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ABSTRACT 
In this paper, we propose a novel framework for energy and 

workload management in multi-core embedded systems with solar 

energy harvesting and a periodic hard real-time task set as the 

workload. Compared to prior work, our energy management 

framework possesses several advantages, including (i) a battery-

supercapacitor hybrid energy storage module for more efficient 

system energy management, (ii) a semi-dynamic scheduling 

heuristic that continuously adapts to run-time harvested power 

variations without losing the consistency of the periodic task set, 

and (iii) a coarse-grained core shutdown heuristic for additional 

energy savings. Experimental studies show that our framework 

results in a reduction in task miss rate by up to 61% and task miss 

penalty by up to 65% compared to the best known prior work. 

Categories and Subject Descriptors 

C.3 [Computer Systems Organization]: Special-Purpose and 

Application-Based Systems -- Real-time and embedded systems. 

B.8.2 [Performance and Reliability]: Performance Analysis and 

Design Aids 

General Terms 

Algorithms, Design, Performance 

Keywords 
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1. INTRODUCTION 
Power and energy constraints have led to significant changes in the 

design of contemporary computing systems. In the last decade, the 

concept of thread-level parallelism (TLP) to improve performance 

within a power budget has seen widespread adoption across 

various computing platforms, ranging from high-end servers to 

desktops, as well as embedded devices. Recent years have also 

witnessed a significant increase in the use of multi-core processors 

in low-power embedded devices [1]. With advances in parallel 

programming and power management techniques, embedded 

devices with multi-core processors and TLP support are 

outperforming single-core platforms in terms of both performance 

and energy efficiency [2]. But as core counts rise to cope with 

increasing application complexity, techniques for workload 

distribution and energy management are the key to achieving 

energy savings in emerging multi-core embedded systems.  

For some applications, we need energy autonomous devices that 

utilize ambient energy to perform computations without relying 

entirely on an external power supply or frequent battery charges. 

As the most widely available energy source, solar energy 

harvesting has attracted a lot of attention and is rapidly gaining 

momentum. [3][4] To fully exploit the capability of energy 

harvesting systems, a considerable amount of work has explored 

task scheduling, primarily for embedded systems with real-time 

task sets. An early work [8] proposed the lazy scheduling 

algorithm (LSA) that executed tasks as late as possible, reducing 

deadline miss rates when compared to the EDF algorithm. 

However, the approach in [8] does not consider DVFS and always 

executes tasks at full speed. Because a processor’s dynamic power 

is generally a convex function of frequency, operating the 

processor at a lower frequency often results in higher energy 

efficiency. Liu et al. [9] proposed the EA-DVFS technique that 

takes processor DVFS into consideration. EA-DVFS utilized task 

slack to slow down execution speed, thus achieving more energy 

savings than LSA especially when total task utilization is low. 

Later the same authors proposed a more intelligent technique 

called HA-DVFS [10], which improved energy efficiency mainly 

by distributing multiple arriving tasks as evenly as possible over 

time and executing them with more uniform frequency. However, 

these works focus on uni-processor systems and have not 

considered execution on multi-core platforms. Recently, a 

utilization-based technique (UTB) was proposed in [11] to better 

address periodic task scheduling in energy-harvesting system. UTB 

takes advantage of predictability provided by periodic task 

information for better task distribution. Moreover, UTB proposed a 

simple extension to support multi-core platforms by allocating a 

subset of tasks to each core and executing the single-core UTB 

algorithm separately on each core.  

All of these prior efforts on harvesting aware task scheduling 

assume an ideal battery as the energy storage medium limited 

merely by it capacity, ignoring other factors such as rate capacity, 

recovery effect, and lifetime in terms of recharge cycles [6]. When 

applied to real-world platforms, overlooking these factors can 

result in suboptimal or even false scheduling that diminishes 

system efficiency, stability and lifespan. For example, rate capacity 

effect leads to decreasing battery capacity when discharging 

current increases [12]. Supercapacitors present an interesting 

alternative to batteries for energy storage. A substantial amount of 

research on supercapacitors has demonstrated their benefits over 

electrochemical batteries, including orders of magnitude higher 

recharge cycles, much less charge overhead, and significantly 

higher efficiency with high current discharge. However, high 

capacity supercapacitors are not practical for small-package low-

power embedded systems due to their significantly lower energy 

density and higher leakage overhead than an electrochemical 

battery, even with the state-of-art supercapacitor technology [14]. 

