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AAbs trac t— Within the  pas t decade , mobile  computing has  morphed into a  principa l form of human communica tion, bus iness , and 
socia l inte raction. Unfortuna te ly, the  energy demands  of newer ambient inte lligence  and collabora tive  technologies  on mobile  devices  
have  grea tly overwhelmed modern energy s torage  abilities . This  paper proposes  severa l nove l techniques  tha t exploit spa tiotempora l 
and device  context to predict device  wire less  da ta  and loca tion inte rface  configura tions  tha t can optimize  energy consumption in 
mobile  devices . These  techniques , which include  variants  of linear discriminant ana lys is , linear logis tic regress ion, non-linear logis tic 
regress ion with neura l ne tworks , k-neares t ne ighbor, and support vector machines are  explored and compared on synthe tic and user 
traces  from rea l-world usage  s tudies . The  experimenta l results  show tha t up to 90% success ful prediction is  poss ible  with neura l 
ne tworks  and k-neares t ne ighbor a lgorithms , improving upon prediction s tra tegies  in prior work by approximate ly 50%. Further, an
average  improvement of 24% energy savings  is  achieved compared to s ta te -of-the -art prior work on energy-efficient loca tion-
sens ing.

Index Terms — energy optimiza tion, pervas ive  computing, machine  lea rning
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1 INTRODUCTION

Mobile phones and other portable devices (tablets, PDA’s, and e-
readers) are fundamental everyday tools used in business, 
communication, and social interactions. As newer technologies 
(e.g. 4G networking, multicore/GPUs) and applications (e.g. 3D 
gaming, Apple’s FaceTime™) gain popularity, the gap between 
device usage capabilities and battery lifetime continues to 

increase, much to the annoyance of users who are now becoming 
more and more reliant on their mobile devices. The growing 
disparity between functionality and mobile energy storage has 
been a strong catalyst in recent years to develop software-centric 
algorithms and strategies for energy optimization [1]-[17]. These 
software techniques work in tandem with well-known energy 
optimizations implemented in hardware including CPU DVFS, 
power/clock gating, and low power mode configurations for 
device interfaces and chipsets [18]-[21].

The notion of “smart” mobile devices has recently spawned a 
number of research efforts on developing “smart” energy 
optimization strategies. Some of these efforts employ strategies 
that are context-aware including utilization of device, user, 
spatial, temporal, and application awareness that attempt to 
dynamically modify or learn optimal device configurations to 
maximize energy savings with little or negligible impact on user 
perception and quality of service (QoS) [10][13][17]. This 
general theme of a smart and context-aware energy optimization 
strategy is further explored in this paper, in which a select 
number of machine learning algorithms are proposed and 
evaluated for their effectiveness in learning a user’s mobile 
device usage pattern pertaining to spatiotemporal and device 
contexts, to predict data and location interface configurations. 
These resulting predictions manage the network interface states 
allowing for dynamic adaptation to optimal energy 
configurations, while simultaneously maintaining an acceptable 
level of user satisfaction. This idea is further motivated by 
considering the power distributions of the Google Nexus One 
Android smartphone illustrated in Figure 1 [22]. Even when 3G, 
WiFi, and GPS interfaces are all enabled and idle, they account 
for more than 25% of total system power dissipation. 
Furthermore, when only one of the interfaces is active, the other 
two idle interfaces still consume a non-negligible amount of 
power. Our work exploits this fact to save energy more 
aggressively than the default energy management strategy used 
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This article is a significantly extended version of our paper accepted for publication 
in ACM/IEEE DAC 2012 titled “Exploiting Spatiotemporal and Device Contexts 
for Energy Efficient Mobile Embedded Systems” with the following major 
additions: (i) More comprehensive related work in Section 2 explaining how our 
work is different and novel in comparison with previously published architectures; 
(ii) Further description of the synthetic user profiles in Section 3.4; (iii) More 
detailed descriptions of the machine learning algorithms in Section 4, including a 
list of pros and cons for each algorithm; (iv) Analysis and results for a new 
machine learning technique based on support vector machines; (v) Further 
description of our power modeling efforts in Section 5; (vi) A study involving 
dimensionality reduction using principal component analysis (PCA) in Section 
6.3; and (vii) A more accurate analysis of the implementation overhead for each of 
the algorithms in Section 6.4, in which the algorithms are run on an actual mobile 
device. 
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in a mobile device, by dynamically managing data and location 
interfaces, e.g., turning off unnecessary interfaces at runtime.

Figure 1: Google Nexus One smartphone power distributions

In this paper, we propose and demonstrate the use of five 
different classes of machine learning algorithms (i) linear 
discriminant analysis, (ii) linear logistic regression, (iii) k-
nearest neighbor, (iv) non-linear logistic regression with neural 
networks, and (v) support vector machines, towards predicting 
user data/location usage requirements based on spatiotemporal 
and device contexts. These strategies are tested on both synthetic 
and real-world user usage patterns, which demonstrate that high 
and consistent prediction rates are possible. The proposed 
techniques are also compared with prior work on device 
configuration prediction using self-organizing maps [13] and 
energy-aware location sensing [9], showing an improvement 
upon these state-of-the-art techniques.

The remainder of this paper is organized as follows. Section 2 
reviews several key related works. Section 3 discusses the 
acquisition and creation of real and synthetic user profiles that 
are used in our analysis studies. Section 4 provides a brief 
overview of the machine learning concepts used in the studies. 
Section 5 describes our device power modeling effort. Section 6 
presents the results of our experimental studies. Finally, Section 
7 presents our conclusions and ideas for future work. 

