
Context-Aware Ene rgy Enha ncements for
Smart Mobile Device s

Brad K. Donohoo, Student Member, IEEE, Chris Ohlsen, Student Member, IEEE, Sudeep Pasricha,
Member, IEEE, Yi Xiang, Student Member, IEEE, Charles Anderson, Member, IEEE

AAbs trac t— Within the pas t decade , mobile computing has morphed into a principa l form of human communica tion, bus iness , and
socia l inte raction. Unfortuna te ly, the energy demands of newer ambient inte lligence and collabora tive technologies on mobile devices
have grea tly overwhelmed modern energy s torage abilities . This paper proposes severa l nove l techniques tha t exploit spa tiotempora l
and device context to predict device wire less da ta and loca tion inte rface configura tions tha t can optimize energy consumption in
mobile devices . These techniques , which include variants of linear discriminant ana lys is , linear logis tic regress ion, non-linear logis tic
regress ion with neura l ne tworks , k-neares t ne ighbor, and support vector machines are explored and compared on synthe tic and user
traces from rea l-world usage s tudies . The experimenta l results show tha t up to 90% success ful prediction is poss ible with neura l
ne tworks and k-neares t ne ighbor a lgorithms , improving upon prediction s tra tegies in prior work by approximate ly 50%. Further, an
average improvement of 24% energy savings is achieved compared to s ta te -of-the -art prior work on energy-efficient loca tion-
sens ing.

Index Terms — energy optimiza tion, pervas ive computing, machine lea rning

—————————— ——————————

1 INTRODUCTION

Mobile phones and other portable devices (tablets, PDA’s, and e-
readers) are fundamental everyday tools used in business,
communication, and social interactions. As newer technologies
(e.g. 4G networking, multicore/GPUs) and applications (e.g. 3D
gaming, Apple’s FaceTime™) gain popularity, the gap between
device usage capabilities and battery lifetime continues to

increase, much to the annoyance of users who are now becoming
more and more reliant on their mobile devices. The growing
disparity between functionality and mobile energy storage has
been a strong catalyst in recent years to develop software-centric
algorithms and strategies for energy optimization [1]-[17]. These
software techniques work in tandem with well-known energy
optimizations implemented in hardware including CPU DVFS,
power/clock gating, and low power mode configurations for
device interfaces and chipsets [18]-[21].

The notion of “smart” mobile devices has recently spawned a
number of research efforts on developing “smart” energy
optimization strategies. Some of these efforts employ strategies
that are context-aware including utilization of device, user,
spatial, temporal, and application awareness that attempt to
dynamically modify or learn optimal device configurations to
maximize energy savings with little or negligible impact on user
perception and quality of service (QoS) [10][13][17]. This
general theme of a smart and context-aware energy optimization
strategy is further explored in this paper, in which a select
number of machine learning algorithms are proposed and
evaluated for their effectiveness in learning a user’s mobile
device usage pattern pertaining to spatiotemporal and device
contexts, to predict data and location interface configurations.
These resulting predictions manage the network interface states
allowing for dynamic adaptation to optimal energy
configurations, while simultaneously maintaining an acceptable
level of user satisfaction. This idea is further motivated by
considering the power distributions of the Google Nexus One
Android smartphone illustrated in Figure 1 [22]. Even when 3G,
WiFi, and GPS interfaces are all enabled and idle, they account
for more than 25% of total system power dissipation.
Furthermore, when only one of the interfaces is active, the other
two idle interfaces still consume a non-negligible amount of
power. Our work exploits this fact to save energy more
aggressively than the default energy management strategy used

————————————————
B. K. Donohoo is with the Department of Electrical and Computer
Engineering, Colorado State University, Fort Collins, CO 80523. E-mail:
bdonohoo@rams.colostate.edu
C. Ohlsen is with the Department of Electrical and Computer Engineering,
Colorado State University, Fort Collins, CO 80523. E-mail:
ohlsensc@rams.colostate.edu
S. Pasricha is with the Department of Electrical and Computer
Engineering, Colorado State University, Fort Collins, CO 80523. E-mail:
sudeep@colostate.edu
Yi Xiang is with the Department of Electrical and Computer Engineering,
Colorado State University, Fort Collins, CO 80523. E-mail:
yix@colostate.edu
Charles Anderson is with the Department of Computer Science, Colorado
State University, Fort Collins, CO 80523. E-mail:
anderson@cs.colostate.edu

This article is a significantly extended version of our paper accepted for publication
in ACM/IEEE DAC 2012 titled “Exploiting Spatiotemporal and Device Contexts
for Energy Efficient Mobile Embedded Systems” with the following major
additions: (i) More comprehensive related work in Section 2 explaining how our
work is different and novel in comparison with previously published architectures;
(ii) Further description of the synthetic user profiles in Section 3.4; (iii) More
detailed descriptions of the machine learning algorithms in Section 4, including a
list of pros and cons for each algorithm; (iv) Analysis and results for a new
machine learning technique based on support vector machines; (v) Further
description of our power modeling efforts in Section 5; (vi) A study involving
dimensionality reduction using principal component analysis (PCA) in Section
6.3; and (vii) A more accurate analysis of the implementation overhead for each of
the algorithms in Section 6.4, in which the algorithms are run on an actual mobile
device.

Digital Object Indentifier 10.1109/TMC.2013.94 1536-1233/13/$31.00 © 2013 IEEE

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

in a mobile device, by dynamically managing data and location
interfaces, e.g., turning off unnecessary interfaces at runtime.

Figure 1: Google Nexus One smartphone power distributions

In this paper, we propose and demonstrate the use of five
different classes of machine learning algorithms (i) linear
discriminant analysis, (ii) linear logistic regression, (iii) k-
nearest neighbor, (iv) non-linear logistic regression with neural
networks, and (v) support vector machines, towards predicting
user data/location usage requirements based on spatiotemporal
and device contexts. These strategies are tested on both synthetic
and real-world user usage patterns, which demonstrate that high
and consistent prediction rates are possible. The proposed
techniques are also compared with prior work on device
configuration prediction using self-organizing maps [13] and
energy-aware location sensing [9], showing an improvement
upon these state-of-the-art techniques.

The remainder of this paper is organized as follows. Section 2
reviews several key related works. Section 3 discusses the
acquisition and creation of real and synthetic user profiles that
are used in our analysis studies. Section 4 provides a brief
overview of the machine learning concepts used in the studies.
Section 5 describes our device power modeling effort. Section 6
presents the results of our experimental studies. Finally, Section
7 presents our conclusions and ideas for future work.

