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Abstract— Different time-discretization methods for sliding-
mode control (SMC) are presented. A new discrete-time sliding-
mode control scheme is proposed for linear time-invariant (LTI)
systems. It is error-free in the discretization of the equivalent
part of the control input. Results from simulations using the
various discretized SMC schemes are shown, with and without
perturbations. They illustrate the different behaviours that can
be observed.

I. INTRODUCTION

The time discretization of sliding-mode controllers has

witnessed an intense activity in the past 30 years [1]–[6].

This concerns in particular the classical Equivalent-Control-

Based Sliding-Mode Control (ECB-SMC), which consists of

two sub-controllers: the state-continuous equivalent control

ueq and the state-discontinuous control us. In this past

research effort, most of the focus was on the discontinuous

part of the control, since it introduces numerical chattering.

Several solutions to alleviate numerical chattering (that is

solely due to the time discretization [7]–[11]) have been

proposed [1]–[6], [12], [13], most of them consisting in the

definition of a so-called quasi-sliding surface [5] and an

explicit discretization of us. The works in [2] and [6] depart

from these discrete-time SMC and propose an algorithm

which allows the switching variable to take exactly the zero

value at sampling times. They are however limited to first

order, scalar systems and require some stringent assumptions.

Recently a new approach, which may be seen as a (non-

trivial) extension of the controllers in [2] and [6], has been

proposed in [10], [11]. The basic idea is to implement the

discontinuous input us in an implicit form, while keeping

its causality. Then the input has to be computed at each

sampling time as the solution to a generalized, set-valued

equation, which takes the form of a simple projection on an

interval in the simplest cases. This will be recalled later in

this paper.

To the best of our knowledge, very few has been done

about the discretization of the equivalent part. In this work,

we present a study of the effects of discretization on both

the equivalent part of the control and the discontinuous

part. After presenting the different discretization methods,

we propose a new discrete-time control scheme, where the

equivalent part is not discretized but rather designed. We
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consider systems in the form:

8
>>><
>>>:

ẋ(t) = Ax(t) +Bu(t) +Bξ(t),

u(t) = ueq(t) + us(t),

σ(t) := Cx(t),

us(t) 2 −α Sgn (σ(t)) ,

(1)

with x(t) 2 R
n, u(t) 2 R

p, σ(t) 2 R
p, C 2 R

p×n, and

α > 0. The function σ is called the sliding variable and Sgn

is formally introduced in Definition 1. The perturbation ξ is

supposed to be at least continuous: noise is not considered in

this paper. When ξ = 0, the system is said to be nominal. The

method used to discretize the dynamics is called Zero-Order

Hold (ZOH), also known as exact sampled-data representa-

tion. It is often considered for technological reasons, but also

since there is no error with this discretization method.

In the remainder of this section, we introduce the nota-

tion. In Section II we briefly recall the ECB-SMC theory.

Then some classical discretization methods are presented in

Section III. After we introduce our new discrete-time SMC

scheme in Section IV. Simulation results using different

time-discretization methods are shown in Sections V and VI,

to illustrate the possible different behaviours of the closed-

loop system.

Let x : R+ ⇥R
p ! R

n be the solution of system (1). Let

x := x(·, u) be the solution associated with a continuous-

time control u and x̄ := x(·, ū) the solution with a step

function ū. Let σ̄ := Cx̄ be the sliding variable in the latter

case. The control values change at predefined time instants

tk, defined as for all k 2 N, tk := t0+ kh, t0, h 2 R+. The

scalar h is called the timestep. Let x̄k := x̄(tk) and σ̄k :=
σ̄(tk) for all k 2 N. Let sgn be the classical single-valued

sign function: for all x > 0, sgn(x) = 1, sgn(−x) = −1
and sgn(0) = 0.

Definition 1 (Multivalued sign function). Let x 2 R. The

multivalued sign function Sgn: R ◆ R is defined as:

Sgn(x) =

8
><
>:

1 x > 0

−1 x < 0

[−1, 1] x = 0.

(2)

If x 2 R
n, then the multivalued sign function Sgn: Rn

◆

R
n is defined as: Sgn(x) := (Sgn(x1), . . . , Sgn(xn))

T
.