22 RELATED WORK

A large amount of work has been done in the area of energy 
optimization for mobile devices over the past decade [37], [38]. 
Much of the recent work focuses on optimizing energy consumed 
by the device’s wireless interfaces by intelligently selecting the 
most energy-efficient data interface (e.g. 3G/EDGE, WiFi) [1], 
[2]. Other work [3]-[8] focuses on energy-efficient location-
sensing schemes aiming to reduce high battery drain caused by 
location interfaces (e.g. WiFi, GPS) by deciding when to 
enable/disable location interfaces or modify location acquisition 
frequency. Lee et al. [9] in particular propose a Variable Rate 
Logging (VRL) mechanism that disables location logging or 

reduces the GPS logging rate by detecting if the user is standing 
still or indoors. The authors in [10] propose a context-aware 
method to determine the minimum set of resources (processors 
and peripherals) that results in meeting a given level of 
performance, much like our work. They determine if a user is 
moving/stationary and indoors/outdoors and control resources 
using a static lookup table. In contrast, our work controls 
resources dynamically by using machine learning algorithms. 
Zhuang et al. [11] propose an adaptive location-sensing 
framework that involves substitution, suppression, piggybacking, 
and adaptation of an application’s location-sensing requests to 
conserve energy. Their work is directed towards LBAs (location-
based applications) and only focuses on location interfaces, while 
ours is a system-wide optimization strategy that is capable of 
saving energy regardless of the foreground application type. 

A substantial amount of research has been dedicated to 
utilizing machine learning algorithms for the purpose of mobile 
user context determination. Batyuk et al. [13] extend a traditional 
self-organizing map to provide a means of handling missing 
values and then use it to predict mobile phone settings such as 
screen lock pattern and WiFi enable/disable. Other works attempt 
to predict the location of mobile users using machine learning 
algorithms. In [14] the authors propose a model that predicts 
spatial context through supervised learning, and the authors in 
[15] take advantage of signal strength and signal quality history 
data and model user locations using an extreme learning machine 
algorithm. These works are focused on using user context for 
device self-configuration and location prediction, whereas our 
work is focused on using user context for optimizing energy 
consumed by data transfer and location interfaces. 

The authors in [28] apply machine learning techniques to 
energy-efficient sensing, as we do in this work. They group 
context sensors into three categories according to their energy 
efficiency, using the more energy-efficient sensors to infer the 
status of high-energy-consuming sensors so that activating them 
may not be necessary. The major difference between their work 
and ours is that they use machine learning techniques for learning 
the inference models to capture relationships between groups of 
sensors (e.g., between energy-efficient software sensing and 
high-energy consuming hardware sensing categories), whereas in 
our work, machine learning techniques are used to learn user-
specific spatiotemporal and device contexts. 

One of the key motivations for applying pattern recognition 
and classification algorithms to mobile device usage is the 
observation that user usage patterns are often mutually-
independent, in that each user generally has a unique device 
usage pattern. The use of pattern recognition then allows for 
energy optimization algorithms to be fine-tuned for each user, 
achieving energy savings without perturbing user satisfaction 
levels. This idea is further confirmed in mobile usage studies 
[16], which additionally focused on smartphone usage pattern 
analysis and its implications on mobile network management and 
device power management. Although their work had a slightly 
different focus than our work, the key relevant take-away is that 
the authors demonstrated from a two month real smartphone 
usage study that all users have unique device usage patterns. 
Many other works [30]-[36] utilize data gathered from groups of 
real smartphone users to emphasize this same conclusion. Our 
previous work [17] also found that usage patterns are unique in 
the way users interact with different apps on their mobile 
devices. In Section 4 of this study, the real user usage patterns 
further confirm this claim – all five users had unique usage 
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patterns in the amount of interaction as well as when and where 
the interactions most often took place.

33 USER INTERACTION STUDIES

In this work we focus on exploiting learning algorithms to 
discover opportunities for energy saving in mobile systems 
through the dynamic adaptation of data transfer and location 
network interface configurations without any explicit user input. 
Consequently, we enable energy-performance tradeoffs that are 
unique to each user by efficiently enabling/disabling their 
device’s network interfaces. In order to compare the relative 
effectiveness of our different learning algorithms (described in 
Section 4) at predicting a user’s data/location usage 
requirements, five real user usage profiles for five different 
Android smartphones (HTC myTouch 3G, Google Nexus One, 
Motorola Droid X, HTC G2, and Samsung Intercept) were 
collected over a one week period with a custom Context Logger 
application. The application logged user context data on external 
storage, which was acquired at the end of the one week session 
and used in our algorithm analysis.

Table 1: Recorded data attributes
Context Attribute Type

Temporal Day of week Discrete
Time of day Discrete

Spatial 

Latitude Continuous
Longitude Continuous
GPS Satellite Count Discrete
WiFi RSSI Discrete
Number of WiFi APs Available Discrete
3G Network Signal Strength Discrete
Device Moving Logical
Ambient Light Discrete

Device 

Call State Discrete
Battery Level Discrete
Battery Status Discrete
CPU Utilization Continuous
Context Switches Discrete
Processes Created Discrete
Processes Running Discrete
Processes Blocked Discrete
Screen On Logical

Targets 
Data Needed Logical
Coarse Location Needed Logical
Fine Location Needed Logical