Recent work by Ongaro et al. [5] and Mirhoseini et al. [12] has 

shown that a battery-supercapacitor hybrid system can overcome 

the limitations of both types of energy storage mediums.  
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In this paper, we propose a novel framework based on a semi-

dynamic algorithm (HY-SDA) for energy and workload 

management in multi-core embedded systems with solar energy 

harvesting and a hybrid battery-supercapacitor energy storage 

system. HY-SDA aims to minimize deadline miss rate or penalty of 

periodic tasks in the presence of variant and insufficient energy 

harvesting. Compared to prior work, HY-SDA reacts to run-time 

energy shortages and fluctuations proactively to find significantly 

greater scope for energy savings, especially in multi-core platforms. 

At the system level, HY-SDA is triggered at specified time epochs 

to adjust inter-core task allocation and set a per-core execution 

strategy based on the energy budget provided by the hybrid energy 

storage system. Our experimental studies show that HY-SDA 

outperforms the best known prior work (UTB [11]), achieving 

superior task drop rate reduction and energy efficiency.   

2. PROBLEM FORMULATION 

2.1 System Model 
Our focus is on the problem of effective workload and energy 

management of real-time multi-core embedded systems with 

periodic tasks, powered by solar energy, as shown in Figure 1.  

 

2.1.1 Energy Harvesting and Energy Storage Module 
A photovoltaic (PV) array is used as a power source for our 

embedded system, converting ambient solar energy into electric 

power. Naturally, the amount of harvested power varies over time 

due to changing environmental conditions, like angle of sunlight 

incidence, cloud density, temperature, humidity, etc. To cope with 

the unstable nature of the solar energy source, rechargeable 

batteries and/or supercapacitors can be used to buffer solar energy 

collected by photovoltaic cells. In our study, the converted solar 

power at time t is denoted as PH(t). The energy EH charged into 

energy storage system between time instances t1 and t2 is given by 

                       𝐸𝐻(𝑡1 ~ 𝑡2) =  ηharv ∫ 𝑃𝐻(𝑡)
𝑡2

𝑡1
𝑑𝑡                   (1)  

where ηharv is a coefficient between 0 and 1 to represent charging 

efficiency of the energy storage system. The capacity of the energy 

storage device is limited. Clearly harvested energy will be wasted 

if the energy storage device is already fully charged. We assume 

that task execution must be halted when the remaining energy in 

the system is less than 10 percent, thus reserving enough storage to 

maintain system status and ensure graceful shutdown. In this paper, 

we focus on the scenario where nominal power of the PV array 

exceeds peak power consumption of the embedded processors. 

Thus it is necessary to have a storage system that can preserve a 

considerable amount of energy for later system execution when 

solar energy is insufficient. A hybrid battery-supercapacitor storage 

system meets these goals, and is described in Section 3.2.1.    

2.1.2 Periodic Real-Time Task Model 
We assume a task set of N independent periodic real-time tasks ψ: 

{τ1, … , τN}, in which each periodic task τi has a characteristic 

triplet (Ci, Di, Ti), i {1, …, N}. Ci is the maximum number of CPU 

clock cycles needed to finish a job instance of task τi, referred to as 

worst-case execution cycles (WCEC). The relative deadline of the 

task, Di, is the time interval between a job’s arrival time and its 

deadline. A job instance is missed if it is not finished before its 

deadline. Ti is the period of the task. At the beginning of each 

period, a new job instance of that task will be dispatched to the 

system. Like most recent works on periodic task scheduling (e.g., 

[11]) we assume that Di equals Ti, with all jobs finishing before the 

arrival of the next job instance of the same task. In addition, we 

define an attribute Xi, which is the miss penalty associated with 

each task. Each time that a task’s job misses the deadline, the job 

will be aborted and the penalty applied to the system. Thus, we can 

refine the triplet for task τi as (Ci, Ti, Xi). The relative importance of 

a task can be characterized by a penalty density, defined as the 

ratio of the task miss penalty and WCEC (    ⁄ ) [15].    

2.1.3 DVFS-Enabled Processor Model 
We consider an embedded system with homogeneous multi-core 

processors. The processors possess DVFS capability at the core 

level and have support for task preemption. Each core has M 

discrete voltage and frequency levels: φ: {L0, ... , LM}. Each level is 

characterized by Lj: (vj, pj, fj), j {1, …, M}, which represents 

voltage, average power, and frequency respectively. We consider 

power-frequency levels of the Xscale processor as shown in Table 

1. Here level 0 represents the idle power of the processor when no 

task is executed while the system stays in active state. Typically, 

the dynamic power-frequency function is convex. Thus, a 

processor running at lower frequency can execute the same number 

of cycles with lower energy consumption. However, this is not 

always the case when static power is considered. To find an energy 

optimal frequency, we represent energy efficiency of a v-f level Li 

by  i = cycles executed/energy consumed = fi/pi. From Table 1 we 

can conclude that level 2 is the most energy efficient because 

executing at this level consumes the least energy for a given 

number of cycles. We call the most energy efficient level as the 

critical level and thus fcrt = f2,. Although it is desirable to execute 

tasks at this critical frequency level, due to unique task timing 

constraints executing tasks at the critical level may end up being 

insufficient to finish all task instances by their deadlines. 

