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1 Introduction

Databases that contain confidential information require that users can access
- directly or indirectly - only data for which they have the proper authoriza-
tion. Direct data accesses are usually controlled by some form of lattice-based
(mandatory) access control mechanisms [BL75,Den76]. Each data request is eval-
uated by comparing the security level of the requested data with the security
clearance of the user. If the security requirements are satisfied (i.e., the user’s
security clearance dominates the security classification of all data) the data ac-
cess is permitted. It is rejected otherwise. However, lattice-based access control
is insufficient to prevent secrecy violations via inferences when non-confidential
data is combined with meta-data to derive confidential information. Moreover,
the strict security requirements of mandatory access control may unnecessarily
limit data availability. In a number of applications it is desirable to provide a
range of valid answers that would still allow the users to perform their jobs with
limited authority while preserving confidentiality. For example, military support
services should be able to perform scheduled maintenance work without knowing
the mission (e.g., destination) of the serviced equipment. This paper provides
a framework to define flexible security requirements on data and presents algo-
rithms that compute correct and safe answers to queries. Intuitively correctness
means that the actual data item is contained in the returned interval, and safety
means that the user is not able to infer anything beyond what is released.
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Fig. 1. Military Attack Plan

Most indirect data accesses result from inferences combine non-confidential
data with constraints. We illustrate an illegal inference using a military database



that contains data about different military units, such as types and specifications
of their vehicles, destination distance, fuel and food supply (see Table 1). Assume
that the attack strategy is that units B and C from the south engage in a long-
term attack with the main force of the enemy; while, unit A, that is equipped
with light weapons and thus able to move fast, is summoned from the north to
launch a surprise attack on the unprotected northern front of the enemy. Fig. 1
shows the geographical locations of the units and the planned attacks. It is
necessary that only authorized officers of the command center and of the units
A, B and C know about the surprise attack. However, keeping the military
plan secret does not guarantee the secrecy of this information. Consider the
situation when an enemy spy is able to gain information about the amount of
fuel requested by the different units. Since the number of the vehicles of the units
and the mileages of these vehicles are usually known, the amount of available
fuel defines the maximal travel distance and, therefore the potential destination
of units. In our example, the knowledge of the destination of unit A would reveal
the attack plan, thus reducing the strategic advantage of surprise.

How can we prevent such inferences? One possible solution is to keep fuel
volume secret. However, this would severely limit data availability and require
that all users accessing this information must be authorized to access information
about the military plan as well. In this paper we present a different approach
where users are allowed to access a range of possible data values but not the
precise value. This flexible solution allows us to preserve confidentiality and
provides improved data availability compared to the previous approaches.

The inference problem in databases first was considered in statistical databases
where the security requirement is that aggregate information about groups of in-
dividuals can be released but no specific information about an individual should
be accessed (see Denning [Den82] for survey). Illegal inferences revealing pri-
vate information are based on the size of the database used to compute the
statistics (e.g., number of individuals is a group) and/or the overlap among the
queries requesting related information. However, researchers do not consider in-
ferences raised by combining meta-data with non-confidential data to disclose
confidential information. Since the beginning of 1980s, researchers, focusing on
multi-level secure relational databases, identified the problem of indirect ac-
cess to confidential data via combining meta-data with non-confidential data
[GM84,Mor88,5087,Hin88,Smi90,Buc90,Den85,Thu87,MSS88,RJHS95,ST90].
However, these techniques often result in over-classification of data and, there-
fore reduce data availability. Moreover, most authors, with the exception of
[Den85,Hin88,5091,DdVS99a,DdVS9I9b], do not consider the problem of actual
inference for specific families of constraints; rather they develop a framework as-
suming that disclosure inference algorithms are readily available. It is our view,
however, that the main technical difficulty of solving the inference channel prob-
lem lies in developing inference algorithms that guarantee data confidentiality.