22 RELATED WORK

A large amount of work has been done in the area of energy
optimization for mobile devices over the past decade [37], [38].
Much of the recent work focuses on optimizing energy consumed
by the device’s wireless interfaces by intelligently selecting the
most energy-efficient data interface (e.g. 3G/EDGE, WiFi) [1],
[2]. Other work [3]-[8] focuses on energy-efficient location-
sensing schemes aiming to reduce high battery drain caused by
location interfaces (e.g. WiFi, GPS) by deciding when to
enable/disable location interfaces or modify location acquisition
frequency. Lee et al. [9] in particular propose a Variable Rate
Logging (VRL) mechanism that disables location logging or

reduces the GPS logging rate by detecting if the user is standing
still or indoors. The authors in [10] propose a context-aware
method to determine the minimum set of resources (processors
and peripherals) that results in meeting a given level of
performance, much like our work. They determine if a user is
moving/stationary and indoors/outdoors and control resources
using a static lookup table. In contrast, our work controls
resources dynamically by using machine learning algorithms.
Zhuang et al. [11] propose an adaptive location-sensing
framework that involves substitution, suppression, piggybacking,
and adaptation of an application’s location-sensing requests to
conserve energy. Their work is directed towards LBAs (location-
based applications) and only focuses on location interfaces, while
ours is a system-wide optimization strategy that is capable of
saving energy regardless of the foreground application type.

A substantial amount of research has been dedicated to
utilizing machine learning algorithms for the purpose of mobile
user context determination. Batyuk et al. [13] extend a traditional
self-organizing map to provide a means of handling missing
values and then use it to predict mobile phone settings such as
screen lock pattern and WiFi enable/disable. Other works attempt
to predict the location of mobile users using machine learning
algorithms. In [14] the authors propose a model that predicts
spatial context through supervised learning, and the authors in
[15] take advantage of signal strength and signal quality history
data and model user locations using an extreme learning machine
algorithm. These works are focused on using user context for
device self-configuration and location prediction, whereas our
work is focused on using user context for optimizing energy
consumed by data transfer and location interfaces.

The authors in [28] apply machine learning techniques to
energy-efficient sensing, as we do in this work. They group
context sensors into three categories according to their energy
efficiency, using the more energy-efficient sensors to infer the
status of high-energy-consuming sensors so that activating them
may not be necessary. The major difference between their work
and ours is that they use machine learning techniques for learning
the inference models to capture relationships between groups of
sensors (e.g., between energy-efficient software sensing and
high-energy consuming hardware sensing categories), whereas in
our work, machine learning techniques are used to learn user-
specific spatiotemporal and device contexts.

One of the key motivations for applying pattern recognition
and classification algorithms to mobile device usage is the
observation that user usage patterns are often mutually-
independent, in that each user generally has a unique device
usage pattern. The use of pattern recognition then allows for
energy optimization algorithms to be fine-tuned for each user,
achieving energy savings without perturbing user satisfaction
levels. This idea is further confirmed in mobile usage studies
[16], which additionally focused on smartphone usage pattern
analysis and its implications on mobile network management and
device power management. Although their work had a slightly
different focus than our work, the key relevant take-away is that
the authors demonstrated from a two month real smartphone
usage study that all users have unique device usage patterns.
Many other works [30]-[36] utilize data gathered from groups of
real smartphone users to emphasize this same conclusion. Our
previous work [17] also found that usage patterns are unique in
the way users interact with different apps on their mobile
devices. In Section 4 of this study, the real user usage patterns
further confirm this claim – all five users had unique usage

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

patterns in the amount of interaction as well as when and where
the interactions most often took place.

33 USER INTERACTION STUDIES

In this work we focus on exploiting learning algorithms to
discover opportunities for energy saving in mobile systems
through the dynamic adaptation of data transfer and location
network interface configurations without any explicit user input.
Consequently, we enable energy-performance tradeoffs that are
unique to each user by efficiently enabling/disabling their
device’s network interfaces. In order to compare the relative
effectiveness of our different learning algorithms (described in
Section 4) at predicting a user’s data/location usage
requirements, five real user usage profiles for five different
Android smartphones (HTC myTouch 3G, Google Nexus One,
Motorola Droid X, HTC G2, and Samsung Intercept) were
collected over a one week period with a custom Context Logger
application. The application logged user context data on external
storage, which was acquired at the end of the one week session
and used in our algorithm analysis.

Table 1: Recorded data attributes
Context Attribute Type

Temporal Day of week Discrete
Time of day Discrete

Spatial

Latitude Continuous
Longitude Continuous
GPS Satellite Count Discrete
WiFi RSSI Discrete
Number of WiFi APs Available Discrete
3G Network Signal Strength Discrete
Device Moving Logical
Ambient Light Discrete

Device

Call State Discrete
Battery Level Discrete
Battery Status Discrete
CPU Utilization Continuous
Context Switches Discrete
Processes Created Discrete
Processes Running Discrete
Processes Blocked Discrete
Screen On Logical

Targets
Data Needed Logical
Coarse Location Needed Logical
Fine Location Needed Logical

3.1 Context Logger
We created a custom Context Logger application that ran in the
background as an Android service and gathered both
spatiotemporal and device usage attributes at a one minute
interval. Table 1 lists the attributes recorded by the logger and
used for algorithm analysis and indicates whether the attribute
was a continuous variable (floating point), discrete variable
(integer), or logical variable (true/false). The GPS Satellites
attribute is used as an indirect correlation to GPS signal strength
and WiFi RSSI is a measure of WiFi signal strength. In addition
to more common device attributes such as Battery Level and
CPU Utilization, we gathered several uncommon OS attributes:
Context Switches, Processes Created, Processes Running, and
Processes Blocked. We hoped to aid prediction by using these as
inputs to the machine learning algorithms. The three target
variables (Data Needed, Coarse Location Needed, and Fine
Location Needed) were obtained by examining the requested
Android permissions of all of the device’s current running

foreground applications and services. The Device Moving
attribute was determined by using the accelerometer sensor and a
metric for movement that is the sum of the unbiased variance of
X, Y, and Z acceleration [7], given as:

(…) = 1 ()1 (1)= (…) + (…)+ (…) (2)

3.2 Data Preparation
As mentioned earlier, GPS location coordinates were recorded
along with the other attributes at one minute intervals. The
Android SDK GPS location data returns the user’s longitude and
latitude coordinates in decimal degrees as reported by the
onboard GPS chipset [26]. Although exact accuracy is dependent
on the actual GPS hardware, the returned values were truncated
to a given precision and each longitude and latitude coordinate
pair was mapped to a unique location identifier. The truncated
location resolution generalized the number of unique locations in
which a user spends his/her time, given that for example, a user’s
home may consist of several different samples of different
longitude and latitude pairs. In addition, temporal conditions can
be applied to further reduce the number of unique locations (e.g.
disregard locations where user spent less than x minutes). Figure
2 shows the effect of truncation and application of temporal
conditions for a real user and how the primary locations where
the user spent most of his/her time are revealed. In the figure, the
leftmost pie chart shows that, without truncation, there are too
many unique locations to effectively use for prediction (each
color is a different unique location). In the pie charts to the right,
the precision of the GPS coordinates is reduced and more
significant locations can be seen. For our study we used a
location precision of 4 decimal places, as it offers a good balance
between effectiveness and accuracy.

