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Abstract Over the past half-century, Optimal Power Flow (OPF) has become
one of the most important and widely studied nonlinear optimization problems.
In general, OPF seeks to optimize the operation of electric power generation,
transmission, and distribution networks subject to system constraints and con-
trol limits. Within this framework, however, there is an extremely wide variety of
OPF formulations and solution methods. Moreover, the nature of OPF continues
to evolve due to modern electricity markets and renewable resource integration.
In this two-part survey, we survey both the classical and recent OPF literature in
order to provide a (see part I) for the state of the art in OPF formulation and
solution methods. The survey contributes a comprehensive discussion of specific
optimization techniques that have been applied to OPF, with an emphasis on the
advantages, disadvantages, and computational characteristics of each. Part I of the
survey provides an introduction and surveys the deterministic optimization meth-
ods that have been applied to OPF. Part II of the survey (this article) examines
the recent trend towards stochastic, or non-deterministic, search techniques and
hybrid methods for OPF.
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1 INTRODUCTION

This article is part II of a two part survey of Optimal Power Flow (OPF). For a
full introduction, we refer readers to part I of the survey, cf. Frank et al. (2012),
which provides a general introduction to the OPF problem, describes the key
requirements for OPF methods, and surveys deterministic optimization methods
that have been applied to OPF. Part II of the survey (this article) examines the
recent trend towards non-deterministic search techniques (also known as heuristic,
stochastic, or random search methods) and hybrid methods for OPF and gives
the survey conclusions. These methods have become popular because they have
a theoretical advantage over the deterministic methods with respect to handling
of nonconvexity, dynamics, and discrete variables Biskas et al. (2006); Qiu et al.
(2009).

The remainder of this article is organized as follows: In Section 2 we review
non-deterministic optimization methods that have been applied to OPF. In Sec-
tion 3, we survey hybrid methods, that is, methods that consist of the combination
of various established OPF techniques. In each section, we first describe the ap-
plied methodology and, second, we survey the relevant literature. While some
paragraphs discuss the papers in chronological order, others highlight streams of
research. Finally, we conclude both part I and part II of this survey in Section 4.
Various abbreviations and acronyms used throughout the article are summarized
in Appendix A.

2 NON-DETERMINISTIC OPTIMIZATION METHODS

In the past two decades, a number of non-determinisitc optimization methods
have been developed and applied to global optimization problems to overcome
the weak global search capabilities of many conventional deterministic optimiza-
tion algorithms, cf. He et al. (2004); Alrashidi and El-Hawary (2009). Spall (2003)
gives a general introduction to these heuristic, or random search, optimization
methods. Many of these techniques have been applied to OPF problems, includ-
ing Ant Colony Optimization (ACO), Artificial Neural Networks (ANN), Bacte-
rial Foraging Algorithms (BFA), Chaos Optimization Algorithms (COA), various
Evolutionary Algorithms (EAs), Particle Swarm Optimization (PSO), Simulated
Annealing (SA), and Tabu Search (TS).

2.1 Ant Colony Optimization

Ant Colony Optimization (ACO), initially proposed by Colorni et al. (1991) and
Dorigo (1992), is a class of probabilistic algorithms modeled after the pathing
behavior of ants, cf. Dorigo and Stützle (2004); Dorigo et al. (2008). ACO is
a parallel search over several constructive computational threads based on local
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problem data and a dynamic memory structure containing information on the
quality of previously obtained results. ACO was inspired by the observation of ant
colonies establishing shortest route paths between the colony and food sources.
The technique is based on a probabilistic pheromone model, consisting of a set of
model parameters called the pheromone trail parameters. The pheromone values
are updated using previously generated solutions in such a way that the proba-
bility of generating high-quality solutions increases over time. Unlike some other
stochastic algorithms, such as SA and GA, ACO can be run continuously and
adapt to changes in real time, cf. Venayagamoorthy and Harley (2007).

Recently, ACO has been applied to a number of OPF problems with several
objective functions; Lee and Vlachogiannis (2005) survey some of these. Teng
and Liu (2003) successfully employed ACO approaches to deal with the optimum
switch relocation problem, finding the ACO solutions more reliable than those
produced by a GA. Swarup (2005) applied ACO to economic load dispatch and
generator scheduling problems. Kalil et al. (2006) proposed ACO techniques for
optimal reactive power dispatch in order to improve voltage stability conditions
and reduce transmission losses while providing voltage profile monitoring. The
authors indicate that ACO outperformed both EP and AIS in both solution quality
and computation time.

ACO has been successfully applied to several combinatorial optimization prob-
lems within the OPF field. Vlachogiannis et al. (2005) formulated a reactive power
control problem as a combinatorial optimization problem prior to applying ACO.
Simon et al. (2006) confirmed that ACO is a suitable approach to the combina-
torial unit commitment problem. Allaoua and Laoufi (2008, 2009) used ACO to
minimize the total fuel cost of thermal generating units while also retaining an ac-
ceptable system performance level in terms of limits on generator real and reactive
power outputs, bus voltages, shunt capacitors/reactors, transformer tap settings
and power flow on transmission lines. Their method is notable because it saves com-
putation time by decomposing the constraints into active and passive constraint
sets. The active constraints are used to calculate the optimal solution set using
ACO while the passive constraints are enforced by a Newton-Raphson power flow
algorithm. Simulation results showed that their ACO method outperforms previ-
ously published EAs in computational speed as well as solution quality. Gasbaoui
and Allaoua (2009) also used ACO to solve a combinatorial OPF problem with
multiple objectives, including fuel cost minimization, voltage profile improvement,
and voltage stability enhancement. The authors report that the ACO approach
performed better than both classical techniques and GAs.

2.2 Artificial Neural Network

Artificial Neural Networks (ANNs) are computational tools based on the operation
of biological neural networks. ANNs operate on the principle of parallel process-
ing, analogous to the operation of the human brain. Consequently, ANNs are quite
fast, especially when dealing with large volumes of data with unknown mathemat-
ical correlation. Apart from on-line processing and classification capabilities, the
main advantage of ANNs is the capability of dealing with stochastic variations
of the scheduled operating point given increasing data. The theory of ANNs has
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been discussed extensively in several textbooks, cf. Ripley (1996); Jurada (1997);
Dreyfus (2005).

ANNs have been used in a broad range of applications in power systems op-
eration and control; Haque and Kashtiban (2005) reviewed a number of these.
Nguyen (1995, 1997) developed a general Neural Network (NN) architecture for
OPF which can include different types of objective functions and constraints. The
proposed approach adopts the Newton-Raphson method for its implementation on
NNs. A principal feature of the NN OPF is the ability of individual NN modules
to handle specific constraints. Paralleling these modules leads to high speed com-
putation. The algorithm also exploits the sparsity of the matrices encountered in
OPF problems. Hartati and El-Hawary (2001) proposed a NLP-based approach
to an OPF problem where an ANN augmented the cost function by computing
suitable penalty terms. The approach showed faster convergence in the active OPF
problem than conventional methods.

Two papers report the use of ANN to compute optimal capacitor switching and
control. Santoso and Tan (1990) propose an expert system using a two-stage ANN
to execute real-time control of multi-tap capacitors installed on a distribution sys-
tem for a nonconforming load profile such that the system losses are minimized.
The authors claim that this method is suitable for on-line implementation of the
capacitor control even for a very large distribution system because of the much re-
duced computation time compared with traditional optimization processes. Later,
Das and Verma (2001) developed an ANN-based approach for computing optimal
capacitor switching in a distribution system. They also report drastically reduced
computation time in comparison to traditional approaches: on the order of 100
times faster, even for a realistic number of capacitors in the system.

2.3 Bacterial Foraging Algorithm

Inspired by the patterns exhibited by bacteria while foraging for food, Passino
(2002) introduced the Bacterial Foraging Algorithm (BFA). In time-varying envi-
ronments, natural selection tends to eliminate bacteria with poor foraging strate-
gies, cf. Passino (2002) Liu and Passino (2002); Passino (2005). After many gener-
ations, poor foraging strategies are either eliminated or reshaped into good ones.
BFA mimics these patterns to optimize a solution pool.

Although relatively new, BFA has attracted interest in the power systems com-
munity. Mishra (2007) and Tripathy and Mishra (2007) applied BFA to optimize
the real power losses and voltage stability limits of a mesh power network. This
was formulated as a multi-objective OPF problem with the unified power flow
controller (UPFC) location, UPFC series injected voltage, and transformer tap
positions as the controllable variables. The authors reported that the BFA was
superior to interior point SLP techniques. Li et al. (2007b) developed a BFA with
varying population for the OPF problem. The authors explored the the mecha-
nisms of bacterial chemotaxis, quorum sensing, and proliferation for the first time.

