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An optical encryption method based on a geometrical phase produced by space-variant polarization manipu-
lation is presented. The decrypted picture is retrieved either by a polarization measurement of the beam
emerging from the encrypted element or by a single intensity measurement of the beam transmitted
through the encrypted element followed by an optical key element. Both elements are realized by use of
computer-generated space-variant subwavelength dielectric gratings. Theoretical analyses of the optical
concept are presented along with experimental results. © 2005 Optical Society of America

OCIS codes: 050.2770, 260.5430, 999.9999.

In the past few years there has been increased inter-
est in data security and a growing need for improved
methods for data encryption. The increasing demand
for better and faster security devices is a result of the
problems created by unauthorized users and com-
mercial spies gaining access to communication net-
works. One of the processes that has been extensively
investigated is the optical encryption technique. Sev-
eral advantages of optical encryption over conven-
tional digital encryption include real-time encryp-
tion, high space-bandwidth product, difficulty in
unauthorized decryption, portability, and the possi-
bility of using biometrics. Different optical encryp-
tion schemes have been suggested, for example
schemes involving pure amplitude image encoding.
Other encryption schemes involving phase-only im-
ages were explored to improve the decrypted image’s
v151b111ty Both methods use double-random phase
encryption, a technique first presented by Refregier
and Javidi.1 Since the two methods record the com-
plex field information by interference, they are un-
stable and cumbersome. Mogensen and Gliickstad
proposed polarlzatlon encryption using spatially
modulated retardation,® whereas Unnikrishnan et al.
proposed polarization encryptlon using a spatially
modulated azimuthal angle Polarization encryption
provides additional flexibility in the key encryption
design by adding a polarization state manipulation to
the conventional phase and amplitude manipulation
used in the former methods.

In this Letter we propose an approach for polariza-
tion encryption using geometrical phase modification.
Geometrical phases originate from polarization state
mampulatlon as anticipated by Pancharatnam® and
Berry.® Recently, we demonstrated the formation of
complex polarization state manipulation by using
computer—generated space-variant subwavelength
gratings (SWG).” We have also shown that such po-
larization state manipulations inevitably lead to a
phase modification of geometrical origin.g’9 Geometri-
cal phase encryption, which is realized by use of a
SWG, results in a robust and stable encryption
scheme while applying an element that can be
achieved by use of a single lithographic process.”®
The method is suitable for chip integration and can
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be applied to personal securlty cards, e.g., credit
cards or identification cards.'

SWGs are considered to be wave plates with con-
stant retardation and space-varying fast axes, the
orientation of which is denoted by 6(x, y) 8 The real-
ization procedure of the SWG involves the fabrication
of a mask. Figure 1(c) is a magnified illustration of
the subwavelength grating mask of the encrypted im-
age. The primary image is shown in Fig. 1(b). To en-
crypt a primary image, we need to form a SWG that
encodes the image intensity while incorporating a
random key function. The SWG, which is a space-
variant rotating wave plate, imprints the image in-
tensity along with the random key function in the lo-
cal orientation of the wave plate’s fast axes.
Decryption is then performed by illuminating the en-
crypted element with circularly polarized light and
retrieving the primary image by analyzing the
emerging Stokes parameters using the correct key, as
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Fig. 1. (a) Schematic representation of the concept of geo-
metrical phase encryption. (b) Primary image intensity to
be encrypted. (c) SWG mask of the central region of the
SWG. (d) The wave plate’s orientation function, 6, of the
key element is shown in grayscale. (e) Measured polariza-
tion state of the beam emerging from the encrypted ele-
ment taken from the central region. (f) Scanning electron
microscope image of the encrypted element taken from a
small region in the element.
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shown in Fig. 1(a). Alternatively, instead of using the
function of the correct key in the analysis, we can in-
sert a SWG into the optical setup to serve as a de-
cryption key. Since this decryption method, which is
explained below, involves only a single measurement,
the analysis is much simpler.

It is convenient to describe SWGs by using Jones
calculus. We find the space-dependent transmission
matrix for the SWG, T, by applying the optical rota-
tor matrix, R(6(x,y)), to the Jones matrix of a wave

plate, W, i.e.,
Tc =R 6(x,y) JWR[6(x,y)].