Figure 2: Unique locations identified for varying GPS precisions

The desired data/location interface configurations were
partitioned into eight different states based on the desired target
variables (Data Required, Coarse Location Required, and Fine
Location Required). Table 2 maps the logical values of the three
target variables to a state. The states define the device’s current
required resources. Efficiently predicting one of these 8 states
using temporal, spatial, and device context input variables in
Table 1 may ultimately allow opportunistic shutdown of
location/wireless radios. If all interfaces are enabled, they would
consume a significant amount of energy in their idle states
without this dynamic control. Some might wonder about the
worth of predicting users’ needs, considering that applications
and services request what they need at runtime. However, it is
important to realize that applications are rarely designed with
energy efficiency in mind – software developers are generally

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

more concerned about performance and functionality rather than
optimizing for energy efficiency.

Table 2: Interface configuration states
State Data Required Coarse Location

Required
Fine Location

Required
1 No No No
2 No No Yes
3 No Yes No
4 No Yes Yes
5 Yes No No
6 Yes No Yes
7 Yes Yes No
8 Yes Yes Yes

33.3 Real User Profile Analysis
We distributed the Context Logger application to five different
mobile device users, and logged their context data over the
course of one week. Figure 3 demonstrates the relative state
distributions as described in Table 2 for the five different real
users. As can be seen, states 2 – 4 are never realized as data was
always required when location was required. In addition, the
distributions highlight that each user had a considerably different
usage pattern, motivating the need for user-specific adaptation
framework to most effectively save energy. User 1 can be
categorized as a minimal user, where the user rarely utilized their
phone with only brief periods of interaction, while users 2 and 5
used their phones rather frequently and for longer periods of
time. Users 3 and 4 can be categorized as moderate users,
primarily utilizing their devices for only certain times of the day.

Figure 3: Real user state distributions

4 LEARNING ALGORITHMS: OVERVIEW

The notion of searching for patterns and regularities in data is the
fundamental concept in the field of pattern recognition and data
classification. Machine learning is often focused on the
development and application of computer algorithms in this field
[23]. In this work we use machine learning algorithms to learn
and predict both the spatiotemporal and device contexts of a user,
ultimately providing energy savings through efficient control of
their device’s network configuration. In other words, given a set
of input contextual cues, the algorithms will exploit learned user
context to dynamically classify the cues into a system state that
precisely governs how data and location interfaces are utilized.
The goal is to achieve a state classification (Table 2) that saves
energy while maintaining user satisfaction by using the recorded
data attributes in Table 1. An overview of the basic underlying

concepts and application of the machine learning algorithms used
in this study is briefly discussed below. The pros and cons of
each algorithm are summarized in Table 3.

4.1 Linear Discriminant Analysis
Linear discriminant analysis (LDA) makes use of a Bayesian
approach for classification in which parameters are considered as
random variables of a prior distribution. This concept is
fundamentally different from data-driven linear and non-linear
discriminant analyses in which what is learned is a function that
maps or separates samples to a class. Bayesian estimation and the
application of LDA is also known as generative modeling, in that
what is learned is a probabilistic model of the samples from each
class. By considering parameters as random variables of a prior
distribution one can make use of prior known information. For
example knowing that a mean is very likely to be between and , the probability can be determined in such a way that the
bulk of the density lies between and [24]. Given a prior
probability distribution for a particular state classification and a
state likelihood, Bayes’ theorem (equation 3) can be invoked to
get an inferred posterior probability to derive a state prediction
() for a new observed sample of input attributes using a
maximum a posteriori (MAP; equation 4) [24]:(|) = () (|)() (3)argmax (|) (4)

LDA is applicable to a wide range of classification problems
of both univariate or multivariate input spaces and binary- or
multi-class classification. A number of statistical probability
distribution functions can be applied, but the most common is the
Gaussian or Normal distribution (which we use in our study) as
shown in equation 5 below.(| ,) = 12 12 () (5)

In our work, we obtain an appropriate state classification using
LDA by calculating means and variances for the probability
distributions of each state using the input data. We then use the
means and variances to calculate discriminant functions for each
possible state classification using the Gaussian distribution.
Finally, we choose the state corresponding to the discriminant
function that outputs the highest value for prediction.

4.2 Linear Logistic Regression
Similar to LDA, linear logistic regression (LLR) is a technique
used to derive a linear model that directly predicts (|),
however it does this by determining linear boundaries that
maximize the likelihood of the data from a set of state
classification samples instead of invoking Bayes’ theorem and
generating probabilistic models from priori information. LLR
expresses (|) directly by requiring all linear function
values to be between 0 and 1 and that they all sum to 1 for any
value of , as shown in equation 6: (|) = (,)(,) (6)

with (,) = (7)

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

With LDA, Bayes’ theorem, state priors, and state probability
models were used to infer the state classification posterior
probabilities, which were then used to discriminate between the
different states for a given sample of input attributes . In
contrast, LLR solves for the linear weight parameters, ,
directly using gradients to maximize the data likelihood. This is
done by enumerating the likelihood function, (), using a 1-of-
K coding scheme for the target variables, as shown in equation 8
[23], in which every value of , {0,1} and each row only
contains a single ‘1’. The class variable transformations are
known as indicator variables and are used in the exponents of the
likelihood function to select the correct terms for each sample . = { , , , … , }

 , , … ,, , … , , , … , (8)

() = (|) , (9)

In order to find the that maximizes the data likelihood, we
transform product of products to a sum of sums using the natural
logarithm to simplify the gradient calculation with respect to .
Since equation 9 is non-linear, we use an iterative method known
as scaled conjugate gradient (SCG) [25] (discussed briefly in the
following subsection) to solve for the gradient of the log
likelihood, (), and obtain the respective weights.() = , log (|) (10)

The iterations repeat until the log likelihood () appears to
be at a maximum, then we can plug the updated weights into
equation 6 to obtain the final state probabilities. The resulting
state prediction is the state with the highest probability.

4.2.1 Scaled Conjugate Gradient
The scaled conjugate gradient (SCG) algorithm was originally

proposed by Moller in 1997 as a method for efficiently training
feed-forward neural networks [25]. Simple gradient descent
algorithms use a fixed step size when following a gradient.
However, when fixed it is difficult to choose an optimal value for

, which may result in slow convergence times. Instead, it is
better to perform a series of one-dimensional iterative searches
known as line searches in the direction of the gradient to choose

in each iteration. Although using line searches to choose is
better than using a fixed step size, there are a few problems
associated with the resulting gradient descent algorithm. For
example, because the gradient descent directions interfere, a
minimization along the gradient in one direction may spoil past
minimizations in other directions. This problem is solved using
conjugate gradient methods, which compute non-interfering
conjugate directions. Figure 4 shows an example of the two
algorithms, gradient descent (red line) and conjugate gradient
(green line) beginning at point , then moving along the
gradient to find a minimum at point .