3.1 Context Logger
We created a custom Context Logger application that ran in the 
background as an Android service and gathered both 
spatiotemporal and device usage attributes at a one minute 
interval. Table 1 lists the attributes recorded by the logger and 
used for algorithm analysis and indicates whether the attribute 
was a continuous variable (floating point), discrete variable 
(integer), or logical variable (true/false). The GPS Satellites
attribute is used as an indirect correlation to GPS signal strength 
and WiFi RSSI is a measure of WiFi signal strength. In addition 
to more common device attributes such as Battery Level and 
CPU Utilization, we gathered several uncommon OS attributes: 
Context Switches, Processes Created, Processes Running, and 
Processes Blocked. We hoped to aid prediction by using these as 
inputs to the machine learning algorithms. The three target 
variables (Data Needed, Coarse Location Needed, and Fine 
Location Needed) were obtained by examining the requested 
Android permissions of all of the device’s current running 

foreground applications and services. The Device Moving
attribute was determined by using the accelerometer sensor and a 
metric for movement that is the sum of the unbiased variance of 
X, Y, and Z acceleration [7], given as:

( … ) =  1 ( )1 (1)= ( … ) +  ( … )+  ( … ) (2)

3.2 Data Preparation
As mentioned earlier, GPS location coordinates were recorded 
along with the other attributes at one minute intervals. The 
Android SDK GPS location data returns the user’s longitude and 
latitude coordinates in decimal degrees as reported by the 
onboard GPS chipset [26]. Although exact accuracy is dependent 
on the actual GPS hardware, the returned values were truncated 
to a given precision and each longitude and latitude coordinate 
pair was mapped to a unique location identifier. The truncated 
location resolution generalized the number of unique locations in 
which a user spends his/her time, given that for example, a user’s 
home may consist of several different samples of different 
longitude and latitude pairs. In addition, temporal conditions can 
be applied to further reduce the number of unique locations (e.g. 
disregard locations where user spent less than x minutes). Figure 
2 shows the effect of truncation and application of temporal 
conditions for a real user and how the primary locations where 
the user spent most of his/her time are revealed. In the figure, the 
leftmost pie chart shows that, without truncation, there are too 
many unique locations to effectively use for prediction (each 
color is a different unique location). In the pie charts to the right, 
the precision of the GPS coordinates is reduced and more 
significant locations can be seen. For our study we used a 
location precision of 4 decimal places, as it offers a good balance 
between effectiveness and accuracy. 

Figure 2: Unique locations identified for varying GPS precisions

The desired data/location interface configurations were 
partitioned into eight different states based on the desired target 
variables (Data Required, Coarse Location Required, and Fine 
Location Required). Table 2 maps the logical values of the three 
target variables to a state. The states define the device’s current 
required resources. Efficiently predicting one of these 8 states 
using temporal, spatial, and device context input variables in 
Table 1 may ultimately allow opportunistic shutdown of 
location/wireless radios. If all interfaces are enabled, they would 
consume a significant amount of energy in their idle states 
without this dynamic control. Some might wonder about the 
worth of predicting users’ needs, considering that applications 
and services request what they need at runtime. However, it is 
important to realize that applications are rarely designed with 
energy efficiency in mind – software developers are generally 
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more concerned about performance and functionality rather than 
optimizing for energy efficiency.

Table 2: Interface configuration states
State Data Required Coarse Location 

Required
Fine Location 

Required
1 No No No
2 No No Yes
3 No Yes No
4 No Yes Yes
5 Yes No No
6 Yes No Yes
7 Yes Yes No
8 Yes Yes Yes

33.3 Real User Profile Analysis
We distributed the Context Logger application to five different 
mobile device users, and logged their context data over the 
course of one week. Figure 3 demonstrates the relative state 
distributions as described in Table 2 for the five different real 
users. As can be seen, states 2 – 4 are never realized as data was 
always required when location was required. In addition, the 
distributions highlight that each user had a considerably different 
usage pattern, motivating the need for user-specific adaptation 
framework to most effectively save energy. User 1 can be 
categorized as a minimal user, where the user rarely utilized their 
phone with only brief periods of interaction, while users 2 and 5 
used their phones rather frequently and for longer periods of 
time. Users 3 and 4 can be categorized as moderate users, 
primarily utilizing their devices for only certain times of the day.

Figure 3: Real user state distributions

4 LEARNING ALGORITHMS: OVERVIEW

The notion of searching for patterns and regularities in data is the 
fundamental concept in the field of pattern recognition and data 
classification. Machine learning is often focused on the 
development and application of computer algorithms in this field 
[23]. In this work we use machine learning algorithms to learn 
and predict both the spatiotemporal and device contexts of a user, 
ultimately providing energy savings through efficient control of 
their device’s network configuration. In other words, given a set 
of input contextual cues, the algorithms will exploit learned user 
context to dynamically classify the cues into a system state that 
precisely governs how data and location interfaces are utilized. 
The goal is to achieve a state classification (Table 2) that saves 
energy while maintaining user satisfaction by using the recorded 
data attributes in Table 1. An overview of the basic underlying 

concepts and application of the machine learning algorithms used 
in this study is briefly discussed below. The pros and cons of 
each algorithm are summarized in Table 3. 

4.1 Linear Discriminant Analysis
Linear discriminant analysis (LDA) makes use of a Bayesian 
approach for classification in which parameters are considered as 
random variables of a prior distribution. This concept is 
fundamentally different from data-driven linear and non-linear 
discriminant analyses in which what is learned is a function that 
maps or separates samples to a class. Bayesian estimation and the 
application of LDA is also known as generative modeling, in that 
what is learned is a probabilistic model of the samples from each 
class. By considering parameters as random variables of a prior 
distribution one can make use of prior known information. For 
example knowing that a mean is very likely to be between  and , the probability can be determined in such a way that the 
bulk of the density lies between and [24]. Given a prior 
probability distribution for a particular state classification and a 
state likelihood, Bayes’ theorem (equation 3) can be invoked to 
get an inferred posterior probability to derive a state prediction 
( ) for a new observed sample of input attributes using a 
maximum a posteriori (MAP; equation 4) [24]:( | ) = ( ) ( | )( ) (3)argmax ( | ) (4)

LDA is applicable to a wide range of classification problems 
of both univariate or multivariate input spaces and binary- or 
multi-class classification. A number of statistical probability
distribution functions can be applied, but the most common is the 
Gaussian or Normal distribution (which we use in our study) as 
shown in equation 5 below.( | , ) =  12 12 (  ) (5)

In our work, we obtain an appropriate state classification using 
LDA by calculating means and variances for the probability 
distributions of each state using the input data. We then use the 
means and variances to calculate discriminant functions for each 
possible state classification using the Gaussian distribution. 
Finally, we choose the state corresponding to the discriminant 
function that outputs the highest value for prediction.  