Finally, the existing inference prevention techniques, with the exception of
[RIJHS95], are based on withholding answers from the users. We propose a new
approach where confidentiality in numeric databases is achieved by controlling



the accuracy of the released data. Our model guarantees that no illegal data ac-
cess is possible even in the presence of database dependencies while supporting
maximal data availability. The work of Rath et. al [RJHS95] is the closest to
ours. They consider functional dependencies (FDs) to raise illegal imprecise in-
ferences in databases containing numeric values. While their approach is secure,
it is limited in the sense of considering FDs only and does not define security
requirements in the context of range values.

In this paper we consider a data model consisting of a set of variables. A
database is an instantiation of values to the variables that satisfies the database
(arithmetic) constraints. The database is represented as a single point in an (n+
k)-dimensional space, where n is the number of data items stored in the database
(extensional database) and k is the number of values that can be derived from the
stored data (intensional database).! The arithmetic constraints over extensional
and intensional data form an (n + k)-dimensional constraint object. When a
user requests a data value a range of possible values, represented as two new
constraints, are generated and returned to the user.

The security requirements on the data items are expressed by the accuracy
with which users are allowed to know the data values. To the best of our knowl-
edge, this is the first paper that introduces a security model in which the classi-
fication of the data items is based on the precision of numeric answers and thus
continuous. We propose two methods to assign security classification to the data
items: first, the entire volume of the constraint object that contains the data
item is considered; and second, the length of the interval that contains the data
item is considered. While volume-based classification is easier to implement than
the interval-based one, the second technique is more flexible and it allows higher
data availability. For both methods we develop algorithms that generate query
answers which are correct (i.e., the data item is within the returned interval)
and safe (i.e., the user is unable to infer which point within the answer is the
actual data item).

The organization of the paper is as follows. In Section 2 we give a detailed
description of the considered problem and provide intuitive explanations of the
concepts involved. In Section 3 we formally define the considered model and the
security requirements. Sections 4 and 5 contain the algorithms to generate correct
and safe query answers for volume and interval based classification methods,
respectively. Finally, in Section 6 we conclude and recommend new directions to
extend our research.

2 Problem Formulation

This paper formalizes a security model applicable to numerical databases when a
database instance is a vector of numerical values. Users and data items have se-
curity classifications. Users (subjects) can access data (objects) through queries.

1émMVote, that the real underlying database may adhere to any existing model, e.g.
relational or object-oriented.



Queries over numeric data return an interval of valid answers, such that the ac-
tual data is contained in the interval. The size (length) of the interval (i.e., preci-
sion of the released data) depends on the security classification of the requested
data and the security clearance of the user. Precision of released information can
be measured either by the length of the returned data interval or by the volume
of the valid constraint space defined by this interval. The system presented in
this paper ensures that the interval-based query answers do not allow the users
to infer any unauthorized information. The research problem is formulated in
terms of the following components: (1) data model of which the (numeric) in-
stances consist of objects of discourse, (2) arithmetic constraints imposed upon
the database, (3) security classifications of users and data items, and (4) queries
requesting numeric values.

The next section provides an example that will be used throughout this paper
for illustrative purposes.

2.1 The Running Example

Consider the military database containing information about units A, B and
C mentioned in the Introduction. It contains information about the number of
vehicles, amount of fuel, destination distance, food supply, number of soldiers
etc, as shown in Table 1. Some of these attributes are such as amount of fuel
are stored, while others such as the travel range is derivable. In addition, the
database is expected to satisfy the following constraints.

number of soldiers < 10,000
amount of fuel < 20,000(gallon)
number of vehicles > 45

3 x amount of fuel > travel range (miles)

Users of the database are generals, military planners, field commanders, field
soldiers, supply supervisors, supply personnel, press and general public. Based
on their rank and tasks, users have different access rights to data items. For
example, generals are allowed to access all the data in the database while supply
personnels are allowed to access information related to supply but can not access
information about the field information of the units.

The queries in our model request numerical values, such as amount of fuel
used by the military unit A. Based on the data confidentiality (security classi-
fication) the answer is a range of values. In calculating the returned range, we
ensure that the user cannot infer other attribute ranges such as the travel range
of the military unit A more precisely than allowed by the security model. Note
that we assume that all constraints are known to all users revealing additional
information to the users about valid database values.