Standard conjugate gradient algorithms still use line searches
along the conjugate directions to determine step size. However,
there are several drawbacks to doing line searches that can be
detrimental to the performance of the algorithm, such as the error

calculations involved with each iteration. Scaled conjugate
gradient (SCG) algorithms substitute the line search by scaling
the step size depending on success in error reduction and
goodness of a quadratic approximation of the likelihood [25].

Figure 4: Comparison of gradient descent (red) and conjugate
gradient (green) algorithms

44.3 Non-linear Logistic Regression with Neural
Networks

Neural network models, also known as Artificial Neural
Networks, are inspired by the way the human brain is believed to
function. Many of the normal basic everyday information
processing requirements handled by the brain, for example
sensory processing, cognition, and learning, surpass any capable
computing system out there today. Although a human brain is
quite different than today’s computing hardware, it is believed
that the basic concepts still apply in that there is a computational
unit, known as a neuron, and connections to memory stored in
synapses. The main difference being that the human brain
consists of billions of these simple parallel processing units,
(neurons) which are interconnected in a massive multi-layered
distributive network of synapses and neurons [24].

Figure 5: Neural network perceptron model

In machine learning these concepts are modeled by what is
referred to as a perceptron, which is the basic processing element
that is connected with other perceptrons through weighted
connections, as illustrated in Figure 5. The output of a perceptron
is simply a weighted sum of its inputs including a weighted bias,
as shown in equation 11.

= + (11)

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

To compute the output y given a sample , backpropagation
using the gradient with respect to the weights is performed using
a training dataset to find the weight parameters, , that
minimize the mean squared error between the neural network
outputs, , and the target outputs, . By default, the neural
network consists of a hyperplane (for multiple perceptrons) that
can be used as a linear discriminant to linearly separate the
classes. To improve prediction accuracy, we make it non-linear,
by applying a sigmoidal or hyperbolic tangent to hidden unit
layer perceptrons (not shown in Figure 5), as denoted in equation
12. This allows for non-linear boundaries with the output of the
neural network being linear in the weights, but non-linear in the
inputs. = () = 11 + exp () (12)

For classification with a neural network (non-linear logistic
regression), the number of parallel output perceptrons is kept
equal to the number of classes in our work. Therefore, our neural
network implementation has eight outputs – one for each
interface configuration state shown in Table 2. The output from
each perceptron, , is then sent to post processing as in equation
13 to determine the respective state prediction by taking the
maximum of the post-processed outputs: = max exp ()exp () (13)

One of the biggest criticisms about the use of neural networks
is the time required for training. Although this can be a major
issue if using a simple gradient descent approach, newer training
techniques, such as the scaled conjugate gradient (SCG) [25],
described in Section 3.2.1, can greatly minimize the time
required for training. SCG was used for training the neural
networks in this study.

Figure 6: K-nearest neighbor example

44.4 K-Nearest Neighbor
The k-nearest neighbor (KNN) algorithm is a fairly simple non-
parametric unsupervised approach for the data classification
problem. A key assumption of non-parametric estimation is that
similar inputs have similar outputs [23]. In KNN, new samples
are classified by assigning them the class that is the most
common among the closest samples in the attribute space. This
method requires some form of distance measure for which
Euclidean distance is typically used. The Euclidean distance
between two points and , each containing i attributes, is
defined in equation 14.

(,) = () (14)

Consider the following example that demonstrates the working
of this approach. Figure 6 shows a sample data set, characterized
as blue squares and red triangles. The green circle is a new
sample that needs to be classified as either a blue square or as a
red triangle. If = 3 (represented by the smaller inner circle with
radius 3), the new sample is classified as a red triangle because
there are more red triangles within the considered area. Similarly,
if = 5 the new sample is classified as a blue square.

In our implementation, each point is a vector of the input
attributes in Table 1, and the calculation of Euclidean distance is
performed as a vector operation. This allows us to obtain a
configuration state prediction using the gathered context
information.

4.5 Support Vector Machines
Support Vector Machines (SVMs) have become quite popular in
recent years. SVM is a non-probabilistic binary linear classifier,
which constructs a line (for data with dimensionality = 2) or
a hyperplane (for data with dimensionality > 2) to separate
each given input into one of two possible classes. Examples
closest to the separating line or hyperplane are the support
vectors, and the goal of the SVM is to orientate the line or
hyperplane to be as far as possible from the closest members of
both classes (largest perpendicular distance). This is known as
the maximum-margin hyperplane.

Often, the classes to discriminate may not be linearly separable
in the original problem’s dimensional space. This is especially
true in our case – the attribute space for our gathered context data
is quite large, and can vary greatly depending on the user. To
correct this, SVMs map the original dimensional space to a much
higher-dimensional space by using nonlinear kernel functions.
This allows the algorithm to fit the maximum-margin hyperplane
in the high-dimensional feature space, while still allowing it to be
nonlinear in the original input space. We use a radial basis
function (RBF) for the kernel in our SVM implementation.

In an SVM, given input attributes and training samples,
with class labels -1 or 1, each training sample is mapped to a
training data point in a -dimensional space. Then, the objective
is to learn a hyperplane = , where is a -
dimensional vector and is a -dimensional data point. The
optimization problem is as follows. We have

min, 12 + (15)

subject to () 1 (16)

where is a constant value, is the degree of misclassification
of the -th training data point, and is the category label of .

As stated previously, SVMs are binary classifiers. Thus, in
order to classify data into more than two classes, the problem
must be broken down into multiple binary classification
problems. A common method for such decomposition is to build
binary classifiers which distinguish between (i) one of the labels
and the rest (one-versus-all) or (ii) every pair of classes (one-
versus-one). Classification of new instances for the one-versus-
all approach is done by a winner-takes-all strategy, in which the
classifier with the highest output function assigns the class. For
the one-versus-one approach, classification is done by a max-
wins voting strategy, in which every classifier assigns the

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

instance to one of the two classes, then the vote for the assigned
class is increased by one vote, and ultimately the class with the
most votes determines the instance classification. Our SVM
implementation uses one-versus-one approach when predicting
an interface configuration state for each sample of input attribute.

Table 3 briefly summarizes the pros and cons of the five
machine learning techniques that we adapt in our work, based on
our implementation experience.