4.2 Linear Logistic Regression
Similar to LDA, linear logistic regression (LLR) is a technique 
used to derive a linear model that directly predicts ( | ), 
however it does this by determining linear boundaries that 
maximize the likelihood of the data from a set of state 
classification samples instead of invoking Bayes’ theorem and 
generating probabilistic models from priori information. LLR 
expresses ( | ) directly by requiring all linear function 
values to be between 0 and 1 and that they all sum to 1 for any 
value of , as shown in equation 6: ( | ) = ( , )( , ) (6)

with ( , ) =  (7)
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With LDA, Bayes’ theorem, state priors, and state probability 
models were used to infer the state classification posterior 
probabilities, which were then used to discriminate between the 
different states for a given sample of input attributes . In 
contrast, LLR solves for the linear weight parameters, , 
directly using gradients to maximize the data likelihood. This is 
done by enumerating the likelihood function, ( ), using a 1-of-
K coding scheme for the target variables, as shown in equation 8 
[23], in which every value of , {0,1} and each row only 
contains a single ‘1’. The class variable transformations are 
known as indicator variables and are used in the exponents of the 
likelihood function to select the correct terms for each sample . = { , , , … , }

  , , … ,, , … ,   , , … , (8)

( ) =  ( | ) , (9)

In order to find the that maximizes the data likelihood, we 
transform product of products to a sum of sums using the natural 
logarithm to simplify the gradient calculation with respect to . 
Since equation 9 is non-linear, we use an iterative method known 
as scaled conjugate gradient (SCG) [25] (discussed briefly in the 
following subsection) to solve for the gradient of the log 
likelihood, ( ), and obtain the respective weights.( ) =  , log ( | ) (10)

The iterations repeat until the log likelihood ( ) appears to 
be at a maximum, then we can plug the updated weights into 
equation 6 to obtain the final state probabilities. The resulting 
state prediction is the state with the highest probability.

4.2.1 Scaled Conjugate Gradient
The scaled conjugate gradient (SCG) algorithm was originally 

proposed by Moller in 1997 as a method for efficiently training 
feed-forward neural networks [25]. Simple gradient descent
algorithms use a fixed step size when following a gradient.  
However, when fixed it is difficult to choose an optimal value for 

, which may result in slow convergence times. Instead, it is 
better to perform a series of one-dimensional iterative searches 
known as line searches in the direction of the gradient to choose 

in each iteration. Although using line searches to choose is 
better than using a fixed step size, there are a few problems 
associated with the resulting gradient descent algorithm. For 
example, because the gradient descent directions interfere, a 
minimization along the gradient in one direction may spoil past 
minimizations in other directions. This problem is solved using 
conjugate gradient methods, which compute non-interfering 
conjugate directions. Figure 4 shows an example of the two 
algorithms, gradient descent (red line) and conjugate gradient 
(green line) beginning at point , then moving along the 
gradient to find a minimum at point . 

Standard conjugate gradient algorithms still use line searches 
along the conjugate directions to determine step size. However, 
there are several drawbacks to doing line searches that can be 
detrimental to the performance of the algorithm, such as the error 

calculations involved with each iteration. Scaled conjugate 
gradient (SCG) algorithms substitute the line search by scaling 
the step size depending on success in error reduction and 
goodness of a quadratic approximation of the likelihood [25].

Figure 4: Comparison of gradient descent (red) and conjugate 
gradient (green) algorithms

44.3 Non-linear Logistic Regression with Neural 
Networks

Neural network models, also known as Artificial Neural 
Networks, are inspired by the way the human brain is believed to 
function. Many of the normal basic everyday information 
processing requirements handled by the brain, for example 
sensory processing, cognition, and learning, surpass any capable 
computing system out there today. Although a human brain is 
quite different than today’s computing hardware, it is believed 
that the basic concepts still apply in that there is a computational 
unit, known as a neuron, and connections to memory stored in 
synapses. The main difference being that the human brain 
consists of billions of these simple parallel processing units, 
(neurons) which are interconnected in a massive multi-layered 
distributive network of synapses and neurons [24].

Figure 5: Neural network perceptron model

In machine learning these concepts are modeled by what is 
referred to as a perceptron, which is the basic processing element
that is connected with other perceptrons through weighted 
connections, as illustrated in Figure 5. The output of a perceptron 
is simply a weighted sum of its inputs including a weighted bias, 
as shown in equation 11. 