3 Data Model, Queries and Security Requirements

3.1 Data Model

The data model consists of two sets of attributes of numerical type, and a set of
constraints over them.

Database Each entity of our model consists of a set of n attributes that are
directly stored in the data base. Furthermore, there is a set of k& derivable at-
tributes, not stored in the database. Consequently, every entity is viewed as a (n+
k)-dimensional vector (ai,...,@n,@nt1 - - - Gnyr) Of numerical type. We say that
(n + k) is the dimension of the data model. The set z1,...,Zn, Tnt1 ... Tptr Of
variables represents attributes, and z; | a1,...,Zn | G, Tnt1 | Gngty - s Tntk |
an+k represent instantiations of values aq, ..., ap4+ to the variables. In the run-
ning example the attributes (variables) are unit name, soldiers, food supply, fuel,
number of vehicles, destination, fuel/vehicle, and travel range. The database is
given in Table 1. As stated, the derivable attributes are not stored explicitly
in the database, but can be computed from publically available statistics, and
the values stored in the database. We use both derivable and explicitly stored
attributes without distinction.

Stored Attributes Derived Attributes
Unit |Soldiers|Food Suppl.| Fuel |Number|Destination|Fuel/Vehicl.|Travel Rng.
Name (days) | (gals)| Vehicl. | (miles) (gals) (miles)
A 1000 10 15,000 75 400 200 600
B 500 18 7,000 | 140 85 50 150
C 100 25 3,000 45 67 60 180

Table 1. A Database of Military Operations

Arithmetic Constraints We consider conjunctions of arithmetic constraints
of the following forms:

flxy, 2o, Tn, Tpgty e oy Tngk) > b

flri, @, Tp, Tty Tprk) > b

where f is a function, z1,...,Z, are variables, and b is a real number.?

Let C' be the conjunction of constraints of the above forms over variables
TlyeeeyTyy Tpgly- .-, Lotk C defines an (n + k)-dimensional constraint object,
that is all possible instances of database entities that satisfy C.

18mVote that the conjunction of a finite number of arithmetic constraints of the above
form can express equalities as well.



Consider our military example again. Fig. 2 shows the valid constraint space
(possible instances) of the database over attributes amount of fuel (per vehicle)
and the destination. The point A(400,200) correspond to the instance of unit
A, where the available fuel is 200 gallons for each vehicle and the destination
distance is 400 miles. Clearly, A(400,200) satisfies the constraints.

Fuel/vehicle -
(gallons) 1 travel range<=3xfuel
fuel <=444
400 - l
300 -

travel range <=1332

200 1 S0 200

100

t t
200 400 600 800 1000 1200 1400 D&?i r_llati())n distance
miles)

l:l Valid constraint area

A(400,200) Database instance for unit A

Fig. 2. Fuel and travel range data of the military database

Queries and Answers We consider queries where a user requests a particular
data value of z;, i.e., the coordinate (a;) of the database along the z; axis.
The answer to the query is an interval I = [a;,,a;,] of data values, such that
ai, < a; < a;,. The query answer can be viewed as two new constraints of the
form a;, <z; and z; < a;,. The data revealed by the answer of the query is the
new constraint object C’ defined by C'A (a;, < x;)A(z; < ay,). C' is a restriction
of the original constraint object C.

3.2 Security Model

Multi-level secure relational database systems contain data classified at differ-
ence security levels. Users of the database have security clearances assigned.
Security classifications and clearances are expressed by security labels that con-
tain two components:(1) a hierarchical component (e.g., top-secret < secret <
unclassified) and (2) a non-hierarchical categories (e.g., { supply, press, field-
info }). Security labels form a lattice structure with the dominance (<) among



the labels. A data access is permitted if the security clearance label of the user
dominates the security classification label of the requested data items. For exam-
ple, in our model, the attribute destination distance of unit A could be classified
as (top-secret, field-info) and only officers with security clearances that domi-
nates (top-secret, field-info) are allowed to access this data, e.g., generals, with
security clearance (top-secret,{press,supply,field-info} ). However, supply officers
with security clearance (top-secret, supply) are not allowed to access this data.

