but also, it may appears that different printable 
colors are out of the gamut of the scanner and thus perceived by the scanner as having the same color. A color calibration 
would seem necessary to solve at least the first issue. However, we noticed that very often after color correction, images 
are noisier than before correction. As part of our work (the assessment of uniformity), we chose not to apply color 
correction to avoid the risk of disrupting our measure. 

Regarding the spatial distortions, there is a significant horizontal drift. In the vertical direction, we do not notice 
geometric drift, the motor is properly position controlled. This drift can be corrected by adjusting the position of the 
pixels by polynomial interpolation or spline on each line of the captured image. But such treatment would create a 
change in the value of certain pixels on each line, the most affected by this drift being on the edges of each line, and 
would lead to a loss of the native resolution of the image as well as local color unwanted distortions. It is preferable to 
analyze the scanner profile derives and locate the sample on the scanner glass in an area where the drifts are minimal. 

We recommend scanning samples at a high resolution (e.g. 2400 dpi), and then reducing to 1200 dpi, the initial 
resolution of our method, in order to perform controlled down-sampling. 
 

3. BACKGROUND: IMAGE HOMOGENEITY ANALYSIS 

The printed copy of a uniform color patch can be considered as a texture. In image processing, a classical tool in texture 
characterization relies on Haralick's parameters derived from the gray-level co-occurrence matrix (GLCM) also called 
gray-tone spatial-dependence matrix, first presented in [8]. In contrast with first-order statistic tools (histogram, mean, 
standard deviation, skewness, and kurtosis), the GLCM is a statistic tool of 2nd order [9]. First order statistics are 
representative of gray-level distribution of the pixels in the image regardless of their spatial arrangement, whereas 
second-order statistics involve two pixels simultaneously. 

The construction of the GLCM tH  is defined as: 

  
0..2 , 0..2

( , ) n nb bi j
h i j

 
          

t tH   (1) 

with 

   2( , ) , ; ( )    and   ( )h i j Card p p I f p i f p j     t t t   (2) 

where I  is a rectangular image encoded on bn  bits, f  is an application from 0..2 1bnI I      , Card  means the 

cardinality of a set, t  is a given translation vector, and  ,p p  t  is a pair of pixels in image I . The vector t  may be 

specified by a unit vector w  and a distance D : 

 .Dt w   (3) 

Starting from an initialization to the null matrix, tH  is incrementally built by considering in turn every pair of pixels 

 ,p p  t  in image I , and incrementing by one the entry  ( ), ( )h f p f p t t  (see Figure 1). 

ha
l-0

09
62

25
9,

 v
er

si
on

 1
 - 

25
 M

ar
 2

01
4



 
 

 

 

After normalization of this matrix, each entry  ,h i jt  means the probability to transit, along a vector t , from a pixel 

with value i  to a pixel with value j : 

    
  

,
,

h i j
p i j

Card I T I




t
t

t

  (4) 

with Tx  means the translation operator of a vector x . 

y
x

i j
D

yp

xp

yp+t

t

 

Figure 1. Scanning of the image pixels for every point  ,p px y  in order to build the gray level co-occurrence matrix. 
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Figure 2. (a) Three original gray level images. (b) Gray level representation of the corresponding GLCM where the white 
color means the max value. (c) Zoom on the center of images (b). 

 
On such GLCM, Haralick defines several texture attributes among which an homogeneity attribute comprised between 0 
and 1, defined as: 

  
2 2

2
0 0

1
,

1 ( )

n nb b

i j

Hom p i j
i j 

 
  t   (5) 
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If the GLCM tH  of image I  is computed on a uniform image (top left image on Figure 2) or on a periodical image with 

period t  (top middle image), then for every pair of pixels     ,f p f p  t , we have    f p f p  t . Therefore, 

only entries in the diagonal of tH  are incremented; and 1Hom  . In the other cases (for example for the top right image 

of Figure 2), tH  is not a diagonal matrix, and 0 1Hom  . 

Formula (5) may be replaced with other ones, defined so as to give different weight to entries more distant from the 
diagonal. For example, we may generalize Eq. (5) by defining the following function weighting the transition probability 

 ,tp i j : 

 ,

1
:

1a b b
w x

a x 
   (6) 

where a  and b  are tunable real values (see Figure 3), and x i j  . 

Using ,a bw  with different a  and b  values than the ones used in Eq. (5), we can tune the response of the homogeneity 

score to variations of the pixel values in the image. 
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Hom: (a, b) = (1, 2)
Hom1: (a, b) = (0.1, 4)
Hom2: (a, b) = (0.6, 4)
Hom3: (a, b) = (0.02, 4)

 

Figure 3. ,a bw  function for three different sets of  ,a b  values. Original Haralick's attribute (denoted as Hom) corresponds 

to the 1,2w  function plotted in red line. 0.1,4w  and 0.6,4w  functions, respectively denoted as Hom1 and Hom2, are plotted in 

blue, respectively green lines. 