Table 3: Pros and cons of machine learning algorithms
Algorithm Pros Cons

LDA

Unbiased; very fast; easy
implementation

Not good choice for classes
with very different
underlying covariance
matrices

LLR
Easy to interpret; can model
synergistic relationships

Complicated; sensitive to
outliers and hard to
extrapolate

NN

Can derive meaning from
complicated or imprecise
data; can handle large
number of features; fast

Training can be difficult;
slow training time; examples
must be selected carefully;
not probabilistic, hard to
implement

KNN

Simple to understand; data
can be scalars or
multidimensional vectors;
does not make assumptions
about underlying data
distributions

Slow; non-parametric; all
training data is needed
during testing phase; all
training examples are saved
in memory – storage problem

SVM

Can deal with very high
dimensional data; good
generalization performance;
potential for feature selection
and outlier detection; general
high accuracy

Need to select a good kernel
function; high memory/cpu
time requirements; slow
training time for one-versus-
one approach; parameter
selection is data dependent

Figure 7: Power consumption of configuration states

55 DEVICE POWER MODELING

In order to quantify the energy-effectiveness of using machine
learning algorithms to predict energy-optimal device states,
power analysis was performed on real Android based
smartphones, with the goal of creating power models for the data
and location interfaces. We use a variant of Android OS 2.3.3,
(Gingerbread) and the Android SDK Revision 11 as our baseline
OS. We built our power estimation models using real power
measurements, by instrumenting the contact between the
smartphone and the battery, and measuring current using the
Monsoon Solutions power monitor [27]. The monitor connects to
a PC running the Monsoon Solutions power tool software that
allows real-time current and power measurements over time. We
manually enabled the data/location interfaces one by one and
gathered power traces for each interface in their active and idle

states. The power traces from the Monsoon Power Tool were
then used to obtain average power consumption measurements
for each interface. These average power consumption
measurements allowed us to determine average power
consumption for each of the eight configuration states, shown in
Figure 7. The figure shows two measurements for each state –
Optimized and Baseline. Optimized shows the average power
consumed with the unnecessary interfaces disabled, while
Baseline shows the average power consumed with the
unnecessary interfaces enabled and idle. Intuitively, there is no
optimized bar for state 1 because no power is consumed when
none of the interfaces are enabled. We use the Baseline
measurements for comparison in the experiments in the next
section.

6 EXPERIMENTAL RESULTS

In addition to testing our energy saving techniques on five real
user profiles, a set of synthetic user profiles were also created for
five different idealized and generalized models of average user
usage patterns including the following: (i) 8 – 5 Business
Worker, (ii) College Student, (iii) Social Teenager, (iv) Stay At
Home Parent, and (v) Busy Traveler. Both an indoor/outdoor
location timeline and an interface state profile were created for
each synthetic user, as shown in Figure 8. Given the difficulty of
generating realistic device system data, such as context switches,
CPU utilization, and processes created, only a subset of the
attribute space was considered. The remaining attributes were
based on both the desired state and/or location. For example, if a
user was at an outdoor location, larger GPS satellite values and
weak WiFi RSSI values were used as opposed to when the user
was indoors. We created the synthetic profiles ourselves by
modeling what we considered typical behavior of each
stereotype. For instance, we envisioned the 8-5 Business Worker
waking up at 6:30 a.m., driving to work at 7:30 a.m., arriving at
his/her desk at 8:30 a.m., working until noon then taking a lunch
break, etc. The interface configuration states and locations in the
charts attempt to capture this behavior. Recall that the locations
are just unique location identifiers (integers). In the case of the
Busy Traveler, the red line indicating location is constantly
changing because the Busy Traveler constantly moving to new
locations. The dips in the red line are present because indoor
locations are numbered lower than outdoor locations – indicating
that the Busy Traveler spent most of his/her time driving outside,
but made occasional stops at indoor locations for food, rest, or
relief.

6.1 Prediction Accuracy Analysis
Recall that the input attributes for the learning algorithms come
from the gathered spatiotemporal and device context data (Table
1), and the predicted output is one of the 8 interface
configuration states (Table 2). To evaluate the prediction
accuracy of the different algorithms, the data for each user was
randomly partitioned into training and test sets using an 80/20
partitioning scheme. The algorithms were then trained on the
training data and evaluated on the test data. When being
evaluated on the test data, each algorithm’s predictions were
compared with the target variables from the actual user data to
determine the prediction accuracy. This was repeated five times
for each implementation and the net prediction accuracy is
presented in Figure 9 for the real users.

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Three different neural network (NN) implementations with a
varying number of hidden units, equal to the total (H=18), half
(H=9), and one-sixth (H=3) the size of the attribute space were
evaluated. We compared the prediction accuracy of our
algorithms with the configuration prediction strategy presented in
[13] (MVSOM – Missing Values Self-Organizing Map). As
illustrated in Figure 9, Support vector machines and the
application of neural networks with a number of hidden units of
at least half the size of the attribute space resulted in the highest
prediction rates. K-nearest neighbor (KNN), linear logistic
regression (LLR), and linear discriminant analysis (LDA) also
performed fairly well, with prediction accuracies in the range of
60 – 90 %. However these approaches were much more sensitive
to the usage pattern. MVSOM performed the worst and had a
high degree of variance in both the usage pattern and random
training data selection.

Figure 9: Real user algorithm prediction accuracy

The same algorithms were applied to the synthetic user
profiles; however, the attribute space was reduced to only Day,
Time, Location, GPS Satellites, WiFi RSSI, Network Signal
Strength, Data Needed, Coarse Location Needed, and Fine
Location Needed. The same strategy for selecting numbers of
hidden units for the neural network implementations was applied
for the reduced attribute space. Figure 10 illustrates the algorithm
prediction rates for the synthetic users, which demonstrate
similar trends as in the case of the real user data.

Figure 10: Synthetic user algorithm prediction accuracy

66.2 Energy Savings
It is important to note that despite high prediction accuracy, the
amount of potential energy savings is still highly dependent on
the user’s device usage pattern and if the algorithms are
positively or negatively predicting states where energy can be
conserved. More complicated user patterns are more difficult for
the algorithms to predict correctly. In addition, false predictions
can cause either more or less energy to be consumed. For
example, if an algorithm predicted state 8 when the actual state
should have been state 1, negative energy savings would be
achieved. Figures 11 and 12 illustrate the energy savings
achieved by the individual algorithms when the algorithm’s
prediction target states are applied to the real and synthetic user
profiles. We compare our algorithms against the VRL technique
(Variable Rate Logging [9]). Note that as VRL does not predict
system state, results for its prediction accuracy are not shown in
Figure 9 presented earlier. Although simpler linear models can
achieve high energy savings, it is important to note that energy
savings themselves are not good discriminants of an algorithm’s
goodness because user satisfaction must also be considered. For
example, if a user spends a significant amount of time in the
energy consuming state 8 and the algorithms are predicting a less
energy-consuming state during these instances, then more energy
can be conserved at the cost of user-satisfaction. Directly
correlating the prediction accuracy of the algorithms is especially
important for highly interactive users such as users 2 and 5, as

Figure 8. Synthetic user profiles

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

opposed to minimally interactive users, e.g., user 1. All energy
savings are relative to the baseline case for Android systems
without proactive multi-network interface management.