For simplicity, we assume that the subjects of our security model are the
users.? To define the security objects of our model, it is necessary to understand
what information a user gains if a query is answered. Let us give an intuitive
explanations before formally defining the objects and their security classifications
of our model.

Originally a user knows:
— The (n+k) -dimensional constraint object C.
— The data instances satisfy C.
— If C is bounded for a data value of z;, then the value of z; must be in the
interval [min(a;), max(a;)], where min(a;) and maz(a;) are the smallest

and largest possible values of z; defined by C.
After Answering a Query that is an interval [a;, , a;,] containing a;, the value

of x; the user knows:
— (', the restriction of C by the two new constraints a;;, < z; and z; < a;,.
— The database is a point within C”.
— If C' is bounded for a data item z’, than the value of ' must be in the
interval [a',a"], where a’ and a” are the smallest and largest possible
values of z' defined by C’.

Intuitively, the size of the constraint object (or its projection) known by the
user to contain the database represents how accurately the user knows the actual
data value. The smaller the volume (projection), the more accurate the user’s
knowledge about the actual data values. We assume that all possible instances
of an entity within a constraint space have the same probability to be the actual
database, i.e., the database is uniformly distributed within the constraint object.
We use the properties of the constraint object, such as volume, projection, to
define the security requirements on the data items.

Definition 1. (Volume and Projection of a constraint Object)

Let C be an (n + k)-dimensional constraint object. The volume of C' is defined
as the volume of the (n+ k)-dimensional geometrical shape. The projection of C
on azis x (data item x) is an interval a1, as], where a1 and ay are the minimal
and mazimal values along the © axis defined by C.

In this papers we present two approaches to define the security of objects in
our database. First, we use the volume of C as the security object. While this
method is simple and can be easily implemented, it does not allow to assign
different sensitivity levels to the different data items. * Second, we propose a

18WJsually in security, a distinction is made between the users and the principals (sub-
jects) acting on behalf of them.
1é8ame as database level of security granularity in relational databases.



security classification based on projections of C' to represent the security restric-
tions on the individual data items. This method is enhanced by a probability
measurement that incorporates the shape of the constraint object, which is not
reflected in the projection. The second approach allows not only the assignment,
of different security classifications to the individual data items but also, to rep-
resent, partial disclosure. The following sections contain the detailed descriptions
of the two methods and algorithms that generate safe query answers according
to the security restrictions.

4 Security by Volume

In this section we present a security model in which the absolute volumes of
the disclosed (known by the user to contain the database) constraint objects are
used to represent the sensitivity of the database.

Definition 2. (Volume Objects)

Let ly,...,lr be a set of security labels and C' a constraint object with volume
V. For each security label l;, + = 1,...,k we create a volume object, denoted by
Vi, , as follows:

1. Vi, <V, ie., the volume object must be smaller than the volume of the
constraint object.

2. If I; < Ij then Vi, > Vy,, i.e., volume objects at lower security levels can not
be smaller than volume objects at higher security level.

The secrecy of the database is violated if a user with security clearance I;
is able to disclose a constraint object with volume less than V;;. We propose
a security mechanism based on controlling the volume of the constraint object
disclosed by the user. For this approach it is necessary that the original constraint
object C is bounded from every direction.

To visualize the security classifications, consider Fig. 2. The shaded area
defines the valid data values. Since knowing that the database must satisfy the
constraints, the user knows that the available fuel per vehicle cannot exceed
444 gallons (maximum 20,000 gallons fuel available for each unit divided by the
minimum number of vehicles 45 for each unit) and, therefore, the maximal travel
distance (3 times the available gallons of fuel per vehicle) is less than or equal
to 1332 miles. The actual value of available fuel for each vehicle of unit A is 200
gallons, and the destination distance is 400 miles. The total volume of the valid
constraint space is 295,704.