=  + (11)
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To compute the output y given a sample , backpropagation 
using the gradient with respect to the weights is performed using 
a training dataset to find the weight parameters, , that 
minimize the mean squared error between the neural network 
outputs, , and the target outputs, . By default, the neural 
network consists of a hyperplane (for multiple perceptrons) that 
can be used as a linear discriminant to linearly separate the 
classes. To improve prediction accuracy, we make it non-linear, 
by applying a sigmoidal or hyperbolic tangent to hidden unit 
layer perceptrons (not shown in Figure 5), as denoted in equation 
12. This allows for non-linear boundaries with the output of the 
neural network being linear in the weights, but non-linear in the 
inputs. = ( ) =  11 + exp ( ) (12)

For classification with a neural network (non-linear logistic 
regression), the number of parallel output perceptrons is kept 
equal to the number of classes in our work. Therefore, our neural 
network implementation has eight outputs – one for each 
interface configuration state shown in Table 2. The output from 
each perceptron, , is then sent to post processing as in equation 
13 to determine the respective state prediction by taking the 
maximum of the post-processed outputs:  =  max exp ( )exp ( ) (13)

One of the biggest criticisms about the use of neural networks 
is the time required for training. Although this can be a major 
issue if using a simple gradient descent approach, newer training 
techniques, such as the scaled conjugate gradient (SCG) [25], 
described in Section 3.2.1, can greatly minimize the time 
required for training. SCG was used for training the neural 
networks in this study.  

Figure 6: K-nearest neighbor example

44.4 K-Nearest Neighbor
The k-nearest neighbor (KNN) algorithm is a fairly simple non-
parametric unsupervised approach for the data classification 
problem. A key assumption of non-parametric estimation is that 
similar inputs have similar outputs [23]. In KNN, new samples 
are classified by assigning them the class that is the most 
common among the closest samples in the attribute space. This 
method requires some form of distance measure for which 
Euclidean distance is typically used. The Euclidean distance 
between two points and , each containing i attributes, is 
defined in equation 14. 

( , ) = ( ) (14)

Consider the following example that demonstrates the working 
of this approach. Figure 6 shows a sample data set, characterized 
as blue squares and red triangles. The green circle is a new 
sample that needs to be classified as either a blue square or as a 
red triangle. If = 3 (represented by the smaller inner circle with 
radius 3), the new sample is classified as a red triangle because 
there are more red triangles within the considered area. Similarly, 
if = 5 the new sample is classified as a blue square.

In our implementation, each point is a vector of the input 
attributes in Table 1, and the calculation of Euclidean distance is 
performed as a vector operation. This allows us to obtain a 
configuration state prediction using the gathered context 
information.

4.5 Support Vector Machines
Support Vector Machines (SVMs) have become quite popular in 
recent years. SVM is a non-probabilistic binary linear classifier, 
which constructs a line (for data with dimensionality  =  2) or 
a hyperplane (for data with dimensionality  >  2) to separate 
each given input into one of two possible classes. Examples 
closest to the separating line or hyperplane are the support 
vectors, and the goal of the SVM is to orientate the line or 
hyperplane to be as far as possible from the closest members of 
both classes (largest perpendicular distance). This is known as 
the maximum-margin hyperplane. 

Often, the classes to discriminate may not be linearly separable 
in the original problem’s dimensional space. This is especially 
true in our case – the attribute space for our gathered context data 
is quite large, and can vary greatly depending on the user. To 
correct this, SVMs map the original dimensional space to a much 
higher-dimensional space by using nonlinear kernel functions. 
This allows the algorithm to fit the maximum-margin hyperplane 
in the high-dimensional feature space, while still allowing it to be 
nonlinear in the original input space. We use a radial basis 
function (RBF) for the kernel in our SVM implementation.

In an SVM, given input attributes and training samples, 
with class labels -1 or 1, each training sample is mapped to a 
training data point in a -dimensional space. Then, the objective 
is to learn a hyperplane = , where is a -
dimensional vector and is a -dimensional data point. The 
optimization problem is as follows. We have

min, 12 + (15)

subject to ( ) 1 (16)

where is a constant value, is the degree of misclassification 
of the -th training data point, and is the category label of . 

As stated previously, SVMs are binary classifiers. Thus, in 
order to classify data into more than two classes, the problem 
must be broken down into multiple binary classification 
problems. A common method for such decomposition is to build 
binary classifiers which distinguish between (i) one of the labels 
and the rest (one-versus-all) or (ii) every pair of classes (one-
versus-one). Classification of new instances for the one-versus-
all approach is done by a winner-takes-all strategy, in which the 
classifier with the highest output function assigns the class. For 
the one-versus-one approach, classification is done by a max-
wins voting strategy, in which every classifier assigns the 
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instance to one of the two classes, then the vote for the assigned
class is increased by one vote, and ultimately the class with the 
most votes determines the instance classification. Our SVM 
implementation uses one-versus-one approach when predicting 
an interface configuration state for each sample of input attribute.

Table 3 briefly summarizes the pros and cons of the five 
machine learning techniques that we adapt in our work, based on 
our implementation experience. 

Table 3: Pros and cons of machine learning algorithms
Algorithm Pros Cons

LDA

Unbiased; very fast; easy 
implementation 

Not good choice for classes 
with very different 
underlying covariance 
matrices

LLR
Easy to interpret; can model 
synergistic relationships

Complicated; sensitive to 
outliers and hard to 
extrapolate

NN 

Can derive meaning from 
complicated or imprecise 
data; can handle large 
number of features; fast

Training can be difficult; 
slow training time; examples 
must be selected carefully; 
not probabilistic, hard to 
implement

KNN 

Simple to understand; data 
can be scalars or 
multidimensional vectors;
does not make assumptions 
about underlying data 
distributions

Slow; non-parametric; all 
training data is needed 
during testing phase; all 
training examples are saved 
in memory – storage problem

SVM 

Can deal with very high 
dimensional data; good 
generalization performance; 
potential for feature selection 
and outlier detection; general 
high accuracy

Need to select a good kernel 
function; high memory/cpu 
time requirements; slow 
training time for one-versus-
one approach; parameter 
selection is data dependent