 

4. OVERVIEW OF THE METHOD 

The Homogeneity assessment method that we propose relies on the following steps: 

 Preprocessing, including image resizing and filtering in order to simulate near vision at High Resolution (HR), 
and far vision at Low Resolution (LR), 

 Application of the Image Homogeneity Analysis method described in Section 3. 

 Score computation from the GLCM on both HR and LR images. 

 

5. PREPROCESSING 

This section intends to modify the raw scanned image into a new one, closer to human perception. A three step 
preprocessing of the scanned images is performed: Creation of custom color channels from the initial RGB channels; 
filtering in order to take account of human visual resolution; quantization (optional). 
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For the HR image, a 1200 pixel per inch (ppi) image is recommended. A bicubic interpolation (scale of 1/2 if the input 
image is 2400 ppi) with antialiasing method is selected to perform image resizing. 

The first step is to change the color space. Scanner yields R,G,B values for each pixel. We could process these R,G, and 
B channels each ones as a grayscale image, but they do not contain the optimal information. In order to be more 
consistent with human perception, we prefer converting the RGB values into CIELAB values by considering that the 
input RGB values are represented in the Adobe RGB (1998) color space, then converting into CIE1931XYZ for a 2° 
standard observer, and finally converting in CIELAB by selecting the D65 illuminant. We analyze the *L  (lightness) 
channel, and the abh  (hue) channel. CIELAB color space is chosen because it is a color appearance model [10] (pages 

160 - 161). The *a  and *b  Cartesian coordinates are transformed into cylindrical coordinates *
abC  and abh , respectively 

defined as 

 * *2 *2
abC a b    (7) 

 
*

1
*

tanab

b
h

a
  

  
 

  (8) 

Implementation remark:  atan y x  function yields an angle in ,
2 2

  
  

 which is not defined if 0x  . Alternative 

function is available in most computation softwares, often denoted as  atan 2 ,y x , yielding an angle in  ,  , defined 

for every y  and x . 

Note that it is also possible to define the luminance image directly from RGB values, using the NTSC luminance (Y) 
formula, first presented in Ref. [11]: 

 0.299 0.587 0.114Y R G B        (9) 

The second step corresponds to the simulation of the blur produced by our human eyes. According to Hermann von 
Helmholtz's observations [12], we consider the definition of the "normal visual acuity" as the ability to resolve a spatial 
pattern separated by a visual angle α  of one minute of arc. Thus, giving an observation distance d  (in cm) and a scan 
resolution of the image sr  (in ppi), we can define the convolution kernel of the blurring filter (Figure 4). The size s  of 

the kernel depends on the standard deviation   used for the Gaussian profile: 

 
1

tan
60 2.54

srd     
 

  (10) 

 6 1s      (11) 

We choose to simulate the HR images as viewed at a short distance ( 15d   cm), near the human punctum proximum, 
which corresponds to 2.06   pixels, i.e. 13s  . 

d

α σ

 

Figure 4. Definition of   knowing the visual angular resolution 
1

1'
60

   degree at the viewing distance d . 

Lastly, a quantization step (e.g. on 8bn   bits for each channel), can eventually be performed, with the consequence to 

decrease the size of the GLCM but also to lose the least significant bits (i.e. small grey-level variations in the image). 

For the low resolution images, we perform the same 3 steps with a 240 ppi resolution image (scale of 1/10 if the input is 
2400 ppi), with 1.03   pixels and 7t  , which corresponds to the image viewed by an observer at about 40 cm. 

The preprocessing step leads to 4 images, denoted as        , , ,HR LR HR LR
ab abY Y h h . 
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6. APPLICATION OF THE IMAGE HOMOGENEITY ANALYSIS METHOD 

We apply the method presented in Section 3 on the four images        , , ,HR LR HR LR
ab abY Y h h  obtained in the preprocessing 

step. 

For each of the two HR images, we choose the following translation vectors 1t  and 2t  to compute respectively GLCMs 

1M  and 2M : 

  HRD 1 1t u   (12) 

  HRD 2 2t u   (13) 

with   25HRD   pixels (corresponding to a physical displacement of about 0.5 mm on 1200 ppi image), and 1u y , 

2u x  the horizontal, respectively vertical unit vectors (see Figure 1). 

We then compute a GLCM M  as the average of 1M  and 2M : 

 
2

   
 

1 2M M
M   (14) 

We also compute a chroma value on the HR image, denoted as  HRc  and defined as the average of the chroma values 
computed from Eq. (7) on each pixel of the image. From matrix M , we compute the homogeneity attribute Hom1 

according to Eq. (6) with a value of a  denoted  HRa  depending on  HRc  and given in Figure 5.a, and 4b  . 

For each of the two LR images, we perform similar processing as above with   35LRD   pixels (corresponding to a 
physical displacement of about 0.37 cm on 240 ppi images), and compute the Hom2 attribute using the   ,4LRa

w  function 

defined by Eq. (6), where  LRa  is given by Figure 5.b as a function of  LRc  computed as  HRc  on the chroma values of 
the LR image. 