Assume, that in addition to the constraints of the database, the user knows
that the amount of fuel available per vehicle is between 150 and 300 gallons.
Clearly, the user’s knowledge about the fuel is more accurate now than before.
The darkly shaded area of Fig. 3 shows the new constraint object C' after the
addition of 150 < fuel/vehicle < 300. The volume of C" is 101,250. The increase
of the user’s knowledge about the data value is reflected by the decrease of
the size (volume) of constraint object. Observation of the reduced constraint
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Fig. 3. Restricted constraint object

object indicates that the user also gained information about travel distance.
The maximal travel distance cannot exceed 900 miles.

Definition 3. (Correct, Safe and Efficient Query Answer by Volume)

Let DB be the database, x the data item in DB requested by the user, | the
user’s security clearance, C the constraint object known by the user to contain
the database, and V| the volume object at security level l. A query answer [ay, as]
is

1. Correct if a € [a1, az], i.e., the actual data value a of x is within the returned
interval.

2. Safe if the query answer does not violate the security requirements, i.e., if
C' is the new constraint object C A (a1 < x) A (x < az) with volume V' then:
(a) V' >V and
(b) DB is uniformly distributed in C', i.e., the user knows only that the data

item satisfies C'.

3. Efficient if given l; < and Vj, the volume object at security level I; V' <V},

i-e., released information is more accurate at higher security level.

The algorithm given in Fig. 4 generates a correct, safe and efficient query
answer. It uses a random number generator based on the uniform distribution.
To ensure that the algorithm terminates, we use a threshold value 100,000 to
limit the number of trials to generate correct, safe, and efficient query answer.
If no such answer is found, the algorithm returns a default answer, that is the
minimal and maximal valid values defined by the constraint object.



Theorem 1. Algorithm 1 (1) terminates and returns a (2) correct, (3) safe and
(4) efficient answer according to Definition 3.

Proof. 1. Termination: straightforward by Step 3.

2. Correctness: By the construction of points a; and as in Steps 3.b and 3.c, re-
spectively, Algorithm 1 ensures that the data value a is within the generated
interval.

3. Safety: (a) By comparing the volume of the restricted constraint object V'
with the volume object V; in Step 6, Algorithm 1 ensures that V' is not
smaller than V;. (b) By using a random number generator based on uni-
form distribution, any point within the restricted constraint structure C'
has the same probability to be the database, i.e., the database is uniformly
distributed within C". Also, since any new information about a data item is
fully contained in the previous answers thus no possibly hazardous overlap
can occur.

4. Efficiency: Follows from step 7.11.a.

Returning back to our running example, assume that the answer given as a
result of a query made by a user with clearance (secret,press) for the amount of
fuel used by unit A is [150, 300], as given by Fig. 3. Furthermore assume that the
volume objet associated with this security level is Vi ecret,press) = 150, 000. Since
the volume of the restricted constraint object as given is 101,250, the answer is
correct, safe, and efficient (but not optimal).

5 Security by Interval

Similarly to the previous section, the information disclosed by a user is reflected
in the constraint object by this users. However, in this section we explore a
flexible security classification that is based on the projection of the constraint
object on the data items. The proposed method allows the security officer to
individually classify each data item.

First, let us give an intuitive example. Consider the military database we
presented earlier and assume that the travel range is more sensitive than the
amount of fuel, e.g., the enemy (public) is not allowed to deduce the travel range
with accuracy of 200 miles, while fuel information is allowed for release within 50
gallons range, e.g., each vehicle has fuel between 180 and 230 gallons. However,
by releasing this fuel information, the travel range is reduced to 690 — 540 = 150
miles. While the security requirement is satisfied for fuel, it is clearly violated
for travel range.