Figure 7: Power consumption of configuration states

55 DEVICE POWER MODELING

In order to quantify the energy-effectiveness of using machine 
learning algorithms to predict energy-optimal device states, 
power analysis was performed on real Android based 
smartphones, with the goal of creating power models for the data 
and location interfaces. We use a variant of Android OS 2.3.3, 
(Gingerbread) and the Android SDK Revision 11 as our baseline 
OS. We built our power estimation models using real power 
measurements, by instrumenting the contact between the 
smartphone and the battery, and measuring current using the 
Monsoon Solutions power monitor [27]. The monitor connects to 
a PC running the Monsoon Solutions power tool software that 
allows real-time current and power measurements over time. We 
manually enabled the data/location interfaces one by one and 
gathered power traces for each interface in their active and idle 

states. The power traces from the Monsoon Power Tool were 
then used to obtain average power consumption measurements 
for each interface. These average power consumption 
measurements allowed us to determine average power 
consumption for each of the eight configuration states, shown in 
Figure 7. The figure shows two measurements for each state – 
Optimized and Baseline. Optimized shows the average power 
consumed with the unnecessary interfaces disabled, while 
Baseline shows the average power consumed with the 
unnecessary interfaces enabled and idle. Intuitively, there is no 
optimized bar for state 1 because no power is consumed when 
none of the interfaces are enabled. We use the Baseline 
measurements for comparison in the experiments in the next 
section.

6 EXPERIMENTAL RESULTS

In addition to testing our energy saving techniques on five real 
user profiles, a set of synthetic user profiles were also created for 
five different idealized and generalized models of average user 
usage patterns including the following: (i) 8 – 5 Business 
Worker, (ii) College Student, (iii) Social Teenager, (iv) Stay At 
Home Parent, and (v) Busy Traveler. Both an indoor/outdoor 
location timeline and an interface state profile were created for 
each synthetic user, as shown in Figure 8. Given the difficulty of 
generating realistic device system data, such as context switches, 
CPU utilization, and processes created, only a subset of the 
attribute space was considered. The remaining attributes were 
based on both the desired state and/or location. For example, if a 
user was at an outdoor location, larger GPS satellite values and 
weak WiFi RSSI values were used as opposed to when the user 
was indoors. We created the synthetic profiles ourselves by 
modeling what we considered typical behavior of each 
stereotype. For instance, we envisioned the 8-5 Business Worker 
waking up at 6:30 a.m., driving to work at 7:30 a.m., arriving at 
his/her desk at 8:30 a.m., working until noon then taking a lunch 
break, etc. The interface configuration states and locations in the 
charts attempt to capture this behavior. Recall that the locations 
are just unique location identifiers (integers). In the case of the 
Busy Traveler, the red line indicating location is constantly 
changing because the Busy Traveler constantly moving to new 
locations. The dips in the red line are present because indoor 
locations are numbered lower than outdoor locations – indicating 
that the Busy Traveler spent most of his/her time driving outside, 
but made occasional stops at indoor locations for food, rest, or 
relief.

6.1 Prediction Accuracy Analysis
Recall that the input attributes for the learning algorithms come 
from the gathered spatiotemporal and device context data (Table 
1), and the predicted output is one of the 8 interface 
configuration states (Table 2). To evaluate the prediction 
accuracy of the different algorithms, the data for each user was 
randomly partitioned into training and test sets using an 80/20 
partitioning scheme. The algorithms were then trained on the 
training data and evaluated on the test data. When being 
evaluated on the test data, each algorithm’s predictions were 
compared with the target variables from the actual user data to 
determine the prediction accuracy. This was repeated five times 
for each implementation and the net prediction accuracy is 
presented in Figure 9 for the real users. 
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Three different neural network (NN) implementations with a 
varying number of hidden units, equal to the total (H=18), half 
(H=9), and one-sixth (H=3) the size of the attribute space were 
evaluated. We compared the prediction accuracy of our 
algorithms with the configuration prediction strategy presented in 
[13] (MVSOM – Missing Values Self-Organizing Map). As 
illustrated in Figure 9, Support vector machines and the 
application of neural networks with a number of hidden units of 
at least half the size of the attribute space resulted in the highest 
prediction rates. K-nearest neighbor (KNN), linear logistic 
regression (LLR), and linear discriminant analysis (LDA) also 
performed fairly well, with prediction accuracies in the range of 
60 – 90 %. However these approaches were much more sensitive 
to the usage pattern. MVSOM performed the worst and had a 
high degree of variance in both the usage pattern and random 
training data selection.

Figure 9: Real user algorithm prediction accuracy

The same algorithms were applied to the synthetic user 
profiles; however, the attribute space was reduced to only Day, 
Time, Location, GPS Satellites, WiFi RSSI, Network Signal 
Strength, Data Needed, Coarse Location Needed, and Fine 
Location Needed. The same strategy for selecting numbers of 
hidden units for the neural network implementations was applied 
for the reduced attribute space. Figure 10 illustrates the algorithm 
prediction rates for the synthetic users, which demonstrate
similar trends as in the case of the real user data.