These values for D , a , and b , have been chosen because they seem the most relevant in our study according to 
physical and empirical considerations. 
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Figure 5. Variation of the  HRa  and  LRa  values as a function of the chroma values  HRc , respectively  LRc , for HR and 
LR images. 
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7. CONSTRUCTION OF THE OBJECTIVE SCORE 

The computation of homogeneity attribute on the GLCM of        , , ,HR LR HR LR
ab abY Y h h yields four values to be combined in 

order to obtain the final homogeneity score. Let's denote these four values as        , , ,HR HR LR LR
ab abY Yh h

H H H H . 

Our experience shows that relevant homogeneity score in respect to human perception is given by the following 
empirical formula: 

 
 

 
 

 

 
 

 

 min ,
1 1

HR HR LR LR
ab ab

HR LR

Y Yh h

HR LR

H c H H c H

c c

    
 
   
 

  (15) 

Notice that the chroma is taken into account in this formula through the parameters  HRc  and  LRc  computed in Section 
6 because we noticed that the influence of the homogeneity parameter on the hue image is lower when the colors are not 
saturated. The weight attributed to the luminance channel is higher than the one attributed to the hue channel ( 0 1c  , 
and in practice, on prints, it is rather 0 0.6c  ) as it is commonly done in video compression for digital television 
video encoding where the luminance channel has a double bandwidth than the chromatic ones (See for example [13]). 

 

8. REFERENCED PARAMETERS OF THE METHOD 

The referenced parameters of our method are: 

 Quantization (images encoded on bn  number of bits): The less is quantization, the more careful details are kept. 

It seems better to keep all the details. Instead of decreasing bn  below the usual value of 8 bits, we prefer 

adjusting the a  and b  parameters in formula (6). 

 Size of blurring kernel: it is set by the considered viewing distance d , which is about 15 cm for near vision, 
and 40 cm for far vision. 

 Scan resolution: The size of one pixel in HR images is about 21 μm after downsampling original 2400 ppi 

scanned image to 1200 ppi. This appears sufficiently accurate in comparison to the human vision and to the 
finest commercial printing systems available today. 

  HRD  and  LRD : They must be representative of the characteristic size of the inhomogeneities that we wish to 
highlight, in respect to near sight and far sight observations. 

 1t  and 2t : horizontal and vertical vectors used to compute the GLCM. These two directions have been selected 

because they coincide to the orientation of classical defects of most printing systems, because defaults often 
occur in the printing direction (vertical) and in the perpendicular direction of it. 

 

9. EXPERIMENTAL TESTING AND COMPARISON WITH PSYCHO-VISUAL ASSESSMENT 

In order to verify the relevance of the proposed score in respect to human observer evaluation, we carried out the 
following experiment: 

Uniform color patches have been printed with various printers (laser, inkjet, retransfer) and on various supports (office 
paper, glossy photograph paper, APCO paper, white polymer). For the digitalization step, all samples are scanned at 
2400 ppi in TIFF format, 24 bits, by the EPSON Scan Ver. 3.81 FR, 2002 driver, with a EPSON Perfection V700 
PHOTO scanner. The “No color correction” option is selected. An overview of some samples is presented below. 
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Figure 6. An overview of some scanned samples (in lower resolution than the original ones). s_02 is printed on glossy 
photograph paper, s_01 and s_08 on office paper, s_10 and s_11 on APCO paper. 

The assessors were submitted to a ranking test, using an ordinale scale, unstructured, as it is presented by François 
Sauvageot in [14]. The assessors were presented randomly the samples to sort in respect to their perceived homogeneity, 
and were asked to place them on a one meter scale. The positions of the samples (in meter) are indicated by the dots in 
Figure 7, where one dot shape is attributed to each observer. Note that no rescaling of the positions has been performed: 
the dispersion of the positions for one sample partly comes from the different scaling adopted by the observers in their 
evaluation. The continuous line in Figure 7 represents the score computed with our method, represented by formula (15). 
We see that the scores follows fairly well the positioning of the samples by the observers on the metric scale. 
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Figure 7. Comparison between objective and subjective evaluation for (a): a blue set of samples, (b): an orange set of 
samples, (c): a red set of samples, and (d): a gray set of samples. 
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In order to assess the performance of our method, six different classes are defined by selecting six threshold values of the 
score (0.8, 0.7, 0.6, 0.52, 0.3, 0). Assessors scorings are also quantified into this six grades classification. The matching 
of the class given by observers and by our method is presented in Figure 8. 

 

 

Figure 8. Percentage of samples classified in the same of six categories by assessors (subjective evaluation) and by our 
scoring method. 

 

10. CONCLUSION 

The index computed according to the method that we propose for the assessment of the homogeneity of printed colors is 
in accordance with the empirical assessment by a small panel of non-expert observers. In this sense, if the trend is 
confirmed for a larger set of observers, the algorithm that we have developed will appear consistent with the human 
visual perception. This homogeneity index is a first attribute which should be combined with other attributes in order to 
get a global quality score for printed natural images. It may also help to compare the performance of different printing 
systems in terms of visual quality. 
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