Moreover, it is possible, that the security officer would like to consider dis-
closures, where the data item is not fully disclosed within a given interval size
but has high probability. Note, that we assumed that originally the database is
uniformly distributed within the constraint object C. Because of this uniform
distribution, the probability that the database is within a sub-object C’ of C
is proportion to the volumes of C' and C. For example, if the the volume of C
is V and the volume of C’ is V', the probability that the database is contained



Algorithm 1: Query Answer by Volume

INPUT e User’s query (@ requesting data item x
e User’s previous query answers qi, ..., qm
e User’s security clearance [
e Constraints object C known by the user to contain the DB
e Database point DB
e Volume objects Vi,,...,V,
OUTPUT e Answer to @
e Restricted constraint object C’

METHOD 1. If qi,...,qm contains an answer [a], ab] for data item z, then
(a) Return [a},a’] as the answer.
(b) Generate C" as C' =C.
2. Initialization:
(a) Let a’ be the smallest and a’’ the largest possible value of = defined by C.
(b) r=0
3. If r > 100,000 then Return [a’,a"] as default answer.
Else Generate two points a; and a2 as follows:
(a) Let a be the actual value of data item =z
(b) Randomly pick a1 from the interval [a’, a]
(c) Randomly pick as from the interval [a,a”]
4. Generate two linear constraints:
(a) a1 <=
(b) = <a-
5. Generate the new constraint object C' = C' A (a1 < z) A (z < a2)
Calculate volume V' of C'
7. Verify security requirements:
L. If V' smaller than V; (security requirement is violated) then
(a) r =7+ 1 and return to 3
II. Else (security is not violated) then
(a) If Vi < V' where Vj is the volume object at security level I’ such that I' <1
then (more accurate answer is possible)
r =r + 1 and return to 3
(b) Else
i. Return [a1,a2] as the answer to the query
ii. Store C' as the new constraint object known by the user.

B

Fig. 4. Query Answer by Volume



in C" is V'/V. This observation allows the security officer to protect data from
partial disclosures. For example, we can assign that users with unclassified se-
curity clearances are not allowed to know the travel distance within 100 miles
with probability 85%.

Definition 4. (Interval objects)

Let xy1,...,x,4k be a database, ly,... 1, a set of security labels and C' a con-
straint object with volume V. For each data item x; ¢ = 1,...,n+k and for each
security label I, j = 1,...,h we create an interval object, denoted by (I;,,p;;),
as follows:

1. I;; defines the smallest interval length (accuracy) with which users with se-
curity clearances l; are allowed to know the value of x; with probability p;, .

2. Ifls <, and p;, = p;, then I;, > I;_, i.e., interval size of an object at a low
security level can not be smaller than the interval size of the same object at
high security level.

3. Ifls; <. and I;, = I;, then p;, < p;,., i.e., if two interval sizes of a data
item are the same at different security levels, then the high security level can
not have lower probability assigned to than the low security level.

Intuitively, given a data item x and its interval object (I, p) at security level
[, the secrecy of z is violated if a user with security clearance [ is able to disclose
a constraint object C' such that C contains a sub-object C', with projection size
on z smaller than or equal to I, that contains the database with probability
higher than p.

Definition 5. (Correct and Safe Query Answer - Interval)

Let xy,...,x, 11 be the database, x; the data item in DB requested by the user, |
the user’s security clearance, C' the constraint object known by the user to contain
the database, and (I1,,p1,), .-, (Intk;, Pntk,) the interval objects of data items
TlyenyTiy.ny Tntk of security level . A query answer [ay, as] is correct and safe
if

1. Correct: a € [ay,as], where a is the actual data value of x;.

2. Safe: the query answer does not violate the security requirements, i.e., if C'

is the new constraint object C A (a1 < x;) A (z; < a2) with volume V' then

(a) C" does not contain a sub-object C; with projection size I} on data item
zj such that I} < I, j =1,...,n+k and volume V], such that V;/V'
greater than p;, and

(b) DB is uniformly distributed in C', i.e., the user knows only that the
database is any point within C'.

We propose a security mechanism to control the length of the answer interval
returned to the user ensure that the security requirements are satisfied. This
approach does not require that the original constraint object is bounded.

Theorem 2. Algorithm 2 (1) terminates and returns a (2) correct and (3) safe
query answer according to Definition 5.