One drawback of BFA is that it is not always able to effectively track the global
optimal solution in dynamic environments, cf. Passino (2002). In order to address
this shortcoming, Tang et al. (2006) presented an approach called Dynamic BFA
(DBFA) to solve the OPF problem with dynamic loads. The variations of power
loads and system topology were simulated as regular and irregular environmental
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changes. The results demonstrated the adaptability of DBFAs to various environ-
mental changes and the authors reported DBFA as superior to both traditional
BFAs and PSO methods. Tang et al. (2008) subsequently applied a DBFA to min-
imize the power system fuel cost with the OPF embedded in an environment with
dynamically changing loads. Simulation results showed that in comparison with
BFAs and PSO methods, DBFAs can adapt more rapidly to load changes and
track the fuel cost global optimum more closely.

2.4 Chaos Optimization Algorithm

Chaos is a universal phenomenon, occurring naturally in many deterministic sys-
tems. Chaos exhibits diverse, complex, and sophisticated rules under apparent
disorder. A system can make the transformation from a regular periodic system to
a chaotic system simply by altering one of the controlling parameters, cf. Sheng-
song et al. (2003). Chaotic movement has the properties of ergodicity, intrinsic
stochasticity, and regularity, and can therefore go through every state in a certain
area according to its own rule without repetition. Chaos Optimization Algorithms
(COAs) as introduced by Li and Jiang (1998) exploit these concepts, employing
chaotic variables to search for an optimal solution. Being relatively new random
search methods, COAs have already attracted great attention, cf. Yang et al.
(2007b). COAs have several favorable characteristics that are particularly well
suited for OPFs, including the ability to escape from local optima via chaotic
motions, insensitivity to initial values, high search velocity, and gradual global
convergence.

COA is gradually being applied to engineering practice, including OPF. Jiang
et al. (1999) proposed a COA to solve the economic dispatch problem of a hydro
power plant. Zhijiang et al. (2002) also applied a COA to economic dispatch and
OPF, reporting that simulation results verified the precision of the COA solu-
tion. Xu et al. (2000) applied a mutative scale COA to the economic operation
of power plants. However, the results showed that the method is time-consuming.
Subsequently, Han and Lu (2008) used an improved mutative scale COA to solve
an economic load dispatch problem. According to the authors, their algorithm is
highly efficient and can be applied to many power system problems, such as eco-
nomic operation, OPF, system identification and optimal control. Recently, COAs
have also been combined with various other exact and heuristic optimization al-
gorithms; see Section 3.

2.5 Evolutionary Algorithms

Evolutionary Algorithms (EAs) include a broad array of techniques based on the
theory of biological evolution where a solution pool is maintained to mimic the evo-
lution of individuals inside a population. By design, EAs are effective for problems
which evolve over time and need to be solved repeatedly. Furthermore, EAs make
no assumptions on the differentiability, convexity or smoothness of the functions
present in the optimization model and are very well suited for parallel algorithms
due to the presence of a solution pool. EAs are well suited for OPF problems
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where multiple objective functions are present or a set of solutions (rather than
one solution) is desirable.

The label EA applies to a diverse set of algorithms, and some debate exists
as to which of these algorithms are properly classified as EAs. We refer the in-
terested reader to Yu and Gen (2010) for an in depth discussion of the various
EAs, including similarities and differences. Here, we classify as EAs the follow-
ing algorithms that have been applied to OPF: Artificial Immune Systems (AIS),
Differential Evolution (DE), Evolutionary Programming (EP), and Genetic Algo-
rithms (GAs).

2.5.1 Artificial Immune Systems

The first paper on Artificial Immune Systems (AIS) was published by Kephart
(1994). The AIS methodology is based on three principles of biological immune
systems: proliferation, mutation, and selection. Proliferation is the capability of
generating new individuals, leading to a dynamic optimization process. Mutation
is the ability to search through the solution space by altering the solutions in the
pool. Selection is responsible for eliminating low-affinity cells, i.e., poor solutions.
Optimization algorithms based on AIS are called immune algorithms (IAs) and
explore these three principles. Modern IAs are inspired by three different theo-
ries explaining adaptive immune system: clonal selection, negative selection and
immune network algorithms.

AIS has seen some application to OPF. Liao (2006) applied an IA to the short-
term unit commitment problem with linearized transmission constraints. The pro-
posed algorithm differs from conventional AIS approaches in the use of variable
(rather than fixed) crossover and mutation ratios, the use of a memory cell, and
the use of an annealing immune operator. The authors claim that their algorithm
does not fall into locally optimum solutions and can quickly and correctly find the
full set of globally optimum solutions, although no formal proof is provided. The
authors compared the IA solution with those obtained by dynamic programming,
Lagrangian relaxation, GA, SA and TS methods, reporting that the IA returned
better solutions with respect to the objective function values. Xiangzheng (2007)
applied an IA to an ORPF control problem. The developed techniques allow the
dispatcher to control the reactive power, to reduce the power loss, and to improve
the power quality.

de Mello Honório et al. (2007) developed a modified AIS optimization method-
ology, combining AIS with a gradient vector in order to improve both compu-
tational effort and search robustness. The numerical information of the gradient
leads to a more efficient hypermutation process, and, consequently, local optima
are approached faster. Hugang et al. (2008) also developed a modified IA for OPF.
The authors designed a multi-objective, adaptive IA to solve an ORPF problem
incorporating static voltage stability. The IA has two additional parts compared to
existing IAs. The first defines both partial affinity and global affinity to evaluate
the antibody affinity to the multi-objective functions; the second uses adaptive
crossover, mutation and clone rates for antibodies to maintain the antibodies’
diversity. This improvement results in a dynamic balance between individual di-
versity and population convergence.

In addition to the relatively few AIS applications to OPF problems available
in the literature, results in other engineering fields, cf. Castro and Zubben (2000);
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Carpaneto et al. (2006), are promising and may encourage power engineers to
further explore IAs.

2.5.2 Differential Evolution

Differential Evolution (DE) is a population-based, direct stochastic search algo-
rithm originally proposed by Storn and Price (1995) for optimization problems over
a continuous domain. It has since been extended to cope with MINLP optimization
problems, cf. Lampinen and Zelinka (1999). DE combines simple arithmetic oper-
ators with the classical evolutionary operators of crossover, mutation and selection
to evolve from a randomly generated starting population to a final solution. DE
uses a greedy, rather than stochastic, approach to solve the problem. The differ-
ential mutation mechanism is the key element distinguishing DE from the other
population-based techniques. To generate trial parameter vectors, DE adds the
weighted difference between two population vectors to a third vector. No separate
probability distribution is required, which makes DE completely self-organizing.

The one-to-one competition of offspring makes DE significantly faster in con-
vergence than other EAs. Unfortunately, this faster convergence results in a higher
probability of converging on a local, rather than global, optimum, cf. Coelho and
Mariani (2007). In order to overcome this drawback and to avoid employing a
large population, Chiou and Wang (1998) added two phases to DE: the accelerated
phase and the migrating phase. Price et al. (2005) and Onwubolu and Davendra
(2009) are good sources for more detailed discussion of DE methods and the edited
volume by Chakraborty (2008) documents recent developments in DE.

DE has been applied to several engineering problems in different areas includ-
ing OPF, cf. Liang et al. (2007b). One area of focus has been the application
of DE to OPF problems with complex cost curves or unconventional generator
characteristics. Coelho and Mariani (2007) implemented DE algorithms for solv-
ing economic dispatch problems with transmission line constraints and losses. The
algorithms account for nonlinear generator features, such as ramp rate limits and
prohibited operating zones. Vaisakh and Srinivas (2008) applied DE to OPF with
both conventional and unconventional cost characteristics. Sayah and Zehar (2008)
developed DE algorithms for solving OPF with non-smooth and non-convex gener-
ator fuel cost curves. The authors suggested effective modifications in the mutation
rule, enhancing the convergence rate while improving the solution quality. The au-
thors also showed the empirically that their modified DE algorithm outperforms
the classical DE algorithms in global convergence speed and obtains similar results
compared to EP and TS methods.

DE is also suited to OPF problems that include transient stability constraints
or complex controls. Bakare et al. (2007) applied DE to the Nigerian power grid
in order to optimize voltage profiles and system losses via control of system re-
active power. The approach achieved a significant reduction of real power losses
while simultaneously keeping the voltage profiles within the acceptable limits. Basu
(2008) used a DE algorithm to minimize the generator fuel cost in optimal power
flow control with flexible AC transmission systems (FACTS) devices, including
thyristor-controlled series capacitors and phase shifters. Test results showed that
the proposed DE approach can obtain better solutions requiring less CPU time
than EP and GA approaches. Cai et al. (2008) developed a robust and efficient
method for solving transient stability-constrained OPF problems based on DE.
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Their method allows the incorporation of detailed dynamic models of the system
by combining time-domain simulation and transient energy functions. The au-
thors demonstrated the ability to use the algorithm for large-scale systems via a
parallelized implementation.