By transforming the space-dependent transmission
matrix to the helical bases using the helical transfor-
mation matrix U, in which T=U"1TU, we obtain

te+t,exp(id)[1 0| ¢,—t, exp(iep)
2 0o1]" 2

0 expli20(x,y)]
% exp[—i26(x,y)] 0 Y

where T is the space-variant transmission matrix in
the helical bases, ¢, and ¢, are the real amplitude
transmission coefficients for the light polarized per-
pendicular and parallel to the optical axes, respec-
tively, and ¢ is the retardation of the wave plate.
Thus, for an incident wave with right-handed circu-
lar polarization and unknown distributed complex
amplitude that follows the paraxial approximation,
we find that the resulting field is

|Eou) = 7r|R) + 771, exp[— i26(x,y)]|L), (2)

where nr=[t,+t, exp(i$)]/2 and nL=[t,
—t, exp(i¢)]/2 are the complex field coefficients, and
IR)=(10)T and |L)=(0 1)” represent the right- and
left-handed circularly polarized components in the
helical basis, respectively. From Eq. (2) we see that
the emerging beam from a SWG comprises two polar-
ization orders. The first maintains the original polar-
ization state and phase of the incident beam, and the
latter is left-handed circularly polarized and has the
phase modification of —26(x,y). The phase modifica-
tion of the |L) polarization order originates solely
from the local changes in the polarization state of the
emerging beam, and is therefore geometrical in
nature.”™

Let us assume that a SWG with a space-varying
wave plate orientation function of 6;(x,y) encodes the
primary image depicted in Fig. 1(b). The relationship
between the primary image intensity I and 6, is as-
sumed to be 6;=al(x,y), where a is a constant. To fur-
ther encrypt the encoded primary image information
embedded in the SWG, we add a random rotation
function, 6,(x,y), to the space-varying wave plate’s
orientation. This random rotation factor serves as an
encryption—decryption key. The orientation function
of the wave plates, which serves as the encrypting
key, 6,(x,y), is shown in grayscale in Fig. 1(d). To de-
crypt the primary image, we first illuminate the en-

T(x,y) =
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crypted SWG with |R) polarized light. The beam
emerging from the encrypted element is a vectorial
interference between two different polarized beams,
as can be seen from Eq. (2). The geometrical phase
added to the |L) polarized beam equals—(¢;+¢y),
where ¢;=26,(x,y) and ¢,=26,(x,y) denote the
phases of the encoded primary image intensity and
the encoded key, respectively.

To retrieve the primary image’s geometrical phase
we need to measure the Stokes parameters of the
beam emerging from the encrypted element. The
Stokes parameters of a fully polarized light (S,—Sj)
are calculated from three intensity measurements.
These measurements are taken when the transmit-
ted light is passed through a polarizer with its axis
oriented at 0° (1), 45° (I45), and 90° (Iyo). A camera is
used to capture the intensity pictures. The relations
between the Stokes parameters and the measured in-
tensities are Sq=1y+1gy, S1=1y—1Ig, and Sy=21,5—-S,,
where

SO = |<Eout|R>|2 + |<Eout|L>|2a
Sl =2 Re{<Eout|R><L|Eout>}’

S2 =2 Im{<Eout|R><L|E0ut>}’

where Re{} and Im{} denote the real and imaginary
parts of the expression inside the braces and (a|f)
denotes the inner product. By using the Stokes pa-
rameters calculated above and by applying the geo-
metrical phase key, we can retrieve the phase func-
tion (¢;) of the primary image, such that

¢; = arctan(So/S) — arg{nr 7L} — ¢, (3)

where arg{} denotes the argument of the expression
in the braces and an asterisk denotes the complex
conjugate. Since the emerging beam is fully polar-
ized, the fourth Stokes parameter, Sj, is not required.