Figure 10: Synthetic user algorithm prediction accuracy

66.2 Energy Savings
It is important to note that despite high prediction accuracy, the 
amount of potential energy savings is still highly dependent on 
the user’s device usage pattern and if the algorithms are 
positively or negatively predicting states where energy can be 
conserved. More complicated user patterns are more difficult for 
the algorithms to predict correctly. In addition, false predictions 
can cause either more or less energy to be consumed. For 
example, if an algorithm predicted state 8 when the actual state 
should have been state 1, negative energy savings would be 
achieved. Figures 11 and 12 illustrate the energy savings 
achieved by the individual algorithms when the algorithm’s 
prediction target states are applied to the real and synthetic user 
profiles. We compare our algorithms against the VRL technique 
(Variable Rate Logging [9]). Note that as VRL does not predict 
system state, results for its prediction accuracy are not shown in 
Figure 9 presented earlier. Although simpler linear models can 
achieve high energy savings, it is important to note that energy 
savings themselves are not good discriminants of an algorithm’s 
goodness because user satisfaction must also be considered. For 
example, if a user spends a significant amount of time in the 
energy consuming state 8 and the algorithms are predicting a less 
energy-consuming state during these instances, then more energy 
can be conserved at the cost of user-satisfaction. Directly 
correlating the prediction accuracy of the algorithms is especially 
important for highly interactive users such as users 2 and 5, as 

Figure 8. Synthetic user profiles
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opposed to minimally interactive users, e.g., user 1. All energy 
savings are relative to the baseline case for Android systems 
without proactive multi-network interface management.

Lower prediction and more generalized models result in the 
highest energy savings as in the case of LDA and LLR. 
However, again, these higher savings come at the cost of 
degraded user satisfaction. SVM and KNN overall perform fairly 
well in terms of both prediction accuracy and energy savings 
potential, as does the nonlinear logistic regression with NN 
approach. With the latter, an important point to note is that 
prediction accuracy is proportional to the complexity of the 
neural network and indirectly proportional to the net energy 
savings. This outcome is expected as less complex neural 
networks will result in more generalized models relaxing the 
constraint for inaccurate predictions that result in higher energy 
savings. It is also important to note that although energy savings 
are small for heavy users, this comes as an artifact of our 
optimization technique – we are exploiting windows of 
opportunity, which are fewer for heavy users. MVSOM, with its 
low prediction rates, also led to instances of negative energy 
savings, as it often predicted higher energy states when the true 
target state was one of less energy consumption. Thus we believe 
that the MVSOM approach is not very viable for use in mobile 
embedded systems. VRL’s energy saving capability is 
constrained because it does not disable device interfaces (only 
deactivates location logging or reduces logging rate), ignoring 
idle energy consumption. Overall, compared to VRL, the average 
energy savings of our KNN algorithm is 25.6%, that of our SVM 
algorithm is 15%, and that of our NN approaches is 11.7% 
(H=18), 24.1% (H=9), and 24% (H=3) for real user patterns. 

Figure 11: Percent energy saved for real users

Figure 12: Percent energy saved for synthetic users

        
(a) (b)

                 
                                                    (c)                                         (d)

Figure 13: PCA Results
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66.3 Principal Component Analysis
The complexity of the machine learning algorithms used in this 
work depends on the number of inputs. Because we are using a 
total of 19 contextual inputs, we performed Principal Component 
Analysis (PCA), a form of dimensionality reduction, to see how 
the accuracy and overhead of the algorithms was affected. PCA 
is known as a feature extraction method, in which a new set of k
dimensions is created that are combinations of the original d
dimensions [24]. PCA accomplishes this by performing an 
orthogonal transformation such that the directions in the data 
space along which the data varies the most are projected onto the 
most significant coordinates in a new coordinate system. In other 
words, the greatest variance comes to lie on the first coordinate, 
the second greatest variance comes to lie on the second 
coordinate, and so on. This transformation is motivated by the 
assumption that directions in the data space along which data 
varies least are mostly due to noise, and can be removed without 
loss of information. (vi)

The PCA results are shown in Figure 13. Figures 13 (a) and 
(b) show the prediction accuracy obtained by projecting the data 
onto different numbers of eigenvectors, effectively reducing the 
attribute space to the number of eigenvectors. The charts show 
that prediction accuracy significantly decreases as the number of 
eigenvectors decreases, generally. This is expected because 
reducing the number of input attributes simplifies the model. 
Figures 13 (c) and (d) show the execution (prediction) times of 
each algorithm after the data has been projected onto different 
numbers of eigenvectors. In most cases, execution times decrease 
slightly as the number of eigenvectors decreases. However, 
because of the significant degradation in prediction accuracy, the 
slightly reduced execution times are not enough to make PCA 
dimensionality reduction a viable option.

6.4 Implementation Overhead
The prediction and energy saving results presented in the 
previous sections were obtained using a Python implementation 
of the algorithms on a 2.6 GHz Intel® Core i5™ processor. 
When considering real-world implementation, it is important to 
consider the implementation overhead of the individual 
algorithms. Current hardware in mobile devices on the market 
today is quickly catching up to the abilities of modern stationary 
workstations (e.g. Google’s Galaxy Nexus – 1.2 GHz dual-core 
processor). We determined the implementation overhead for our 
learning algorithms on the Google Nexus One with a 1 GHz 
Qualcomm QSD 8250 Snapdragon ARM processor [22], as 
shown in the third column in Table 4. The values shown in the 
column are average prediction times for each algorithm at 
runtime. The fourth and final column in the table shows actual 
execution times of each algorithm when run on an Nvidia Tegra 
2 1.2 GHz dual-core processor. In both cases, KNN’s run time is 
several orders of magnitude larger than any of the other 
algorithms, because all computations are deferred until 
classification. Therefore, although KNN is as good as or better 
than the support vector machine (SVM) and neural network (NN) 
based approaches in terms of energy savings and prediction, the 
support vector machine approach is preferable because of its fast 
execution time. The non-linear logistic regression with NN 
approach has a longer execution time than SVM, however, if a 
slightly longer execution time is acceptable, it may be preferable 
because of its higher energy savings potential.