II. THE EQUIVALENT-BASED CONTINUOUS-TIME

SLIDING-MODE CONTROLLER

Let us assume that the triplet (A,B,C) has a strict vector

relative degree (1, 1, . . . , 1). This implies that the decoupling
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matrix CB is full rank. The dynamics of the sliding variable

in the nominal system (1) (that is with ξ(t) = 0) is

σ̇(t) = CAx(t) + CBueq(t) + CBus(t). (3)

The control law ueq is designed such that the system stays

on the sliding surface once it has been reached:

σ̇(t) = 0 ) ueq(t) = −(CB)−1CAx(t). (4)

Then the nominal system (1) can be rewritten as

ẋ(t) = (I −B(CB)−1C)Ax(t) +Bus(t), (5)

or equivalently

ẋ(t) = ΠAx(t) +Bus(t), (6)

with Π := I − B(CB)−1C. The sliding variable dynamics

with the equivalent control is
(

σ̇(t) = CBus(t)

us(t) 2 −α Sgn(σ(t)).
(7)

Two interesting properties of Π are CΠ = 0 and Π is a

projector [14]. Taking the integral form of system (6) yields

the relation

x(t) = Φ(t, t0)x(t0) +

Z t

t0

Φ(t, τ)Bus(τ)dτ, (8)

with Φ(t, t0) = eΠA(t−t0) the state transition matrix. Let us

state the following result without proof.

Lemma 1. One has Φ̇ = ΠAΦ, Φ(t0, t0) = I , and CΦ = C.

III. DISCRETE-TIME CONTROLLERS

From now on, ūeq and ūs are sampled control laws defined

as right-continuous step functions:

ūeq(t) =

∞X

k=0

ūeq
k Λk(t), ūs(t) =

∞X

k=0

ūs
kΛk(t), (9)

Λk(t) =

(
1 t 2 [tk, tk+1)

0 otherwise.
(10)

The goal of the discretization process is to choose the

elements of the sequences {ūeq
k } and {ūs

k} such that the

discrete-time system exhibits properties as close as possible

to the ones with a continuous-time controller. In continuous

time, sliding-mode control systems have their evolution di-

vided into two phases: the reaching phase where kσk > 0
and is decreasing, and the sliding phase where σ = 0 and the

sliding motion occurs. It is well know that the sliding motion

does not occur in general in discrete time. By analogy with

the Filippov’s solutions we define the following.

Definition 2 (Discrete-time sliding phase). A system (1), in

its sampled-data form, is in the discrete-time sliding phase

if ūs takes values in (−α, α)p.

Such a definition appears to be new in the discrete-time

sliding-mode control field since it implies that the discrete-

time discontinuous controller is itself set-valued, just as its

continuous-time counterpart in (1) and (7). This will be made

possible with an implicit implementation, as proved in [10]

and [11]. It is crucial not to define the sliding phase in terms

of σ̄k, but rather in terms of the discontinuous input ūs.

Integrating the nominal version of (1) over [tk, tk+1) and

using the expressions in (9), we obtain the ZOH discretiza-

tion of the system:

x̄k+1 = eAhx̄k +B∗ūeq
k +B∗ūs

k, (11)

with B∗ :=
R tk+1

tk
eA(tk+1−τ)Bdτ . We now present different

choices for the values ūeq
k and ūs

k. Firstly standard methods

are described, while the new method is studied in the next

section. Here ūeq
k and ūs

k are the discretized values of the

continuous-time control law ueq and us. From all the pos-

sible time-discretization schemes, we focus on the one-step

explicit, implicit, and midpoint ones. With the expressions

found for ueq and us in (4) and (7), the proposed discretized

values for ūeq
k are

ūeq
k,e = −(CB)−1CAx̄k explicit input (12a)

ūeq
k,i = −(CB)−1CAx̄k+1 implicit input (12b)

ūeq
k,m = 1/2(ūeq

k,e + ūeq
k,i) midpoint input, (12c)

and the two possibilities for ūs
k are

ūs
k = −α sgn(σ̄k) explicit input (13a)

ūs
k 2 −α Sgn(σ̄k+1) implicit input. (13b)

The objective in Sections V and VI is to study the behaviour

of the closed-loop system when different combinations of

equations (12a)–(12c) and (13a)–(13b) are used. The most

commonly used control law is the combination of (12a) and

(13a). This kind of discretization has been studied in [7], [8],

[15], with a focus on the sequence formed by σ̄k once the

system state approaches the sliding manifold. The implicit

discretization (13b) was first introduced in [10] and [11].

With this method, for each k 2 N, ūs
k is computed as the

solution to the generalized equation
(
eσk+1 = σ̄k + CB∗ūs

k

ūs
k 2 −α Sgn(eσk+1).

(14)

Let us write the discrete-time system with an implicit dis-

cretization of us and let ūeq
k be computed using a method in

equations (12a)–(12c)
8
><
>:

x̄k+1 = eAhx̄k +B∗ūeq
k +B∗ūs

k

eσk+1 = Cx̄k + CB∗ūs
k

ūs
k 2 −α Sgn(eσk+1).