Several authors have altered the DE algorithm to improve performance for
OPF problems. Liang et al. (2007a) developed an enhanced DE for ORPF. In con-
trast to conventional DE, several sub-populations are maintained, updated and
unified using a cooperative co-evolutionary architecture. The major challenge for
this approach is selecting an effective problem decomposition; the authors sug-
gest a voltage-VAR sensitivity-based power system decomposition. This approach
avoids the use of a large population size to overcome premature convergence of
conventional DE methods. Computational tests show that their enhanced DE ap-
proach yields better solutions than conventional DE methods while requiring simi-
lar time. Changa et al. (2007) also applied a modified DE towards optimal reactive
power planning. In order to enhance the convergence speed of their algorithm, the
authors implemented two main changes compared to conventional DE: a multi-
direction search scheme and a carefully balanced search space reduction scheme.
Their algorithm consistently found better solutions when compared to SA, GA,
and conventional DE.

Abou El Ela et al. (2009, 2010) applied a DE-based approach for an OPF
problem with soft constraints. The authors considered five different objective func-
tions: minimization of fuel cost, improvement of the voltage profile, enhancement
of system voltage stability (also during contingency condition), and a non-smooth
piecewise quadratic cost function. (As each objective function is considered on its
own, this is not a multi-objective approach.) The authors discussed the robustness
for all five objective functions of their DE for small test instances. However, the
different contributions of the two papers published in 2009 and 2010 is not clear.

Finally, DE has also been used in multi-objective OPF. Varadarajan and
Swarup (2008) presented a DE approach to compute pareto-optimal solutions for
OPF problem with multiple objectives. For the active power dispatch problem,
total emissions and generation costs were the competing objectives considered
(both quadratic functions), while power losses and voltage deviation were the ob-
jective functions considered for the reactive power dispatch problem. The authors
discussed an empirical method to obtain a good population size.

2.5.3 Evolutionary Programming

Fogel (2006) invented Evolutionary Programming (EP) with the initial intent of
using simulated evolution as a learning process to generate artificial intelligence.
EP has developed into a computational optimization method which can avoid
being trapped in local optima via the use of the mutation operator and selection
scheme, cf. Ongsakul and Jirapong (2005).

Evolutionary computation techniques have found many applications in power
systems, cf. Wu and Ma (1995); Abido (2004). Wong and Yuryevich (1999) applied
EP to an OPF problem containing highly nonlinear generator input/output cost
curves, reporting promising results. Ongsakul and Jirapong (2005) developed a
multi-objective, EP-based approach for the optimal allocation of FACTS devices
to maximize the total transfer capability of power transactions between source
and sink areas in deregulated power systems. The authors used penalty functions
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to enforce constraints, including real and reactive power generation limits, voltage
limits, line flow limits, and FACTS devices operation limits. Test results indicated
that OPF with optimally placed FACTS devices by EP could enhance the total
transfer capability value far more than OPF without FACTS devices. Aminudin
et al. (2007) successfully applied EP to improve the load margin of a power system,
considering operational cost and loss reductions.

Although EP applications in OPF have been well investigated in academic
studies, few have been used in industrial power systems. This is because the number
of computations required to solve practical OPF problems with EP is very large,
limiting its usefulness over more efficient algorithms. Some work has been done to
improve EPs for OPF applications. Tangpatiphan and Yokoyama (2009) developed
an improved EP algorithm for OPF considering steady-state voltage stability. The
proposed algorithm incorporates crossover techniques from real-coded GAs (that
is, GAs having real-valued parameters, allowing for optimization in real-valued
search spaces) to enhance the offspring generation process. Test results showed
that the improved EP algorithm is capable of working with both convex and non-
convex objective functions. Zhihuan et al. (2010) proposed three improved strength
pareto EP algorithms for an optimal ORPF, incorporating problem-specific local
search strategies to improve convergence characteristics.

2.5.4 Genetic Algorithm

Genetic Algorithms (GAs) are evolutionary search algorithms based on the me-
chanics of natural genetics, cf. Tang and Kwong (1999); Haupt (2004). In order
to simultaneously explore the search space and increase the performance of gener-
ated solutions, GAs combine elements of directed and stochastic search with the
exploitation of historical information from previous solution guesses, cf. Kamal
et al. (2004). GAs generally avoid termination at local optima as the population
of solutions is distributed throughout the search space and new solutions are pro-
duced from random processes. Eventual convergence to a global optimum can be
proven, for instance, if the best solution is always maintained in the solution pool,
cf. Rudolph (1994).

A GA starts with the generation of initial individuals representing the candi-
date solutions. For each individual, or offspring, the fitness (objective) function of
the problem is evaluated. The individuals with the best fitness function values are
selected for the next iteration. The offspring then undergo crossover and muta-
tion operations to create a new solution population. The crossover is a transfer of
information between individuals in the population and new offspring. This is the
primary difference between GAs and EP: while GA stresses crossover functions,
EP emphasizes mutation. GAs have received significant attention in the OPF field;
Karthikeyan et al. (2009) survey some major contributions in this area.

Applications of GA to OPF first appeared in the late 1990’s. Song et al. (1997)
applied GAs to a combined environmental/economic dispatch problem, employing
fuzzy logic to adjust crossover and mutation probabilities. Lai et al. (1997) pre-
sented GAs for OPF under both normal and contingency conditions; Zhang et al.
(1998) applied an improved GA to ORPF. Numnonda and Annakkage (1999) in-
troduced advanced crossover and mutation operators in a GA to solve an economic
dispatch problem, although transmission cost are ignored. Bakirtzis et al. (2002)
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extended the work of Lai et al. and Numnonda and Annakkage by including switch-
able shunt devices and transformer tap settings as discrete control variables. The
enhanced GA used by Bakirtzis et al. also incorporated problem-specific operators
to solve larger OPF problems. Their use of penalties in the fitness function lead
to a discussion by Sood et al. (2003) on the dependence of the convergence of the
enhanced GA on these penalties.

Bouktir et al. (2004) used a GA to minimize system fuel costs while main-
taining secure limits on power outputs of generators, bus voltages, shunt capaci-
tors/reactors and transformer tap settings. The authors decomposed the problem
into active and reactive constraints, where the active constraints are those that
directly affect the objective function. The GA handles the active constraints while
the remaining constraints are maintained by conventional power flow.

Todorovski and Rajicic (2006) proposed an initialization procedure for voltage
angles at generator buses that yields a good starting point for GA-based OPF.
The goal of the procedure is to obtain a feasible or near-feasible starting point
at the outset, avoiding the need to deal with constraint violations in the solution
population. Test results confirmed performance improvements of the GA OPF
procedure in computational time by benchmarking it to various other GAs for
OPF present in the literature. Todorovski and Rajicic further show computational
robustness of their approach by considering three different generator cost curves
(quadratic, piece-wise quadratic, and quadratic with a sinusoidal component).

Recently, Mahdad et al. have contributed a significant amount of literature
regarding the use of GAs in OPF problems, cf. Mahdad et al. (2008a,b, 2009b,a,
2010). The authors have focused on the development of efficient parallel GAs using
decomposition techniques. The active and reactive power subproblems are solved
separately by parallel flexible GAs. The goal of this approach is to improve the
overall execution time of the algorithm. The authors include variables for modern
power system controls, including FACTS devices and static VAR compensators.
Mahdad et al. (2009a) and Mahdad et al. (2010) extensively benchmark their
proposed algorithm against other GAs—including a fuzzy-GA—EP, DE, ACO, and
the simulation packages MATPOWER and PSAT. The authors report that their
proposed algorithm can obtain competitive solutions in reasonable computational
time.

Other researchers have also examined the use of GAs for optimal placement
and operation of FACTS devices in power systems. Both Leung and Chung (2000)
and Banu and Devaraj (2008) discuss the application of GAs to optimally place
FACTS devices in relation to security or contingency requirements. Lai and Sinha
discuss the application of GAs to FACTS devices in their book chapter as well, cf.
Lai and Sinha (2008).

Several recent papers have applied real-coded GA to OPF. Gaing and Chang
(2006) presented a real-coded mixed-integer GA for solving non-convex OPF prob-
lems with transmission security and bus voltage constraints. Each individual in
the proposed GA is represented as a mixture of continuous and discrete control
variables. Later, Kumar and Renuga (2009) compared EP and real-coded GA as
applied to reactive power planning problems. The authors concluded that in the
case of optimization of a non-continuous and non-smooth function, real-coded GA
outperforms EP and “always leads to the global optimum points of the multi-
objective reactive power planning problem.” However, no theoretical proof is pro-
vided to confirm this claim. Subbaraj and Rajnarayanan (2009) used self-adaptive
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real-coded GA to solve an optimal reactive power dispatch problem. The self-
adaptation is introduced by applying a simulated binary crossover operator. The
authors reported that their approach can handle all types of decision variables and
produces near optimal solutions in less computation time than EP methods.

Kumari and Maheswarapu (2010) solved a multi-objective OPF by an en-
hanced GA. Their GA employs elitism via an external population. To enhance
performance, a quadratic power flow routine, rather than the GA itself, solves the
polar form of the power flow equations. Combinations of the three objectives—
generation costs, system transmission losses, and a system voltage stability index—
are considered simultaneously to obtain a multi-objective optimization problem.
The authors benchmarked their algorithm against a PSO approach in which the
objective function values are fuzzified in order to compute the pareto set. Results
showed that the GA method computes superior solutions than the fuzzy PSO
approach when multiple objectives are present.