Lower prediction and more generalized models result in the
highest energy savings as in the case of LDA and LLR.
However, again, these higher savings come at the cost of
degraded user satisfaction. SVM and KNN overall perform fairly
well in terms of both prediction accuracy and energy savings
potential, as does the nonlinear logistic regression with NN
approach. With the latter, an important point to note is that
prediction accuracy is proportional to the complexity of the
neural network and indirectly proportional to the net energy
savings. This outcome is expected as less complex neural
networks will result in more generalized models relaxing the
constraint for inaccurate predictions that result in higher energy
savings. It is also important to note that although energy savings
are small for heavy users, this comes as an artifact of our
optimization technique – we are exploiting windows of
opportunity, which are fewer for heavy users. MVSOM, with its
low prediction rates, also led to instances of negative energy
savings, as it often predicted higher energy states when the true
target state was one of less energy consumption. Thus we believe
that the MVSOM approach is not very viable for use in mobile
embedded systems. VRL’s energy saving capability is
constrained because it does not disable device interfaces (only
deactivates location logging or reduces logging rate), ignoring
idle energy consumption. Overall, compared to VRL, the average
energy savings of our KNN algorithm is 25.6%, that of our SVM
algorithm is 15%, and that of our NN approaches is 11.7%
(H=18), 24.1% (H=9), and 24% (H=3) for real user patterns.

Figure 11: Percent energy saved for real users

Figure 12: Percent energy saved for synthetic users

(a) (b)

 (c) (d)

Figure 13: PCA Results

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

66.3 Principal Component Analysis
The complexity of the machine learning algorithms used in this
work depends on the number of inputs. Because we are using a
total of 19 contextual inputs, we performed Principal Component
Analysis (PCA), a form of dimensionality reduction, to see how
the accuracy and overhead of the algorithms was affected. PCA
is known as a feature extraction method, in which a new set of k
dimensions is created that are combinations of the original d
dimensions [24]. PCA accomplishes this by performing an
orthogonal transformation such that the directions in the data
space along which the data varies the most are projected onto the
most significant coordinates in a new coordinate system. In other
words, the greatest variance comes to lie on the first coordinate,
the second greatest variance comes to lie on the second
coordinate, and so on. This transformation is motivated by the
assumption that directions in the data space along which data
varies least are mostly due to noise, and can be removed without
loss of information. (vi)

The PCA results are shown in Figure 13. Figures 13 (a) and
(b) show the prediction accuracy obtained by projecting the data
onto different numbers of eigenvectors, effectively reducing the
attribute space to the number of eigenvectors. The charts show
that prediction accuracy significantly decreases as the number of
eigenvectors decreases, generally. This is expected because
reducing the number of input attributes simplifies the model.
Figures 13 (c) and (d) show the execution (prediction) times of
each algorithm after the data has been projected onto different
numbers of eigenvectors. In most cases, execution times decrease
slightly as the number of eigenvectors decreases. However,
because of the significant degradation in prediction accuracy, the
slightly reduced execution times are not enough to make PCA
dimensionality reduction a viable option.

6.4 Implementation Overhead
The prediction and energy saving results presented in the
previous sections were obtained using a Python implementation
of the algorithms on a 2.6 GHz Intel® Core i5™ processor.
When considering real-world implementation, it is important to
consider the implementation overhead of the individual
algorithms. Current hardware in mobile devices on the market
today is quickly catching up to the abilities of modern stationary
workstations (e.g. Google’s Galaxy Nexus – 1.2 GHz dual-core
processor). We determined the implementation overhead for our
learning algorithms on the Google Nexus One with a 1 GHz
Qualcomm QSD 8250 Snapdragon ARM processor [22], as
shown in the third column in Table 4. The values shown in the
column are average prediction times for each algorithm at
runtime. The fourth and final column in the table shows actual
execution times of each algorithm when run on an Nvidia Tegra
2 1.2 GHz dual-core processor. In both cases, KNN’s run time is
several orders of magnitude larger than any of the other
algorithms, because all computations are deferred until
classification. Therefore, although KNN is as good as or better
than the support vector machine (SVM) and neural network (NN)
based approaches in terms of energy savings and prediction, the
support vector machine approach is preferable because of its fast
execution time. The non-linear logistic regression with NN
approach has a longer execution time than SVM, however, if a
slightly longer execution time is acceptable, it may be preferable
because of its higher energy savings potential.

Table 4: Average algorithm run times in seconds
Algorithm Intel Core i5 Qualcomm 8520

Snapdragon Nvidia Tegra 2

LDA 0.00139 0.00361 0.07687
LLR 0.00118 0.00307 0.06525

NN (all 3
variants) 0.00962 0.02501 0.53199

KNN 97.7428 254.131 5405.18
SVM 0.00037 0.00095 0.02021

MVSOM [13] 0.82701 2.15023 45.7337
VRL [9] 0.01977 0.05140 1.09328

In summary, our proposed LDA and LLR approaches have the
lowest implementation overhead and can result in high energy
savings, but often at the cost of user satisfaction. Although our
KNN approach is very effective in terms of prediction accuracy
and energy savings, its unreasonable implementation overhead
renders it unacceptable for real-world applications. The prior
work with MVSOM [13] provides low energy savings as a result
of its poor prediction accuracy, and takes a long time to run;
whereas VRL [9] has low run time but also very low energy
savings. Our support vector machine based approach provides
good accuracy, good energy savings, and demonstrates the best
adaptation to various unique user usage patterns, while
maintaining a low implementation overhead. Our non-linear
logistic regression with neural network approach that uses the
fast scaled conjugate gradient training method and with the
number of hidden units equal to half the attribute space offers the
same benefits, but with slightly higher energy savings and
implementation overhead.

6.5 Real-World Implementation Considerations
When contemplating a real-world implementation, algorithm
training times and data-dependent prediction accuracies must be
considered. Table 5 shows the raw training and prediction times,
as well as the prediction accuracies of each algorithm for various
lengths of data gathering periods. We tested each algorithm using
one, three, five, and seven days’ worth of data. The last four
columns show in the table how the prediction accuracies change
with smaller amounts of data. Although accuracy certainly
decreases with the amount of data, most of the algorithms
perform fairly well with less than a full week of data. However,
training for just one day does not provide sufficient accuracy for
any of the algorithms. This is expected – a user’s activity over
the course of just one day is rarely indicative of their activity for
the rest of the week. The first four columns of data in Table 5
show that training times also decrease with smaller amounts of
data. Our KNN approach exhibited the fastest overall training
time. However, this is because all computation is postponed until
the prediction occurs in the KNN algorithm, which is apparent
when observing its large implementation overhead in Table 4.
Our LDA and LLR approaches also demonstrated fast training
times, while the training times for our NN and SVM approaches
were significantly slower. Although the training phase for the
NN and SVM approaches takes more time than the other
algorithms, we propose that such training can be performed
quickly and in an energy-efficient manner without affecting user
QoS whenever the device is plugged in and charging.
Furthermore, these training times are only applicable to the
initial algorithm training – training becomes less frequent over
time as the algorithms continually learn the user’s behavior
patterns. Retraining consists of the algorithms merely making
corrections to the learned models instead of learning entirely new
models. The training times in Table 5 indicate how long training