(15)

Nothing guarantees that C(eAhx̄k +B∗ūeq
k ) = Cx̄k. Hence,

eσk+1 is in general different than σ̄k+1 because of the

discretization error on ueq . Therefore, it can be considered

as an approximation of σ̄k+1. With the Sgn(·) multifunction

and CB∗ positive definite, (14) has a unique solution ūs
k,

a function of σ̄k (hence x̄k). When the control is scalar or

CB∗ is diagonal, a solution to (14) can be computed as a

simple projection: ūs
k = − proj[−α,α]p((CB∗)−1σ̄k).
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IV. EXACT DISCRETE EQUIVALENT CONTROL

Let us propose a new control scheme for a discrete-time

LTI plant using sliding-mode control. Its derivation is along

the same lines as in Section II, that is we first design the

equivalent control ūeq and then the discontinuous part ūs.

As showed in (7), ueq is defined such that the dynamics

of the sliding variable depends only on the input us. Starting

from (11) and left multiplying by C, one obtains:

Cx̄k+1 = CeAhx̄k + CB∗ūeq
k + CB∗ūs

k. (16)

Using (8) with t = tk+1 and t0 = tk, we obtain:

σ(tk+1) = CΦ(tk+1, tk)x(tk)+C

Z tk+1

tk

Φ(tk+1, τ)Bus(τ)dτ.

(17)

Our goal is to have Cx̄k+1 = Cx(tk+1) if x(tk) = x̄k and

both us and ūs set to 0. Then setting the last term of (16)

and (17) to 0, the following condition holds:

CΦ(tk+1, tk)x(tk) = CeAhx̄k + CB∗ūeq
k , (18)

that is

CB∗ūeq
k = C(I − eAh)x̄k. (19)

In [3], this expression for the equivalent control was already

derived, when the sliding variable is scalar. In [4], using a

deadbeat-like approach, a term similar to (19) can also be

found. If we substitute this expression for ūeq
k in (16), then,

as expected, we obtain:

σ̄k+1 = σ̄k + CB∗ūs
k. (20)

For the design of ūs, let us to choose ūs
k such that ūs

steers σ̄k to 0 in finite time. Following the work in [10] and

[11], we use an implicit discretization of the continuous-time

control law. The discrete-time sliding variable dynamics is

given by (20) and ūs
k 2 −α Sgn(σ̄k+1). Inserting (19) in

(11), the dynamics of the nominal controlled plant is
(
x̄k+1 = (eAh +B∗(CB∗)−1C(I − eAh))x̄k +B∗ūs

k

σ̄k+1 = σ̄k + CB∗ūs
k.

Using the framework of generalized (set-valued) equations,

the discrete-time sliding variable dynamics is
(
σ̄k+1 = σ̄k + CB∗ūs

k

ūs
k 2 −α Sgn(σ̄k+1).

(21)

This has the same structure as in (14), although with the

important difference that we have here eσk+1 = σ̄k+1. With

this scheme the two control inputs are
(
ūeq
k = (CB∗)

−1
C(I − eAh)x̄k

ūs
k solution of (21).

(22)

This controller is causal since ūeq
k depends only on the model

parameters and x̄k. Moreover ūs
k is the unique solution to

(21) given that CB∗ > 0.

V. SIMULATIONS OF A 2 DIMENSIONAL SYSTEM

To illustrate the results obtained with different discretiza-

tion methods, let us simulate the following controlled system:

8
><
>:

ẋ(t) = Ax(t) +Bū(t)

σ = Cx

ū(t) = ūeq(t) + ūs(t)

A =

✓
0 1
19 −2

◆
,

B =

✓
0
1

◆
, CT =

✓
1
1

◆
.

(23)

The matrix A has the eigenvalues λ1 = 3.47 and λ2 =
−5.47. The dynamics on the sliding surface is given by ΠA,

which has eigenvalues 0 and −1. In the present Section and

the next one, we set α = 1. The initial state is (−15, 20)T .

The first set of simulations uses a timestep of 0.3 s for

the control and the second one a timestep of 0.03 s. The

simulations run for 150 s and were carried out with the

SICONOS software package [16]1. The figures were created

using Matplotlib [17]. The schemes presented in (12a)–(12c)

are used, as well as the two schemes in (13a) and (13b) for

the discretization of us, on the ZOH sampled-data version

of the system (23).