Kumar and Mohan (2010) used GAs to solve the unit commitment problem
with line flow constraints. The authors compared their results with those obtained
using lambda iteration techniques for economic dispatch and concluded that their
GA reduces the power losses.

2.6 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population-based stochastic optimization
technique introduced by Kennedy and Eberhart (1995). PSO is based on processes
arising naturally in socially organized colonies such as flocks of birds and schools
of fish. PSO exploits a population of individuals to explore promising regions
within the search space. In the search procedure, each individual (particle) moves
within the decision space over time and changes its position in accordance with
its own best experience and the current best particle, cf. Poli et al. (2008). PSO
is capable of evolving towards a global optimum with a random velocity by its
memory mechanism, cf. Hajian-Hoseinabadi et al. (2008). Though similar to EAs,
categorically PSO is a swarm algorithm (like ACO).

Compared with other stochastic optimization methods, PSO has comparable
or superior convergence rates and stability for several difficult optimization prob-
lems, cf. Mo et al. (2007). However, as with many heuristic approaches, a primary
drawback of traditional PSO is premature convergence when the parameters are
not chosen correctly, especially while handling problems with many local optima,
cf. Gaing and Liu (2007).

PSO has been widely applied to electric power system problems in general, cf.
Yang et al. (2007a), and OPF problems specifically, cf. Yumbla et al. (2008). There
is a significant amount of variety among the algorithms used. Zhao et al. (2004)
presented a PSO method using a non-stationary, multi-stage assignment penalty
function to convert a constrained optimization problem into an unconstrained
one. However, the convergence of the algorithm is quite sensitive to the choice of
penalty coefficients. Wang et al. (2005) demonstrated the feasibility of a modified
PSO algorithm where each particle obtains information not only from itself and
the best in the group but in addition also from other group members. The authors
claim that this technique speeds up the convergence towards a global optimum.
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Gaing (2005) presented an efficient mixed-integer PSO algorithm for constrained
OPF.

Using PSO, Swapur (2006) solved an OPF problem with continuous and dis-
crete variables considering both normal and contingency states. Swapur demon-
strated the algorithm’s speed (in terms of the number of power flow computa-
tions executed) as well as the superiority of the results in comparison to GAs.
Kim et al. (2007) successfully implemented a parallel PSO algorithm; the paral-
lel approach reduced computation time compared to sequential PSO algorithms.
Hajian-Hoseinabadi et al. (2008) presented a PSO algorithm to minimize the total
fuel cost while considering active and reactive power limits of generators, voltage
profile of load buses, and transmission line flow limits. The key idea of their mod-
ified PSO method is to exploit the information contained in the worst experiences
(of each individual and within the group). This is in contrast to conventional PSO
algorithms, where the best experiences are used. Computation tests on small prob-
lem instances showed that their modified PSO outperforms the conventional PSO
in terms of convergence to better solutions.

PSO has been applied to a number of OPF problem types, including ORPF,
security problems, and multi-objective problems. Zhang and Liu (2004) reported
the successful application of PSO to ORPF. Coath et al. (2004) applied PSO
to solve a reactive power and voltage control problem incorporating wind farms.
Zhao et al. (2005) applied an PSO method towards ORPF. In the authors use
an algorithm similar to that of Wang et al. in that the social influence term in
the velocity update formula for each particle includes the information of several
particles, compared to just the best particle in the conventional PSO. The au-
thors establish an adaptive parameter updating rule which allows a proof of global
convergence of their improved PSO. Comparisons with GAs, EP and conventional
PSO showed that their improved PSO requires less computation time to achieve
better solutions.

Vlachogiannis and Lee (2006) proposed three PSO algorithms for reactive
power and voltage control: enhanced general passive congregation, local passive
congregation, and coordinated aggregation. The authors compared the proposed
PSO algorithms with an IPM-based OPF algorithm, a conventional PSO algo-
rithm, and an EA, demonstrating the performance of the proposed algorithms. Li
et al. (2007a) proposed an adaptive PSO algorithm to solve an ORPF, introducing
the concept of species into the population diversity measure. Simulation results
showed a fast global convergence rate with robust computation. Pouya and Lesani
(2009) implemented an angle-based PSO method for the optimal procurement of
reactive power in an open electricity market. The reactive power management
problem was formulated as an NLP problem with nonlinearity in both the objec-
tive and the constraints, where the voltage stability constraint was implemented
as a soft constraint to guarantee the security of the system. The authors reported
that their method has higher speed and accuracy than standard PSO techniques.

In the realm of system security, Yoshida et al. (2001) applied PSO to a reac-
tive power and voltage control problem, considering voltage security assessment.
The proposed method expands the original PSO methods to handle MINLP prob-
lems and determine an online VAR Control strategy with continuous and discrete
control variables. This method was compared with reactive TS and enumeration
methods on practical power systems with promising results. Gaing and Liu (2007)
presented a multi-objective constriction PSO method with mutation mechanisms
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for solving a security-constrained OPF problem. The method incorporates both
steady-state security and transient stability constraints. The four objectives were
minimization of total generation cost, enhancement transmission security, reduc-
tion of transmission losses, and improvement of the bus voltage profile under nor-
mal and post-contingency states. The proposed method incorporates a new cog-
nitive behavior of particles which allows more effective exploration of the search
space. Onate and Ramirez (2007) developed a novel PSO technique with recon-
struction operators to solve a security constrained OPF problem. Reconstruction
operators guarantee that the search for the optimal solution occurs only in the
feasible space, reducing computation time while improving the quality of the so-
lution.

In addition to Gaing and Lui’s work, Vlachogiannis and Lee (2005) and Abido
(2008) both applied PSO to multi-objective OPF. Vlachogiannis and Lee success-
fully implemented parallel vector evaluated PSO, minimizing both the real power
losses in the transmission lines and the voltage magnitudes at the load busses.
Abido’s formulation simultaneously optimized competing fuel cost and voltage
stability objectives. Abido used a clustering algorithm to manage the size of the
pareto optimal set.

2.7 Simulated Annealing

Simulated Annealing (SA) is a generic, probabilistic meta-heuristic for global op-
timization that was proposed by Kirpatrick et al. (1983). In each step of the SA
algorithm, the current solution is replaced by a random nearby solution, chosen
with a probability that depends on the difference between the corresponding func-
tion values and on a global temperature parameter that is gradually decreased
as the process continues, cf. Ingber (1993). The dependency is such that the cur-
rent solution changes almost randomly when the temperature is large but moves
increasingly “downhill” (toward an improved objective function value) as the tem-
perature goes to zero. The allowance for “uphill” moves saves the method from
becoming stuck at local minima, a common problem in greedier methods. SA is
guaranteed to converge asymptotically to a global optimal solution, cf. Aarts and
Korst (1989). In addition, SA is relatively easy to implement and therefore suitable
for a wide range of problems. For recent advances in SA, refer to the edited book
by Chibante (2010).

Several authors have applied SA to OPF. Hsiao et al. (1993) used SA to solve a
contingency-based optimal VAR sources planning problem while considering real
and reactive power balance equations. In testing, the authors claim that the pro-
posed algorithm is suitable for large-scale power systems. Wong and Fung (1993)
developed a general SA-based economic dispatch algorithm which incorporates
transmission losses through the use of a quadratic loss formula. Although the
test results demonstrate that the algorithm is able to find a global or near global
optimal solution, its computation time is high. Roa-Sepulveda and Pavez-Lazo
(2001) also used SA techniques to solve an economic dispatch problem where the
transmission constraints are modeled in polar form. However, the authors also re-
ported long computation times. Pure SA approaches for OPF have been replaced
by hybrid methods within the last decade; see Section 3.



14 Stephen Frank et al.

2.8 Tabu Search

Tabu Search is an iterative improvement procedure introduced by Glover, cf.
Glover (1989, 1990b,a). The search process is partly based on a hill-climbing
method that discovers a solution by defining a neighborhood and then moving
to the solution with the minimum cost function within the neighborhood. TS em-
ploys a tabu list that plays an important role as a memory function, storing a
number of visited states along with a number of states that might be considered
unwanted. The tabu list controls search directions so that the solution escapes from
local minima and prevents cycling by using flexible memory structures. Faigle and
Kern (1992) proved the global convergence of TS by exploiting similarities to SA.

By now, TS is an established optimization approach which has been applied
to various power system optimization problems with impressive success, cf. Mori
and Hayashi (1998). Together with other heuristic search algorithms, such as GA,
TS was singled out as “extremely promising” for the future treatment of practical
applications in the early 1990’s, cf. Glover (1989); Bland and Dawson (1991).
Twenty years later, this research is still ongoing, though other meta-heuristics
have gained more attention recently.