Algorithm 2: Query Answer by Interval

INPUT 1.

OUTPUT

User’s query requesting data item z

. User’s previous query answers qi,. .., qm

. User’s security clearance [

. Constraints object C' known by the user

. Database point DB

. Set S of Interval objects of the form (I;,p;)

Answer to Q

. Restricted constraint object C’

METHOD 1.

10.
11.
12.

13.

If q1,...,qn contains an answer [a},a5] for z then

(a) Return [a},a%] as the answer

(b) Generate C' as C' = C

. Initialization:

(a) Let a’ be the smallest and a’’ the largest possible value of = defined by C.

(b) r=0

If r > 100,000 then Return [a’,a’'] as default answer.

Else Generate a random length [

Randomly pick a point a1 in the interval [a — [, a] (starting point of the answer),

where a is the actual value of = in the database.

. If a1 < a' then (security is violated) then

r =1+ 1 and return to Point 3.

If » > 100,000 then Return [a’,a"] as default answer.

Else Generate a random length [’

If I' <1 (incorrect answer) or I’ < I; (security is violated) then

r =r + 1 and return to Point 6

Else generate a2 = a1 + I’ (end point of the answer)

If a> > a” then (security is violated) then

r =r + 1 and return to Point 6.

Generate two linear constraints:

(a) a1 <=z

(b) = <a-

Generate the new constraint object C' = C A (a1 < z) A (z < a2)

Calculate volume V' of C'

Verify security requirements for every data item y in the DB

If there exist a sub-object C} of C’ such that

(a) | C |y< I, where | Cj |, is the projection of C; on y and Iy, is from (Iy,,py,,
and

(b) VI/V' > 1,

then (security is violated) r = r + 1 and return to Point 3

Else (security is not violated)

(a) Return [a1,a2] as the answer to the query

(b) Store C' as the new constraint object known by the user.

Fig. 5. Query Answer by Interval




Proof. 1. Termination: straightforward by Step 3 and 6.

2. Correctness: By the construction of lengths | (Step 3), I’ (Step 6) and the
points a1 (Steps 4,5) and a» (Steps 7,8), Algorithm 2 ensures that the data
value a is within the generated interval.

3. Safety: (a) By verifying for every data item that no disallowed interval object
is disclosed (Step 12), Algorithm 2 ensures that the security requirements are
not violated. Further, (b) by using a random number generator based on the
uniform distribution, any point within the restricted constraint structure C'
has the same probability to be the database, i.e., the database is uniformly
distributed within C’. Similarly to the security classifications via volume
objects, note that any new information about a data item is fully contained
in the previous answers thus no possibly hazardous overlap can occur.

Note, that since we do not enforce any restriction on the correlation of interval
size and probability we can’t define efficient answer similarly to the volume based
model. However, if one of these measurements are fixed, e.g., all interval objects
given with 0.8 probability, we can define effective answer similarly to the volume
based method.

6 Conclusions

We have presented a model to specify the accuracy with which users are al-
lowed to access numeric values. As shown, restrictions can be enforced either on
the volume of the disclosed constraint object that surrounds the protected data
items, or on the interval of a specific data value. While volume based accuracy
is easier to enforce than the interval based one, the later provides more flexibil-
ity, therefore improved data availability. We developed algorithms to compute
correct and safe answers to queries for both measures of accuracy.

Finally, we conclude by recommending further research directions. Currently
our algorithms provide an effectively accurate answer that is not optimal, i.e.,
the most accurate value allowed to the user. While we believe it is impossible
to provide a general algorithm that generates safe, correct, and optimal query
answer such a method may exist for restricted families of arithmetic constraints.
Also, in this paper we considered queries that request the value of a single data
item. Our work could be extended to incorporate queries requesting several data
items simultaneously and incorporating selection conditions. Finally, the interval
based accuracy can handle sets of sensitive intervals and probabilities for each
data item. For example, a data item z may be accessed by a user only if none
of the classifications (Ip,, Pz, ), - - -, (T2, , Pz, ) is violated.
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