−15 −10 −5 0 5

x1

0

5

10

15

20

25

30
x
2

Explicit (ei)

Implicit (ii)

Midpoint (mi)

Exact (ex)

Positions at tk

(a) Implicit discretization of us. (ei) is for pair (12a), (13b); (ii) for
(12b), (13b); (mi) for (12c), (13b); (ex) for (22).

−15 −10 −5 0 5

x1

0

5

10

15

20

25

30

x
2

Explicit (ee)

Implicit (ie)

Midpoint (me)

Positions at tk

(b) Explicit discretization of u
s. (ee) is for pair (12a), (13a); (ie)

for (12b), (13a); (me) for (12c), (13a).

Fig. 1: Simulations of system (23) using different discretiza-

tion methods for ueq and with h = 0.3 s.

In Fig. 1 the motion in the reaching phase depends only on

discretization method used for the equivalent control ueq . It is

only near the sliding manifold that the discretization method

of the discontinuous control us plays a role. If the explicit

1http://siconos.gforge.inria.fr
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scheme in (12a) is used for the discretization of ueq , the

system diverges (Fig. 1, curves (ei) and (ee)). If the implicit

scheme in (12b) is used for the discretization of ueq , then the

discretization error may not affect stability but it can induce

some unexpected behaviour. As we can see in Fig. 1, curves

(ii) and (ie), the trajectories are crossing the sliding manifold.

This phenomenon can be explained by the following fact: let

∆σ̄k be the discretization error on ueq at time tk. We have

the recursive equation σ̄k+1 = σ̄k +∆σ̄k + CB∗ūs
k. Let us

consider the implicit discretization of us. If 0 < σ̄k < CB∗,

then the system should enter the discrete-time sliding phase.

However if ∆σ̄k + σ̄k < −2CB∗, then for any value

of ūs
k, σ̄k+1 < −CB∗. Hence, due to the discretization

error, ūs fails to bring σ̄k+1 to 0 and the trajectory of the

system crosses the sliding manifold. The same happens with

the explicit discretization of us. With the midpoint method

in (12c), curves (mi) and (me), and with the new control

scheme (22), curve (ex), the system reaches the sliding

manifold.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x1

−1.0

−0.5

0.0

0.5

1.0

x
2

Implicit (ii)

Midpoint (mi)

Exact (ex)

0 3.5e-17

0

-5.0e-17

(a) Implicit discretization of us

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x1

−1.0

−0.5

0.0

0.5

1.0

x
2

Implicit (ie)

Midpoint (me)

0 1.5e-01

0

-2.5e-01

(b) Explicit discretization of us

Fig. 2: Detail of Fig. 1, h = 0.3 s.

Near the sliding manifold (Fig. 2a and 2b), the state of

the system is more sensitive to the discretization of us. In

the implicit case (method (13b), Fig. 2a), in the discrete-time

sliding phase, σ̄k is very close to 0 (σ̄k = 0 with the exact

method). In each case, it converges to a small ball around the

origin (its radius is smaller than the machine precision). This

is visible on the zoom box in Fig. 2a, where markers indicate

the state of the system at each time instant tk during the last

second of each simulation. When the explicit method (13a) is

used, the system chatters around the sliding manifold, within

a neighborhood of order h (0.3 s here), see Fig. 2b.

In Fig. 3b, ūs takes its values in {−1, 1} and starts at some

point a finite cycle [8]. This is also visible on the zoom box

in Fig. 2b with the help of the markers. In Fig. 3a, for each

0 5 10 15 20 25 30

t

−1.0

−0.5

0.0

0.5

1.0

ū
s

(t
)

Explicit

Implicit

Midpoint

Exact

(a) Implicit discretization of us

0 5 10 15 20 25 30

t

−1.0

−0.5

0.0

0.5

1.0

ū
s

(t
)

Explicit

Implicit

Midpoint

(b) Explicit discretization of us

Fig. 3: Evolution of ūs for different discretization methods

for ueq , h = 0.3 s.

discretization of ueq , ūs converges to 0, which is the value

that us takes in the sliding phase. In the implicit and midpoint

cases, at the beginning of the discrete-time sliding phase, ūs

takes non zero values since there are discretization errors

on ueq . That is, if σ̄k = 0, σ̄k+1 6= 0. The discontinuous

control tries to bring σ̄k+1 to 0 and counteracts the error. As

the states goes to the origin, the error converges to 0. It can

be shown that the error is smaller in the midpoint case as in

the implicit case, as illustrated in these simulations. With the

exact method of Section IV, ūs goes to 0 after 1 timestep

in the discrete-time sliding phase. In terms of convergence

to the sliding manifold, the first closed-loop system to enter

the discrete-time sliding phase is the exact method (Fig. 3a),

then the midpoint, and the implicit method.