Mori and Hayashi (1998) proposed a parallel TS-based method for voltage
and reactive power control. The parallel scheme improves the solution quality
by computing the neighborhood in a parallel way (by using two cores) with two
different tabu lengths (one core per tabu length). The parallel TS method is effi-
cient in comparison to conventional TS, SA and GA. Abido (2002) presented an
efficient and reliable TS-based approach to set the optimal control variables of
the general OPF problem, examining various objective functions and constraints.
The proposed approach outperformed both EP and deterministic NLP techniques.
Kulworawanichpong and Sujitjorn (2002) developed an efficient TS algorithm for
solving the OPF problem accounting for both real and reactive power. To assess
the usefulness and advantages of the technique, the authors compared the TS re-
sults with those obtained from SQP and EP optimization methods and concluded
that TS outperforms the other techniques in terms of computation time.

Nualhong et al. (2004) applied a reactive TS algorithm towards the OPF prob-
lem. The power flow constraints are given in polar form. Emissions in terms of
total pollutant tons are modeled as a function with quadratic and exponential
terms. The total emissions are combined via a weighting together with fuel cost
into one objective function to be minimized. Their reactive TS improves upon the
search process of standard TS methods by implementing an adaptive modification
of the tabu length. The authors reported that reactive TS can yield better solu-
tions while significantly reducing the computational time compared with standard
TS methods.

Altun and Yalcinoz (2008) studied the economic dispatch problem with a
quadratic power transmission loss function in the power generation variables. Four
so-called soft computing methods were discussed and benchmarked. Among the
tested methods are TS and GA which computed good solutions for the small test
instances. However, the authors did not incorporate the full set of OPF constraints.
Muthuselvan and Somasundaram (2009) applied TS to an SCED problem. The
formulation incorporated both base and contingency case power flow constraints.
The authors reported that the algorithm was sufficiently efficient and reliable for
application to utility-scale systems.
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2.9 Summary of Non-Deterministic Optimization Methods

The non-deterministic, stochastic search methods discussed are all meta-heuristic
approaches. Though each methodology has its own philosophy, the fundamental
idea unifying all the discussed meta-heuristics is the systematic exploration of the
search space using a heuristic improvement scheme.

Meta-heuristics are typically very versatile with respect to problem format.
They can handle all the types of non-convexities present in the OPF problems and
complicating constraints due to various problems in which OPFs are embedded.
OPF problems may have many local optima, and most meta-heuristics are able to
escape local optima and converge, at least in theory, to a global optimum. This is
typically achieved by managing a solution pool and (indirectly) keeping track of
past algorithm performance.

However, all the meta-heuristics discussed tend to be computationally inten-
sive. As a result, the scalability of non-deterministic OPF methods often lags that
of well-developed deterministic OPF methods, even for MINLP formulations, cf.
Zhang and Tolbert (2005); Qiu et al. (2009); Xia and Elaiw (2010). For instance,
Biskas et al. (2006) showed that dynamic PSO and enhanced GA were both slower
and achieved inferior solutions to the use of relaxation methods to solve MINLP
OPF formulations using commercially available NLP solvers. Furthermore, meta-
heuristics possess several parameters which must be tuned to ensure good perfor-
mance. In many cases, penalty functions for the constraints must also be selected
and tuned. Some methods are more sensitive to the parameter and penalty choices
than others, affecting their computation time as well as theoretical convergence
properties. This makes comparisons between methods difficult, as poor parameter
selection may make a certain method appear artificially slow in comparison to its
peers.

The non-deterministic methods discussed in this section are summarized in
Table 2.9. The second column reports the standard parameters for each method—
fewer parameters is typically preferable. The actual number of parameters for a
particular algorithm may change in variations of the method: some parameters
may be eliminated, or additional parameters may be added. The third column
indicates whether or not the meta-heuristic can theoretically compute a global
optimal solution given appropriate parameter choices and algorithmic tuning. More
precisely, a “Yes” in the third column means that the probability of finding a
globally optimal solution approaches one when the algorithm is allowed to run
infinitely long—this is also known as “convergence in value”. If no theoretical
results on the convergence are available, then we mean that there are no results
for the methodology or slight variants of it; convergence can always be achieved
by hybridization, i.e., combination of techniques which have desirable convergence
properties. The fourth table column provides a single reference which we consider
as a good starting point for novices to this methodology. Finally, the last column
provides a few remarks and OPF-specific suggestions.
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In the literature, almost every meta-heuristic method is claimed as being robust
with respect to parameter choices, being easy to implement, and having “good”
convergence properties. However, in practice, the required parameter tuning takes
considerable effort when solving real-world OPF problems. Furthermore, there is
only very little known on the convergence rate of the meta-heuristics discussed.
Moreover, authors often state that in comparative studies, their particular version
of any given meta-heuristic performs better than other methods. This yields a
situation in which every method is (situationally) regarded as the best. Therefore,
the reader should exercise caution when evaluating the appropriateness of any
given meta-heuristic to a given OPF formulation.

3 HYBRID METHODS

Hybrid methods combine several different optimization techniques into one algo-
rithm. If done right, then the advantages of each method can be used to overcome
the disadvantages of the others, leading to a very powerful algorithm. Typically,
hybrid methods can achieve significant improvements (e.g. in computation time,
convergence properties, solution quality, or parameter robustness) over each of the
individual methods. Hybrid methods have gained popularity in the last decade for
various OPF applications.

For a discussion of the individual deterministic methods referenced in this
section, including definitions for the relevant acronyms, we refer the interested
reader to part I of this survey, cf. Frank et al. (2012). Additionally, the acronyms
used throughout this section are expanded in Appendix A.

3.1 Deterministic Methods Combined

SQP combined with Quasi-Newton: Lin et al. (2004) developed a hybrid
method to solve an OPF with discrete control variables. The algorithm is based
on ordinal optimization theory, which finds “good enough” solutions with “high
probability.” The basic idea of their algorithm is as follows: First, linearize all
discrete variables in the OPF problem to obtain a continuous NLP which is then
solved with SQP methods. Second, round any continuous variables which must be
discrete to a set of allowable values. Ordinal theory helps to avoid an exponential
number of choices for this rounding procedure. Third, fix the discrete variables and
rank the solutions by solving approximated quadratic optimization problem via a
Newton-type method. Fourth, for the best solutions obtained in step three, fix the
discrete variables and solve the resulting continuous OPF problem to select the
best solution. Extensions to an online version of the algorithm are also discussed.
The authors benchmarked their method with a conventional approach (use the first
step of the hybrid method and round the appropriate variables to their closest
discrete values) and TS. Their hybrid method computes better solutions than
the conventional method by consuming marginally more time and finds solutions
comparable to the TS method much faster.

IPMs combined with Benders Decomposition: Borges and Alves (2007)
solved a nonlinear security constrained OPF problem by using distributed process-
ing for real-time operation. The authors considered active and reactive controls,
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initially based on a message passing interface which was then integrated into an en-
ergy management system. The idea of their hybrid algorithm as follows: Benders’
cuts are iteratively generated to linearly approximate the N contingency configu-
ration constraints while the nonlinear Benders’ Master Problem (representing an
OPF problem with additional linear constraints) is solved using IPMs. The authors
give a parallel version of their algorithm as well.

IPMs combined with Lagrangian Relaxation and Newton’s method:
Lage et al. (2009) proposed a penalty/modified barrier method for ORPF to min-
imize the active power losses in transmission lines. First, the OPF problem is
transformed into an equality constrained optimization problem by introducing
slack variables. In order to ensure the non-negativity of the slack variables, smooth
penalty functions are introduced using Lagrangian multipliers in combination with
a barrier parameter. Newton’s method is then used to solve the first order nec-
essary conditions for the objective function (including the penalty function) to
iteratively update the Lagrange multipliers. One important feature of this hybrid
algorithm is that the optimal trajectory is allowed to pass through both the feasible
and infeasible regions.

PC-IPMs combined with Newton’s Method and Line Search: Han
et al. (2009) introduced a so-called sequential feasible optimal method to solve
OPF problems. In each iteration, their algorithm uses a two stage approach. In
the first stage, a new point with improving objective function value (compared to
the previous iteration’s solution) is computed. In the second stage, the new point
is slight changed to enforce feasibility. The first stage is based on the computation
of a direction of decent for the objective function using PC-IPMs. Feasibility in
stage two is ensured by solving various auxiliary problems using Newton’s method
and line search techniques. The hybrid algorithm converges to a KKT point of the
OPF problem and maintains feasibility in each iteration.

3.2 Deterministic and Non-deterministic Methods Combined

Deterministic approaches tend to be computationally much quicker than non-
deterministic approaches. However, deterministic methods are typically limited
to providing locally optimal solutions—at best—and the quality of the solution
obtained is sensitive to the starting point. To overcome the drawback of getting
trapped on local optima, local search techniques can be combined with global
search procedures provided by non-deterministic methods. Very often, the idea is
that meta-heuristics deal with the discrete decision variables of the problem and
local search techniques are employed to handle the remaining continuous NLP
portion.