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

takes for each algorithm to reach the accuracy shown in the table.
The initial training phase for each algorithm can be customized
to reach a desired level of accuracy, allowing the user to control
the tradeoff between speed and accuracy. For example, we chose
100 SCG iterations as the cutoff for the training in the LLR and
NN algorithms. The choice of 100 iterations was determined to
be a good compromise between speed and accuracy by
examining the RMSE (root mean squared error) over time during
the training phase. Figure 14 shows the how the RMSE (root
mean squared error) for one of the real users changes for 100 and
2000 SCG iterations. It can be seen that the RMSE converges to
approximately the same value when trained for 100 iterations and
2000 iterations, eliminating the need for further training after 100
iterations. For 100 SCG iterations, training took approximately 7
seconds and resulted in 88.76% accuracy, as opposed to
approximately 136 seconds and 90.69% accuracy for 2000
iterations, significantly reducing training time for a very minimal
loss in accuracy.

Figure 14: RMSE over 100 and 2000 SCG iterations

Another important point to notice in Table 5 is that each
algorithm’s prediction time increases significantly as more and
more data is gathered. For this reason, data should not be stored
indefinitely – data more than one week old should be deleted and
replaced with more current data. This will allow the models to be
quickly retrained while still maintaining acceptable prediction
accuracies. Because retraining takes a trivial amount of time, it
can be done on a daily basis without negatively impacting user
QoS.

77 CONCLUSIONS AND FUTURE WORK

In this work we demonstrated the effectiveness of using various
machine learning algorithms on user spatiotemporal and device
contexts in order to dynamically predict energy-efficient device
interface configurations. We demonstrated up to a 90%

successful prediction using support vector machines, neural
networks and k-nearest neighbor algorithms, showing
improvements over the self-organizing map prediction approach
proposed in [13] by approximately 50%. In addition,
approximately 85% energy savings was achieved for minimally
active users with an average improvement of 15% energy savings
compared to the variable rate logging algorithm (VRL) proposed
in [9] for our best approach involving support vector machines
that also has high prediction accuracy and low overhead. If
slightly more implementation overhead is acceptable, our
approach involving non-linear logistic regression with neural
networks can provide even more energy savings, with an average
improvement of 24% compared to VRL [9]. A possible extension
to our work is to conduct large scale studies that recruit sample
groups much larger than that considered in this work. Such large
user groups could lead to the creation of user classes for which
unique class-specific usage patterns could be discovered. This in
turn could allow for more aggressive optimization of our
framework, for instance by reducing training time and improving
prediction accuracy.

REFERENCES
[1] H. Petander, “Energy-aware network selection using traffic estimation,” in

MICNET, pp. 55-60, Sept. 2009.
[2] M. Ra, J. Paek, A. B. Sharma, R. Govindan, M. H. Krieger, M. J. Neely,

“Energy-delay tradeoffs in smartphone applications,” MobiSys, pp. 255-
270, Jun. 2010.

[3] I. Constandache, S. Gaonkar, M. Sayler, R. R. Choudhury, L. Cox, “EnLoc:
energy-efficient localization for mobile phones,” INFOCOM, pp. 19-25,
Jun. 2009.

[4] K. Lin, A. Kansal, D. Lymberopoulos, F. Zhao, “Energy-accuracy trade-off
for continuous mobile device Location,” MobiSys, pp. 285-298. Jun. 2010.

[5] F. B. Abdesslem, A. Phillips, T. Henderson, “Less is more: energy-efficient
mobile sensing with SenseLess,” MobiHeld, pp. 61-62, Aug. 2009.

[6] J. Paek, J. Kim, R. Govindan, “Energy-efficient rate-adaptive GPS-based
positioning for smartphones,” MobiSys, pp. 299-314, Jun. 2010.

[7] I. Shafer, M. L. Chang, “Movement detection for power-efficient
smartphone WLAN localization,” MSWIM, pp. 81-90, Oct. 2010.

[8] M. Youssef, M. A. Yosef, M. El-Derini, “GAC: energy-efficient hybrid
GPS-accelerometer-compass GSM localization,” GLOBECOM, pp. 1-5,
Dec. 2010.

[9] C. Lee, M. Lee, D. Han, “Energy efficient location logging for mobile
device,” SAINT, pp. 84, Oct. 2010.

[10] K. Nishihara, K. Ishizaka, J. Sakai, “Power saving in mobile devices using
context-aware resource control,” ICNC, pp. 220-226, 2010.

[11] Z. Zhuang, K. Kim, J. P. Singh, “Improving energy efficiency of location
sensing on smartphones,” MobiSys, pp. 315-330, Jun. 2010.

[12] Y. Wang, J. Lin, M. Annavaram, Q. A. Jacobson, J. Hong, B.
Krishnamachari, N. Sadeh, “A framework of energy efficient mobile
sensing for automatic user state recognition,” MobiSys, pp. 179-192, 2009.

[13] L. Batyuk, C. Scheel, S. A. Camtepe, S. Albayrak, “Context-aware device
self-configuration using self-organizing maps” OC, pp. 13-22, June 2011.

[14] T. Anagnostopoulos, C. Anagnostopoulos, S. Hadjiefthymiades, M.
Kyriakakos, A. Kalousis, “Predicting the location of mobile users: a
machine learning approach,” ICPS, pp. 65-72, July 2009.

[15] T. Mantoro, A. Olowolayemo, S. O. Olatunji, “Mobile user location
determination using extreme learning machine,” ICT4M, pp. D25-D30,
2011.

[16] J. Kang, S. Seo, J. W. Hong, “Usage pattern analysis of smartphones,”
APNOMS, pp. 1-8, Nov. 2011

Table 5: Average algorithm training/prediction times and prediction accuracies for various data gathering periods
Algorithm Training Time (Seconds) Prediction Time (Seconds) Prediction Accuracy (Percent)

1 Day 3 Days 5 Days 7 Days 1 Day 3 Days 5 Days 7 Days 1 Day 3 Days 5 Days 7 Days
LDA 0.00187 0.00312 0.00677 0.00737 0.00032 0.00055 0.00078 0.00098 6.76 40.11 64.73 79.26

LLR (100 SCG
iterations) 0.15064 0.13655 0.18087 0.23301 0.00027 0.00066 0.00071 0.00129 26.67 62.55 63.15 64.80

NN (100 SCG
iterations) 1.46392 2.13049 4.36602 6.42674 0.00237 0.00272 0.00651 0.00671 31.11 84.28 87.15 88.76

KNN 0.00005 0.00044 0.00074 0.00094 0.07617 5.76673 28.2758 52.6942 71.11 79.87 83.84 86.90
SVM 0.00033 0.26553 1.33917 2.34158 0.00011 0.03022 0.14527 0.29965 11.11 86.95 88.12 90.17

MVSOM [13] 1.31357 1. 08561 1.09252 1. 11093 0.01708 0.12699 0.28049 0.37003 18.89 25.20 34.06 35.42

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

[17] B. K. Donohoo, C. Ohlsen, S. Pasricha, “AURA: An application and user
interaction aware middleware framework for energy optimization in mobile
devices,” ICCD, pp. 168-174, Oct. 2011.