The next set of simulations uses the same parameters as

the previous one, except that for timestep which is smaller:

h = 0.03 s. In contrast with the results presented in Fig. 1,

the closed-loop system is stable is all cases (Fig. 4). The

discretization error is smaller and no trajectory crosses the

sliding manifold. It is not possible to distinguish the solutions

associated with the midpoint and exact methods in Fig. 4a.

In Fig. 5a with the implicit discretization of us, the states

converge again to a very small ball near the origin. In the

explicit case, there is some numerical chattering, again with

the same order of magnitude as the timestep (h = 0.03 s,

Fig. 5b). In Fig. 6a, with both the explicit and implicit

discretizations in (12a) and (12b), once in the discrete-time

sliding phase, ūs counteracts the discretization error on ueq ,

which is smaller than in Fig. 3a. The discretization error

for the midpoint discretization in (12c) is much smaller, and

its curve overlaps completely with the one with the exact

discretization method.
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Exact (ex)

(a) Implicit discretization of us

−15 −10 −5 0 5 10
x1

0

5

10

15
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x
2

Explicit (ee)

Implicit (ie)

Midpoint (me)

(b) Explicit discretization of us

Fig. 4: Simulations of system (23) using different discretiza-

tion methods for ueq and with h = 0.03 s

The results presented here bring into view the numerical

chattering caused by an explicit discretization of us, while

the implicit method is free of it. The importance of the

discretization of ueq is also illustrated, with the explicit

method leading to a diverging system and the counterintuitive

behaviour yielded by the implicit method. The exact method

from Section IV produces good results.

VI. PERTURBED CASE

We now add a perturbation ξ(t) in the system (23). To

take it into account, we just need to add a term pk :=R tk+1

tk
eA(tk+1−τ)Bξ(τ)dτ to the recurrence relation (11).

This yields:

x̄k+1 = eAhx̄k +B∗ūeq
k +B∗ūs

k + pk. (24)

In the next set of simulations, the perturbation is ξ(t) =

0.7exp
⇣

−1
(ūeq(t)+ūs(t))2

⌘
sin(2πt). Note that kξ(t)k  0.7.

This particular ξ has been chosen to highlight that with

the implicit discretization, ūs goes to 0, whereas in the

explicit case, ūs continues to switch between −1 and 1.

With the implicit discretization of us (Fig. 8a) the closed-

loop system enters the discrete-time sliding phase at some

point. Then it takes such values to counteract the effect of the

perturbation, hence imitating the continuous-time Filippov

solutions. However the trajectories are now clearly only in a

neighborhood of the sliding manifold. Finally in each case

in Fig. 8a, ūs
k settles to 0, as in continuous time. Indeed,

with the perturbation ξ used in this simulation, it goes to 0

exponentially fast with respect to the control inputs. On the

other hand, with an explicit discretization of us (Fig. 8b), it

is much harder to witness the influence of the perturbation

on ūs since filtering would be necessary to see the effect.

−0.1 0.0 0.1 0.2 0.3
x1

−0.4

−0.3

−0.2

−0.1

0.0

0.1

x
2

Explicit (ei)

Implicit (ii)

Midpoint (mi)

Exact (ex)

0 6.0e-18

0

-1.0e-17

(a) Implicit discretization of us

−0.1 0.0 0.1 0.2 0.3
x1

−0.4

−0.3

−0.2

−0.1

0.0

0.1

x
2

Explicit (ee)

Implicit (ie)

Midpoint (me)

0 2.0e-02

0

-5.0e-02

(b) Explicit discretization of us

Fig. 5: Detail of Fig. 4, h = 0.03 s.

VII. CONCLUSION

In this note a new discrete-time sliding-mode control

scheme is proposed, which is error-free in the discretiza-

tion of the controller ueq . This, along with several time

discretizations of the classical ECB-SMC method, are anal-

ysed from the point of view of their ability to alleviate or

suppress the numerical chattering. The analysis is essentially

led from numerical simulations obtained with the INRIA

software package SICONOS. In particular the influence of

the discretization method of the state-continuous equivalent

controller is studied, as well as the one of the discontinuous

part of the input (explicit versus implicit discretizations). The

nominal and perturbed cases are considered. The simulation

results indicate that the use of an explicit discretization

for the discontinuous part of the input yields numerical

chattering. This is not the case when using an implicit

discretization. We also provide an example where the use

of an explicit discretization of ueq makes the closed-loop

system diverge, whereas with the others methods it attains the

sliding surface. Further results on discretization performance

and stability can be found in the report [18].
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