IPMs combined with meta-heuristics: Shengsong et al. (2002) proposed
a hybrid optimization method consisting of two stages: a global search by COA
and a local search by PC-PDIPM. Computational tests show that the local search
speeds convergence when the COA is close to global optimal solutions. Further-
more, the hybrid method was able to compute the same optimum in all 300 tests
performed. Therefore, robustness of global convergence is improved, compared to
each single methodology alone. One year later, the same authors implemented a hy-
brid two-stage optimization algorithm for solving OPF problems with multimodal
characteristics, cf. Shengsong et al. (2003). This time, COA was combined with
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SLP. The resulting linearized subproblems in SLP are solved using PC-PDIPM.
Again, the authors reported an improvement in the global convergence robustness
of their hybrid method compared to COA or SLP alone.

Chuanwena and Bomp (2005) combined chaotic PSO with linear IPMs to solve
an ORPF problem. Chaotic mapping is combined with PSO to enhance global
search while the IPM is used as local solver. The proposed hybrid method was
benchmarked against a conventional PSO method on two problems: shunt capaci-
tor minimization and regular transformer optimization. Both computational tests
showed that the hybrid method converges in fewer iterations and to better solu-
tions compared to the conventional PSO alone.

Liu et al. (2006) combined immune GAs and IPMs to solve a dynamic ORPF
problem. The continuous variables are handled by a nonlinear IPM while the dis-
crete variables are solved by immune GAs. Computational times are not reported
and no benchmarking against other methods was performed.

Raju et al. (2009) proposed an IPM in combination with evolutionary PSO
to solve an OPF. The formulation incorporates FACTS devices, such as static
synchronous series compensators. The objective function includes fuzzy logic com-
posite criteria, combined fuzzy severity index, and the system real power loss. The
case studies compared the results obtained with and without inclusion of FACTS
devices.

LP and SQP combined with GA: Younes et al. (2007) developed a se-
quential hybrid method combining a GA with the LP and SQP OPF algorithms
available in the MATPOWER software, cf. Zimmerman et al. (2011). The GA is
used first to generate an approximate optimal solution, which is then fine-tuned
using MATPOWER to obtain an exact local optimum. This sequential method
combines the global search characteristics of GA with the rapid convergence to a
local optimum from deterministic methods. Computational results show that high
quality solutions are obtained compared to the GA or MATPOWER alone. To
yield similar quality solutions, the GA alone requires more time than the hybrid
algorithm.

Newton’s method combined with PSO: Rashidi and El-Hawary (2007)
presented a hybrid PSO method to solve an OPF with multimodal characteristics.
The proposed algorithm makes use of PSO’s global search capabilities to allocate
the optimal control settings. The non-linear power flow equations with continuous
variables are handled via a conventional Newton-Raphson power flow algorithm.
The power flow ensures that the continuous variables remain in the feasible region,
avoiding a penalty approach for constraint violations. Extensive tuning was done
on the PSO parameters of the hybrid algorithm. The proposed algorithm was
tested with three different objective functions to be minimized: system real power
losses, fuel cost, and nitrogen oxides emissions of the generating units. The hybrid
method computed better solutions than the MATPOWER software (SQP-based)
for all tested instances (containing only continuous variables).

Newton’s method combined with SA: Chen et al. (1997) considered an
OPF problem with both continuous and discrete variables. Their hybrid algorithm
treats the continuous variables via Newton’s method while the discrete variables
are handled via a SA-type algorithm. The typical temperature reduction rules
of SA algorithms are replaced by so-called Mean Field Equations, enhancing the
convergence of the algorithm compared to standard SA.
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Direct search combined with EP: Gopalakrishnan et al. (2003) applied a
hybrid EP to reactive power planning. The objective function to be minimized is
the sum of the cost associated with network losses and the installation cost. The
hybrid method uses EP to generate good solutions while a direct search method
computes a local optimum quickly. As such, the global search ability of EP is
combined with a fast local search algorithm as a fine-tuning procedure. Their
hybrid method computed better solutions than EP alone in computational tests
on small instances.

Direct search combined with BFA: Panigrahi and Pandi (2009) combined
a BFA with the Nelder-Mead method (a direct search technique which evaluates
vertices of simplices). Their hybrid method is largely based on BFA where the
chemotaxis step is extended by the Nelder-Mead method to find a solution with
lower fitness function value, where the fitness function consists of a quadratic
generation cost function and penalty functions for constraint violations. The pro-
posed method is used to solve a OPF problem whose solution is then used in a
second optimization problem to reduce transmission line congestions. Computa-
tional benchmarking revealed that the hybrid method converges faster to a better
solution compared to conventional BFA, GA, and PSO.

SLP combined with local heuristic search: Aoki et al. (1988) used SLP
together with a heuristic mixed-integer programming optimization method to cal-
culate the optimal placement of new capacitor banks while accounting for the
discrete nature of capacitor installations. Their heuristic is based on a local search
method of an optimal solution of the LP-relaxation together with an improve-
ment procedure. The LP-relaxation is obtained by first linearizing the load flow
equations at the current best solution (the main idea of SLP) and then relaxing
the integrality requirements on the binary decision variables, which model the
capacitor unit installation decisions.

Tangent vector technique combined with PSO: Esmin et al. (2005) and
Esmin and Lambert-Torres (2006) presented a two-stage PSO approach for mini-
mization of power loss. The first stage identifies a set of buses where the voltage
instability is most likely to cause a voltage collapse. These buses are determined
via a tangent vector which contains the information on the changes of the system
variables with respect to changes in the parameters. The PSO technique is then
used to optimize the shunt reactive power compensation needed for each bus.

3.3 Non-deterministic Methods Combined

The predominant idea of combining several meta-heuristics into one hybrid method
is to overcome slow convergence and/or to improve the global convergence proper-
ties of the individual meta-heuristics. As such, the hybrid methods tend to be much
more tailored to OPF problems than the conventional meta-heuristic methods.

GA combined with other meta-heuristics: Liu et al. (2000) combined
GA, SA and TS techniques to solve ORPF problems. The authors presented three
variations of their algorithm, but the main scheme is to use a GA-SA algorithm
to compute starting solutions for TS, which then performs a global search. SA is
combined to help GA escape local optima, while TS is used to overcome potential
local convergence of SA for a low temperature parameter. Computational results
show fast convergence of all three hybrid methods to high quality solutions.
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Das and Patvardhan (2003) also applied a hybrid GA-SA method to OPF.
Up to four objective functions are considered in a multi-objective optimization
fashion: minimization of generation cost, emissions, and transmission losses, and
maximization of a security index. SA is used to update the probability of selection
of different objective functions to be improved, based on the average difference of
objective function values obtained.

Nakawiro and Erlich (2009) proposed a speedup strategy for OPF that uses
a dedicated ANN to perform the function of a power flow program. The ANN
is combined with a GA, which performs the optimization. Tests show that their
method significantly speeds up the solution process compared to GAs alone, while
providing solutions of similar quality.

PSO combined with SA: Sadati et al. (2009) proposed a PSO-SA hybrid
optimization technique for solving an under-voltage load shedding problem with
detailed transmission modeling. SA is used to independently generate new solu-
tions which are then included in the swarm for PSO if their fitness function is
good enough. Computational comparisons with conventional PSO and SQP meth-
ods demonstrated the fast and consistent convergence of the hybrid algorithm.

DE combined with other meta-heuristics: Abbasy et al. (2007) solved an
optimal reactive power dispatch problem in power markets by integrating multi-
agent systems and DE. Computational tests showed that their hybrid algorithm
converges faster to better solutions using less CPU time compared to GA, PSO
and conventional DE.

Chen (2008) combined DE and SA methods to solve an ORPF problem. The
greedy updating rule of DE is replaced by the probabilistic updating of SA. The
idea is to exploit the global convergence property of SA with the fast convergence
rate of DE methods. Test results indicate that the hybrid algorithm is superior to
conventional DE methods in both speed and solution quality.

3.4 Fuzzy Logic Combined with OPF

Fuzzy logic is not an optimization algorithm but rather a mathematical approach
for dealing with incomplete or imprecise information. Fuzzy set methods have been
used to hybridize many existing OPF algorithms, primarily to improve algorithm
performance when inputs are unknown or uncertain. Fuzzy logic emerged from
fuzzy set theory, developed by Zadeh (1965, 1996). The fuzzy set theory permits
the gradual assessment of the membership of elements in a set; this is described
with the aid of a membership function. A key element of the theory is that a single
element may be a member of several sets to varying degrees.

Fuzzy logic combined with LP: Miranda and Saraiva (1992) presented a
fuzzy model for power system operation where load and generation uncertainties
are modeled as fuzzy numbers. System behavior under known (though uncertain)
injections were dealt with by a DC fuzzy power flow model. Two years later,
the authors developed an improved DC fuzzy OPF model for planning purposes,
cf. Saraiva and Miranda (1994). In their multi-parametric programming model,
information about system loads is expressed in a subjective way either by expert
input or by integrating a degree of future uncertainty. Testing showed that the
fuzzy set approach achieved a significant reduction in computation time compared
with sampling based heuristics while maintaining the quality of the results.
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Venkatesh et al. (1999) solved a nonlinear optimal reactive power planning
problem by adopting a successive multi-objective fuzzy LP framework. Each of
the objectives and constraints are expressed as a fuzzy set, where a satisfaction
parameter is assigned.