[18] S. Choi, et al., “A selective DVS technique based on battery residual
microprocessors and microsystems,” Elsevier Sc., 30(1):33–42, 2006.

[19] F. Qian, et al., “TOP: tail optimization protocol for cellular radio resource
allocation,” ICNP, 2010.

[20] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani. “Energy
consumption in mobile phones: a measurement study and implications for
network applications,” IMC, 2009.

[21] S. Swanson, M.B. Taylor. “Greendroid: Exploring the next evolution of
smartphone application processors,” Communications Magazine, IEEE. Vol
49. Issue 4. April 2011.

[22] HTC, “Google Nexus One Tech Specs,”
http://www.htc.com/us/support/nexus-one-google/tech-specs

[23] C. M. Bishop, “Pattern Recognition and Machine Learning,” 1st ed. New
York: Springer Science+Business Media, 2006

[24] E. Alpaydin, “Introduction to machine learning,” 2nd ed. Massachusetts:
The MIT Press, 2010.

[25] M. Moller, “Efficient training of feed-forward neural networks,” Ph.D.
dissertation, CS Dept., Aarhus Univ., Arhus, Denmark, 1997.

[26] Android Developers, official website,
http://developer.android.com/index.html.

[27] Monsoon Solutions Inc., official website, http://www.msoon.com/
LabEquipment/PowerMonitor, 2008.

[28] X. Li, H. Cao, E. Chen, J. Tian, “Learning to infer the status of heavy-duty
sensors for energy-efficient context-sensing,” TIST, ACM, vol. 3, issue 2,
no. 35, Feb. 2012.

[29] C. Chang, C. Lin, “LIBSVM – A library for support vector machines,”
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

[30] A. Shye, B. Scholbrock, G. Memik, “Into the wild: studying real user
activity patterns to guide power optimizations for mobile architectures,”
MICRO, pp. 168-178, 2009.

[31] J. Froehlich, M. Y. Chen, S. Consolvo, B. Harrison, J. A. Landay,
“Myexperience: A system for in situ tracing and capturing of user feedback
on mobile phones,” MobiSys, pp. 57–70, 2007.

[32] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govindan, D.
Estrin. “Diversity in smartphone usage,” MobiSys, pp. 179-194, 2010.

[33] C. Shepard, A. Rahmati, C. Tossell, L. Zhong, and P. Kortum, “LiveLab:
measuring wireless networks and smartphone users in the field,”
HotMetrics, pp. 1-6, June 2010.

[34] C. Tossell, P. Kortum, A. Rahmati, C. Shepard, L. Zhong, “Characterizing
web use on smartphones,” CHI, pp. 2769-2778, May 2012.

[35] F. Qian, Z. Wang, A. Gerber, Z. Mao, S. Sen, O. Spatscheck, “Profiling
resource usage for mobile applications: a cross-layer approach,” MobiSys,
pp. 321-334, June 2011.

[36] J. Kang, S. Seo, J. W. Hong, “Usage pattern analysis of smartphones,”
APNOMS, pp. 1-8, Sept. 2011.

[37] S. Pasricha, S. Mohapatra, M. Luthra, N. Dutt, N. Subramanian, "Reducing
Backlight Power Consumption for Streaming Video Applications on Mobile
Handheld Devices", Embedded Systems for Real-Time Multimedia
(ESTIMedia), Oct 2003.

[38] S. Pasricha, M. Luthra, S. Mohapatra, N. Dutt, N. Subramanian, "Dynamic
Backlight Adaptation for Low Power Handheld Devices", IEEE Design and
Test (IEEE D&T), Special Issue on Embedded Systems for Real Time
Embedded Systems, Sep-Oct 2004.

Brad K. Donohoo received the B.S. degree in Computer
Engineering from Utah State University in Logan, UT,
in 2010, and the M.S. degree in Electrical Engineering
from Colorado State University in Fort Collins, CO, in
2012. He is currently employed as a civilian Software
Engineer at Hill Air Force Base in Utah. His research
interests include hardware and software design of
embedded systems, mobile computing, and low-power
and fault-tolerant design.

Chris Ohlsen received the B.S. degree in Mechanical
Engineering from University of Texas in Austin, TX, in
2008, and the M.S. degree in Electrical Engineering
from Colorado State University in Fort Collins, CO, in
2012. He is currently employed in the Technology
Group at Woodward in Loveland, CO. His research
interests include hardware and software development of
embedded systems, digital control systems, and software
tool design.

Sudeep Pasricha (M’02) received the B.E. degree in
electronics and communication engineering from Delhi
Institute of Technology, Delhi, India, in 2000, and the
M.S. and Ph.D. degrees in computer science from the
University of California, Irvine, in 2005 and 2008,
respectively. He is currently an Assistant Professor of
Electrical and Computer Engineering at Colorado State
University, Fort Collins. His research interests are in the
areas of energy efficiency and fault tolerant design for
high performance computing, embedded systems, and
mobile computing. Dr. Pasricha is currently an Advisory

Board member of ACM SIGDA, Information Director of ACM Transactions on
Design Automation of Electronic Systems (TODAES), Editor of the ACM
SIGDA E-news, Organizing Committee Member and/or Technical Program
Committee member of various IEEE/ACM conferences such as DAC, DATE,
CODES+ISSS, NOCS, and GLSVLSI. He was the recipient of the AFOSR
Young Investigator Award in 2012, and Best Paper Awards at the IEEE AICCSA
2011, IEEE ISQED 2010 and ACM/IEEE ASPDAC 2006 conferences.

Yi Xiang received the B.S. degree in Microelectronics
from University of Electronic Science and Technology
of China, Chengdu, China, in 2010. He is currently a
Ph.D. candidate in the Electrical and Computer
Engineering department at Colorado State University in
Fort Collins, CO. His research interests include
computer architecture, parallel embedded systems,
heterogeneous computing, and CAD algorithms.

Charles Anderson received the B.S. degree in computer
science from the University of Nebraska, Lincoln, in
1978 and the M.S. and Ph.D. degrees in computer
science from the University of Massachusetts, Amherst,
in 1982 and 1986, respectively. He worked in a machine
learning research lab at GTE Labs, Waltham, MA, until
1991. Since then he has been a faculty member in the
Department of Computer Science at Colorado State
University. He teaches core CS courses and artificial
intelligence and machine learning graduate courses. His
research interests are in machine learning for pattern

classification, modeling and control applications.

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