To test the concept we formed an encrypted ele-
ment, encrypting the primary image intensity de-
picted in Fig. 1(b) by use of an advanced photolitho-
graphic process.7 The encrypted element comprised
20 X 20 pixels, each pixel having dimensions of
500 um X 500 um. The SWG, which was designed for
the 10.6-um wavelength, was fabricated on a 500-
pum-thick GaAs wafer to a nominal grating depth of
2.5 um, with a 2-um subwavelength period. This re-
sulted in measured retardation values of $=0.47 and
amplitude transmission coefficients of #,=0.88 and
t,=0.77, close to the theoretical predictions achieved
by rigorous coupled-wave analysis utilizing the mea-
sured profiles of the gratings. A scanning electron mi-
croscope image of a small region of the encrypted
SWG is shown in Fig. 1(f).

Following the fabrication, the encrypted element
was illuminated with a right-handed circularly polar-
ized light at 10.6-um wavelength. The beam emerg-
ing from the encrypted element was then transmitted
through a polarizer oriented in three different orien-
tations (0°, 45°, and 90°). Figures 2(a)-2(c) show the
three intensity pictures obtained by setting the polar-
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izer at the three different orientations. The decrypted
image shown in Fig. 2(d) was attained by calculating
the Stokes parameters when applying the intensities,
and by using Eq. (3) when applying the correct geo-
metrical phase key, ¢,. When the wrong key is used,
as for the one with the geometrical phase depicted in
Fig. 3(a), the resulting decrypted image would show
only white noise as can be seen in Fig. 3(b), with no
possibility of reconstructing the original image.
Figure 1(e) shows the measured space-variant po-
larization directions emerging from the encrypted
SWG. As can be seen, the orientation of the arrows is
completely random. The emerging field, which is a re-
sult of the vectorial self-interference given in Eq. (2),
is a space-varying polarized field. The geometrical
phase key, ¢, scrambles the space-variant polariza-
tion state of the beam and thus randomizes the geo-
metrical phase, thereby encoding the primary image,
@i
We also propose an alternative method for decryp-
tion by using the optical setup illustrated in Fig. 4.
This method involves two SWGs, one to encode the
encrypted image, with the transmission matrix T,,
and the other to encode the key, having the transmis-
sion matrix T,. Both elements were fabricated upon a
500-um GaAs wafer with a 2-um subwavelength pe-
riod. Using this method, to decrypt the image we il-
luminated the encrypted element with CO, laser ra-
diation at the wavelength of 10.6-um having right-
handed circular polarization. The beam was then
transmitted through a 4-f system followed by the key
element. The beam emerging from the key element
was then passed through a circular polarizer to omit
the right-handed circularly polarized portion of the

Fig. 2. (a)-(c) Three pictures of the measured intensity ob-
tained by the decryption process with the polarizer in vary-
ing orientations: (a) 0°, (b) 45°, and (c) 90°. The white ar-
rows indicate the orientation angle of the polarizer. (d)
Decrypted image achieved by the decryption process using
the intensities shown in (a)—(c).

Fig. 3. (a) Wrong geometrical phase key. (b) White noise
decrypted image that resulted from using the key depicted
in (a).
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Fig. 4. Optical decryption setup comprising the encrypted
and key elements. The telescope between the two elements
is used to image the complex amplitude of the beam emerg-
ing from the encrypted element onto the key element. The
beam emerging from the key is transmitted through a cir-
cular polarizer and then imaged onto a camera. The inset
represents the experimental result of the optical
decryption.

beam and finally imaged onto a Pyrocam III camera.
The transmitted portion of the beam can be written
as a projection of the beam emerging from the key el-
ement on a left-handed circularly polarized state, i.e.,
|Equ)=[(L|T, T R)]L), where T,=T[26,(x,y)], T.
=T{2[6;(x,y) + 6,(x,y)]}, and T is the transmission
matrix for a SWG given by Eq. (1). Explicitly, the
calculation yields |E,.)=27z7expli(¢;+2¢;)/2]
Xcos(¢;/2)|L). The experimental result is shown in
the inset of Fig. 4, indicating good agreement with
our prediction. As can be seen from the last result,
the intensity of the decrypted image captured by the
camera is proportional to cos ¢;.
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