More recently, Chayakulkheeree and Ongsakul (2007) presented a fuzzy OPF
algorithm with nonlinear fuzzy network constraints and generator ramp rate lim-
its. The authors decomposed the problem into a linearized total fuel cost fuzzy
minimization subproblem and a linearized total real power loss fuzzy minimization
subproblem, which were then solved by fuzzy LP.

Gomes et al. (2009) presented a hybrid DC-OPF approach based on fuzzy
logic considering load and generation cost uncertainties. The developed algorithms
use multi-parametric linear optimization techniques that allow a more accurate
description of the possible behavior of the system under the form of membership
functions.

Fuzzy OPF converted to crisp OPF: Guan et al. (1995) applied a fuzzy
optimization technique to OPF by taking into account the uncertainty of the in-
equality constraints in a large power system. The OPF with fuzzy constraints was
first formulated as a fuzzy optimization problem, then converted into a crisp opti-
mization problem. The authors used an efficient SLP method, with modifications,
to solve the crisp problem. Numerical results show that this method is promising
for handling uncertain constraints in practical power systems.

Ramech and Li (1997) also proposed a fuzzy logic approach for OPF that
employed a fuzzy formulation that is subsequently converted to a crisp optimiza-
tion problem and solved using a standard OPF method. The authors addressed
a contingency constrained OPF problem, formulated in a decomposed form that
allows for post-contingency corrective rescheduling. They developed a systematic
procedure for specifying the tolerance parameters that are needed to obtain fuzzy
membership functions for these fuzzy goals.

Fuzzy logic combined with Benders’ Decomposition: Hahn et al. (2008)
also used a decomposition approach, applying Benders Decomposition to a multi-
objective, contingency constrained OPF problem. The goal was to evaluate avail-
able system transfer capability. The approach included a systematic procedure to
specify the tolerance parameters, thereby obtaining fuzzy membership functions
for these fuzzy goals. As with the algorithm of Ramech and Li (1997), the results
allow for post-contingency corrective rescheduling.

Fuzzy logic combined with meta-heuristics: Song et al. (1997) used fuzzy
logic to adjust crossover and mutation probabilities for a GA. Zhang and Liu (2005)
used fuzzy logic to dynamically update the parameters in a PSO algorithm. The
authors demonstrated that their hybrid method is superior to conventional PSO
in terms of improved real power losses, voltage control and voltage stability.

Prasanna and Somasundaram (2009) and Prasanna et al. (2009) presented two
algorithms for solving a security constrained OPF problems; both algorithms in-
corporate fuzzy logic into the mutation process—the first algorithm for EP and
the second for TS. The motivation of these two hybrid methods is to reduce com-
putational time compared to each of the meta-heuristics alone, which was compu-
tationally verified on small problem instances.
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4 CONCLUSIONS

The diversity and versatility of OPF formulations has made it impossible for any
single optimization technique to solve all OPF problems efficiently enough for prac-
tical applications. Hence, algorithms tailored to each specific problem type have
had to be developed, as evidenced by the myriad of methods discussed. All the pre-
sented techniques—both deterministic methods, cf. Frank et al. (2012), and meta-
heuristic methods—have significant strengths in certain areas and weaknesses in
others.

Deterministic methods for OPF have proven themselves reliable for many types
of OPF problems. Nevertheless, none of the deterministic methods surveyed can
guarantee global optimality and most cannot easily handle discrete variables. The
deterministic optimization methods also generally have trouble handling qualita-
tive constraints, are sensitive to initial conditions for both global convergence and
the quality of the obtained solution, and require continuity and differentiability of
the objective function (which is not always available in practical OPF problems).
Moreover, each of the deterministic methods has tradeoffs with respect to the
others in terms of reliability, accuracy, and computational performance, cf. Frank
et al. (2012).

As a counter to the shortcomings of the deterministic methods, non-deterministic
methods have been extensively applied to various OPF problems. These methods
have excellent global search characteristics, and some have been shown to ap-
proach global optimality given sufficient search time and proper selection of con-
trol parameters. However, the random search methods typically lack an efficient
method for enforcing constraints and are very expensive computationally, yielding
impractically long execution times for large problems. The computational burden
associated with heuristic methods has limited their application in practical OPF
software, despite their theoretical advantages.

The most promising recent developments in the OPF field have been hybrid
methods. In many cases, hybrid methods have been shown to be more robust
and converge more quickly to optimal solutions than their individual component
methods operating alone. However, the latest developments in global optimization,
cf. Floudas and Gounaris (2009), have not yet been fully applied to OPF prob-
lems. In the future, we believe that polylithic modeling and solution techniques
have potential for solving practical OPF problems, cf. Kallrath (2009, 2011). Such
techniques provide successively tighter upper and lower bounds on the global op-
timal solution, providing convergence to the global optimum. Although there has
been great progress in the field of global optimization in recent decades, additional
improvements in speed and reliability are required before such methods are able
to solve all forms of practical OPFs.

A Abbreviations

The following summarizes the meanings of abbreviations and acronyms used throughout the
paper:

AC Alternating Current

ACO Ant Colony Optimization

AIS Artificial Immune Systems
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ANN Artificial Neural Network

BFA Bacterial Foraging Algorithm

COA Chaos Optimization Algorithm

DBFA Dynamic Bacterial Foraging Algorithm

DC Direct Current

DE Differential Evolution

EA Evolutionary Algorithm

EP Evolutionary Programming

FACTS Flexible AC Transmission Systems

GA Genetic Algorithm

IA Immune Algorithm

IPM Interior Point Method

KKT Karush-Kuhn-Tucker (conditions for optimality)

LP Linear Programming

MINLP Mixed Integer-Nonlinear Programming

NLP Nonlinear Programming

NN Neural Network

OPF Optimal Power Flow

ORPF Optimal Reactive Power Flow

PC Predictor-Corrector

PDIPM Primal-Dual Interior Point Method

PSO Particle Swarm Optimization

SA Simulated Annealing

SCED Security-Constrained Economic Dispatch

SLP Sequential Linear Programming

SQP Sequential Quadratic Programming

TS Tabu Search

UPFC Unified Power Flow Controller

VAR Volt-Ampere Reactive
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Qiu Z, Deconinck G, Belmans R (2009) A literature survey of Optimal Power Flow problems
in the electricity market context. In: IEEE/PES Power Systems Conference and Exposition.
PSCE ’09., Seattle, WA, pp 1–6

Raju C, Vaisakh K, Raju S (2009) An IPM-EPSO Based Hybrid Method for Security Enhance-
ment Using SSSC. International Journal of Recent Trends in Engineering 2(5):208–212



30 Stephen Frank et al.

Ramech V, Li X (1997) A Fuzzy Multiobjective Approach to Contingency Constrained OPF.
IEEE Transactions on Power Systems 12(3):1348–1354

Rashidi MA, El-Hawary M (2007) Hybrid Particle Swarm Optimization Approach for Solving
the Discrete OPF Problem Considering the Valve Loading Effects. IEEE Transactions on
Power Systems 22(4):2030–2038

Reeves C, Rowe J (2003) Genetic algorithms: principles and perspectives: a guide to GA theory,
2nd edn. Springer

Ripley B (1996) Pattern Recognition and Neural Networks. Cambridge University Press
Roa-Sepulveda C, Pavez-Lazo B (2001) A Solution to the Optimal Power Flow Using Simulated

Annealing. In: IEEE Porto Power Tech Conference, Porto, Portugal
Rudolph G (1994) Convergence Analysis of Canonical Genetic Algorithms. IEEE Transactions

on Neural Networks 5:96–101
Sadati N, Amraee T, Ranjbar A (2009) A global Particle Swarm-Based-Simulated Annealing

Optimization technique for under-voltage load shedding problem. Applied Soft Computing
9:652–657

Santoso N, Tan O (1990) Neural-Net Based Real-Time Control of Capacitors Installed on
Distribution Systems. IEEE Transactions on Power Delivery 5(1):266–272

Saraiva J, Miranda V (1994) Evaluation of the performance of a fuzzy optimal power flow
algorithm. In: Proceedings of 7th Mediterranean Electrotechnical Conference, vol 3, pp
897–900

Sayah S, Zehar K (2008) Modified Differential Evolution Algorithm for Optimal Power Flow
with Non-smooth Cost Functions. Energy Conversion and Management 49:3036–3042

Shengsong L, Min W, Zhijian H (2002) A hybrid algorithm for optimal power flow using the
chaos optimization and the linear interior point algorithm. In: Proceedings International
Conference on Power System Technology, vol 2, pp 793–797