Table 4: Average algorithm run times in seconds
Algorithm Intel Core i5 Qualcomm 8520 

Snapdragon Nvidia Tegra 2

LDA 0.00139 0.00361 0.07687
LLR 0.00118 0.00307 0.06525

NN (all 3 
variants) 0.00962 0.02501 0.53199

KNN 97.7428 254.131 5405.18
SVM 0.00037 0.00095 0.02021

MVSOM [13] 0.82701 2.15023 45.7337
VRL [9] 0.01977 0.05140 1.09328

In summary, our proposed LDA and LLR approaches have the 
lowest implementation overhead and can result in high energy 
savings, but often at the cost of user satisfaction. Although our 
KNN approach is very effective in terms of prediction accuracy 
and energy savings, its unreasonable implementation overhead 
renders it unacceptable for real-world applications. The prior 
work with MVSOM [13] provides low energy savings as a result 
of its poor prediction accuracy, and takes a long time to run; 
whereas VRL [9] has low run time but also very low energy 
savings. Our support vector machine based approach provides 
good accuracy, good energy savings, and demonstrates the best 
adaptation to various unique user usage patterns, while 
maintaining a low implementation overhead. Our non-linear 
logistic regression with neural network approach that uses the 
fast scaled conjugate gradient training method and with the 
number of hidden units equal to half the attribute space offers the 
same benefits, but with slightly higher energy savings and 
implementation overhead.

6.5 Real-World Implementation Considerations
When contemplating a real-world implementation, algorithm 
training times and data-dependent prediction accuracies must be 
considered. Table 5 shows the raw training and prediction times, 
as well as the prediction accuracies of each algorithm for various 
lengths of data gathering periods. We tested each algorithm using 
one, three, five, and seven days’ worth of data. The last four 
columns show in the table how the prediction accuracies change 
with smaller amounts of data. Although accuracy certainly 
decreases with the amount of data, most of the algorithms 
perform fairly well with less than a full week of data. However, 
training for just one day does not provide sufficient accuracy for 
any of the algorithms. This is expected – a user’s activity over 
the course of just one day is rarely indicative of their activity for 
the rest of the week. The first four columns of data in Table 5 
show that training times also decrease with smaller amounts of 
data. Our KNN approach exhibited the fastest overall training 
time. However, this is because all computation is postponed until 
the prediction occurs in the KNN algorithm, which is apparent 
when observing its large implementation overhead in Table 4. 
Our LDA and LLR approaches also demonstrated fast training 
times, while the training times for our NN and SVM approaches 
were significantly slower. Although the training phase for the 
NN and SVM approaches takes more time than the other 
algorithms, we propose that such training can be performed 
quickly and in an energy-efficient manner without affecting user 
QoS whenever the device is plugged in and charging.
Furthermore, these training times are only applicable to the 
initial algorithm training – training becomes less frequent over 
time as the algorithms continually learn the user’s behavior 
patterns. Retraining consists of the algorithms merely making 
corrections to the learned models instead of learning entirely new 
models. The training times in Table 5 indicate how long training 
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takes for each algorithm to reach the accuracy shown in the table. 
The initial training phase for each algorithm can be customized 
to reach a desired level of accuracy, allowing the user to control 
the tradeoff between speed and accuracy. For example, we chose 
100 SCG iterations as the cutoff for the training in the LLR and 
NN algorithms. The choice of 100 iterations was determined to 
be a good compromise between speed and accuracy by 
examining the RMSE (root mean squared error) over time during 
the training phase. Figure 14 shows the how the RMSE (root 
mean squared error) for one of the real users changes for 100 and 
2000 SCG iterations. It can be seen that the RMSE converges to 
approximately the same value when trained for 100 iterations and 
2000 iterations, eliminating the need for further training after 100 
iterations. For 100 SCG iterations, training took approximately 7 
seconds and resulted in 88.76% accuracy, as opposed to 
approximately 136 seconds and 90.69% accuracy for 2000 
iterations, significantly reducing training time for a very minimal 
loss in accuracy.

Figure 14: RMSE over 100 and 2000 SCG iterations

Another important point to notice in Table 5 is that each 
algorithm’s prediction time increases significantly as more and 
more data is gathered. For this reason, data should not be stored 
indefinitely – data more than one week old should be deleted and 
replaced with more current data. This will allow the models to be 
quickly retrained while still maintaining acceptable prediction 
accuracies. Because retraining takes a trivial amount of time, it 
can be done on a daily basis without negatively impacting user 
QoS.

77 CONCLUSIONS AND FUTURE WORK

In this work we demonstrated the effectiveness of using various 
machine learning algorithms on user spatiotemporal and device 
contexts in order to dynamically predict energy-efficient device 
interface configurations. We demonstrated up to a 90% 

successful prediction using support vector machines, neural 
networks and k-nearest neighbor algorithms, showing 
improvements over the self-organizing map prediction approach 
proposed in [13] by approximately 50%. In addition, 
approximately 85% energy savings was achieved for minimally 
active users with an average improvement of 15% energy savings 
compared to the variable rate logging algorithm (VRL) proposed 
in [9] for our best approach involving support vector machines
that also has high prediction accuracy and low overhead. If 
slightly more implementation overhead is acceptable, our 
approach involving non-linear logistic regression with neural 
networks can provide even more energy savings, with an average 
improvement of 24% compared to VRL [9]. A possible extension 
to our work is to conduct large scale studies that recruit sample 
groups much larger than that considered in this work. Such large 
user groups could lead to the creation of user classes for which 
unique class-specific usage patterns could be discovered. This in 
turn could allow for more aggressive optimization of our 
framework, for instance by reducing training time and improving 
prediction accuracy.
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