Shengsong L, Min W, Zhijian H (2003) Hybrid algorithm of chaos optimisation and SLP
for optimal power flow problems with multimodal characteristic. In: IEE Proceedings -
Generation, Transmission and Distribution, vol 150, pp 543–547

Simon S, Padhy N, Anand R (2006) An Ant Colony System Approach for Unit Commitment
Problem. International Journal of Electrical Power & Energy Systems 28:315–323

Song Y, Wang G, Wang P, Johns A (1997) Environmental/econoimic dispatch using fuzzy logic
controlled genetic algiorithms. IEE Proceedings-Generation, Transmission and Distribution
144(4):377–382

Sood Y, Padhy N, Gupta H (2003) Discussion of Optimal Power Flow by Enhanced Genetic
Algorithm. IEEE Transactions on Power Systems 18(3):1219

Spall J (2003) Introduction to Stochastic Search and Optimization. Wiley-Interscience
Storn R, Price K (1995) Differential Evolution - a Simple and Efficient Adaptive Scheme for

Global Optimization over Continuous Spaces. Tech. Rep. TR-95-012, ICSI
Subbaraj P, Rajnarayanan P (2009) Optimal reactive power dispatch using self-adaptive real

coded genetic algorithm. Electric Power Systems Research 79:374–381
Swapur K (2006) Swarm intelligence approach to the solution of optimal power flow. Indian

Institute of Science 86:439–455
Swarup K (2005) Ant Colony Optimization for Economic Generator Scheduling and Load

Dispatch. In: Proceedings of the 6th WSEAS International Conference on Evolutionary
Computing, Portugal, pp 167–175

Tang K, Kwong S (1999) Genetic algorithms: concepts and designs, 2nd edn. Springer
Tang W, Li M, He S, Wu Q, Saunders J (2006) Optimal power flow with dynamic loads using

bacterial foraging algorithm. In: International Conference on Power System Technology
Tang W, Li M, Wu Q, Saunders J (2008) Bacterial Foraging Algorithm for Optimal Power

Flow in Dynamic Environments. IEEE Transactions On Circuits And Systems – I: Regular
Papers 55(8):2433–2443

Tangpatiphan K, Yokoyama A (2009) Optimal Power Flow with Steady-State Voltage Stability
Consideration Using Improved Evolutionary Programming. In: 2009 IEEE Bucharest Power
Tech Conference, Bucharest, Romania

Teng JH, Liu YH (2003) A novel ACS-based optimum switch relocation method. IEEE Trans-
actions on Power Systems 18(1):113–120

Todorovski M, Rajicic D (2006) An Initialization Procedure in Solving Optimal Power Flow
by Genetic Algorithm. IEEE Transactions on Power Systems 21(2):480–487

Tripathy M, Mishra S (2007) Bacteria foraging-based solution to optimize both real power loss
and voltage stability limit. IEEE Transactions on Power Systems 22(1):240–248



OPF: Non-Deterministic and Hybrid Methods 31

Vaisakh K, Srinivas LR (2008) Differential Evolution based OPF with Conventional and Non-
Conventional Cost Characteristics. In: Joint International Conference on Power System
Technology and IEEE Power India Conference POWERCON, pp 1–9

Varadarajan M, Swarup K (2008) Solving multi-objective optimal power flow using differential
evolution. IET Generation, Transmission & Distribution 2(5):720–730

Venayagamoorthy G, Harley R (2007) Swarm Intelligence for Transmission System Control.
In: IEEE Power Engineering Society General Meeting, pp 1–4

Venkatesh B, Sadasivam G, Khan M (1999) Optimal reactive power planning against voltage
collapse using the successive multiobjective fuzzy LP technique. In: IEE Proceedings on
Generation, Transmission and Distribution, vol 146, pp 343–348

Vlachogiannis J, Lee K (2005) Reactive Power Control Based On Particle Swarm Multi-
Objective Optimization. In: Proceedings of the 13th International Conference on Intelligent
Systems Application to Power Systems, vol 1, pp 303–308

Vlachogiannis J, Lee K (2006) A Comparative Study on Particle Swarm Optimization for
Optimal Steady-State Performance of Power Systems. IEEE Transactions on Power Systems
21(4):1718–1728

Vlachogiannis J, Hatziargyriou N, Lee K (2005) Ant Colony System-Based Algorithm for
Constrained Load Flow Problem. IEEE Transactions on Power Systems 20(3):1241–1249

Wang CR, Yuan HJ, Huang ZQ, Zhang JW, Sun CJ (2005) A modified particle swarm opti-
mization algorithm and its application in optimal power flow problem. In: Proceedings of
2005 International Conference on Machine Learning and Cybernetics, vol 5, pp 2885–2889

Wong K, Fung C (1993) Simulated annealing based economic dispatch algorithm. In: IEE
Proceedings, vol 140, pp 509–515

Wong K, Yuryevich J (1999) Simulated Evolution and Learning, Springer Berlin / Heidelberg,
chap Optimal Power Flow Method Using Evolutionary Programming, pp 405–412

Wu Q, Ma J (1995) Power System Optimal Reactive Power Dispatch Using Evolutionary
Programming. IEEE Transactions on Power Systems 10(3):1243–1249

Xia X, Elaiw A (2010) Optimal dynamic economic dispatch of generation: A review. Electric
Power Systems Research 80(8):975–986

Xiangzheng X (2007) Research on Reactive Power Optimizing Control Based on Immune
Algorithms. In: The Eighth International Conference on Electronic Measurement and In-
struments, pp 3–898 – 3–901

Xu H, Zhu Y, Zhang T (2000) Application of mutative scale chaos optimization algorithm in
power plant units economic dispatch. Journal of Harbin Institute of Technology 32:55–58

Yang B, Chen Y, Zhao Z (2007a) Survey on Applications of Particle Swarm Optimization
in Electric Power Systems. In: IEEE International Conference on Control and Automation
ICCA, pp 481–486

Yang D, Li G, Cheng G (2007b) On the Efficiency of Chaos Optimization Algorithms for
Global Optimization. Chaos, Solitons and Fractals 34:1366–1375

Yoshida H, Kawata K, Fukuyama Y, Takayama S, Nakanishi Y (2001) A Particle Swarm Opti-
mization for Reactive Power and Voltage Control Considering Voltage Security Assessment.
IEEE Transactions on Power Systems 15(4):1232–1239

Younes M, Rahli M, Abdelhakem-Koridak L (2007) Optimal Power Flow Based on Hybrid
Genetic Algorithm. Journal of Information Science And Engineering 23:1801–1816

Yu X, Gen M (2010) Introduction to Evolutionary Algorithms. Springer
Yumbla P, Ramirez J, Coello C (2008) Optimal Power Flow Subject to Security Constraints

Solved With a Particle Swarm Optimizer. IEEE Transactions on Power Systems 23(1):33–40
Zadeh L (1965) Fuzzy sets. Information and Control 8(3):338–353
Zadeh L (1996) Fuzzy Sets, Fuzzy Logic, Fuzzy Systems, Advances in Fuzzy Systems-

Applications and Theory, vol 6. World Scientific Press
Zhang H, Zhang L, Meng F (1998) Reactive Power Optimization Based on Genetic Algorithm.

In: International Conference on Power System Technology, vol 2, pp 1448–1453
Zhang W, Liu Y (2004) Reactive Power Optimization Based on PSO in a Practical Power

System. In: IEEE Power Engineering Society General Meeting, vol 1, pp 239–243
Zhang W, Liu Y (2005) Fuzzy Logic Controlled Particle Swarm for Reactive Power Optimiza-

tion Considering Voltage Stability. In: The 7th International Power Engineering Confer-
ence.IPEC 2005

Zhang W, Tolbert L (2005) Survey of Reactive Power Planning Methods. In: IEEE Power
Engineering Society General Meeting, vol 2, pp 1430–1440



32 Stephen Frank et al.

Zhao B, Guo C, Cao Y (2004) Improved Particle Swam Optimization Algorithm for OPF
Problems. In: IEEE PES Power Systems Conference and Exposition, vol 1, pp 233–238

Zhao B, Guo C, Cao Y (2005) An Improved Particle Swarm Optimization Algorithm for
Optimal Reactive Power Dispatch. In: IEEE Power Engineering Society General Meeting,
vol 1, pp 272–279

Zhihuan L, Yinhong L, Xianzhong D (2010) Improved Strength Pareto Evolutionary Algorithm
with Local Search Strategies for Optimal reactive Power Flow. Information Technology
Journal 9:749–757

Zhijiang Y, Zhijian H, Chuanwen J (2002) Economic Dispatch and Optimal Power Flow Based
on Chaotic Optimization. In: Proceedings of International Conference on Power System
Technology, 2002. PowerCon, vol 4, pp 2313–2317

Zimmerman RD, Murillo-Sánchez CE, Thomas RJ (2011) MATPOWER: Steady-state opera-
tions, planning, and analysis tools for power systems research and education. IEEE Trans-
actions on Power Systems 26(1):12–19, DOI 10.1109/TPWRS.2010.2051168