We also define utilization of a periodic task (U) with respect to the 

full speed provided by the processor; i.e., a task’s utilization is its 

execution time under highest frequency divided by its period,  

  =  
      ⁄

  
                                    (2) 

The utilization for an entire task set is simply the accumulation of 

all tasks’ utilization. In preemptive real-time system, a task set is 

schedulable by the EDF algorithm under a frequency level j if it 
meets the following condition: 

 𝑡 𝑡     
  

    
                                  (3) 

When total utilization is known, the most energy efficient 

frequency can be deduced from the equation, assuming        𝑡. 

In this paper, we focus on a fully subscribed system with Utotal = 

100% to maximally utilize the available system resources. Our 

proposed framework aims to finish as many tasks as possible in 

such a system under any given energy harvesting profile.    

Table 1. XScale Processor [13] Power and Frequency Levels 

Level 0 1 2 3 4 5 

Voltage(V) - 0.75 1.0 1.3 1.6 1.8 

Power(mW) 40 80 170 400 900 1600 

Frequency(MHz) idle 150 400 600 800 1000 

Energy Efficiency 0 1.875 2.353 1.5 0.889 0.625 

Figure 1. Real-time embedded processing with energy harvesting 
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2.1.4 Energy Manager Module 

A scheduler module is an important component of the system for 

information gathering and execution control. The scheduler gathers 

information by monitoring the energy storage medium and multi-

core processor state (Figure 1). The gathered data, together with 

profiled periodic task set information, informs a management 

algorithm in our scheduler that coordinates operation of the multi-

core platform. Each core is eventually assigned a strategy by the 

scheduler to guide intra-core task execution.  

2.2 Scheduling Objective 
Our primary objective is to reduce total task miss rate or penalty 

under variant harvested energy conditions at run-time. Our 

technique should react to changing harvested energy dynamics to 

complete as much (critical) work as possible, thus maximizing 

overall system utility and cost effectiveness. 

3. PROPOSED FRAMEWORK  

3.1 Motivation 
Most prior work deals with dynamic solar energy variation by 

halting, dropping, or speeding up execution of a current task, 

changing instantly from an initial schedule deduced offline. For 

energy harvesting aware periodic task set scheduling, the most 

recent work, UTB [11], also follows this route. Although UTB 

deduces an optimal initial schedule offline assuming sufficient 

energy, it does not cope well with run-time energy variations, and 

there is scope for significant improvement as discussed below:  

 

 

1) The task drop mechanism in UTB reacts to run-time energy 

shortages passively, only when the current task lacks sufficient 

energy to finish in time. In the motivational example shown in 

Figure 2, we assume a task set with four periodic tasks (τ1 ~ τ4), 

where each task has WCEC of 2.4 million CPU cycles and task 

period of 12ms. According to Table 1, Eq. (2) and Ineq. (3), UTB 

initially sets execution frequency to 800MHz so that all tasks can 

finish with the best efficiency if energy is sufficient, as shown in 

Figure 2(a). However, the real issue lies in the run-time energy 

management with an insufficient energy budget. Let us assume 

remaining energy in the energy storage is 7200μJ and harvested 

power in the next 36ms (3 periods) is 200mW, i.e., 200μJ of 

incoming energy per microsecond. After finishing three jobs, the 

energy storage is depleted, and UTB has to drop jobs due to 

insufficient energy, as shown in Figure 2(b). Only 6 out of 12 job 

instances are finished with UTB, resulting in a 50% miss rate. With 

the same energy budget, our proposed semi-dynamic algorithm 

(SDA) copes with energy shortage by proactively dropping tasks. 

It drops one task, τ4, based on the energy budget which helps to 

execute the remaining tasks steadily at a lower frequency of 600 

MHz. According to Table 1, executing at 600MHz has power 

consumption of 400mW, which is dramatically lower than 900mW 

at 800MHz due to the nonlinear relation between frequency and 

power consumption. As can be seen in Figure 2(c), all accepted job 

instances for τ1 ~ τ3 are finished and the overall miss rate is 25%, 

which is significantly lower than 50% achieved by UTB. 

2) UTB encourages dropping tasks with longer execution time, 

because finishing them requires more energy than others. This 

biased dropping may be undesirable for real-world applications, as 

tasks with longer execution time may represent complex 

applications of high importance. Furthermore, the fundamental 

problem is the absence of flexibility in UTB to schedule tasks with 

controlled priority. In spite of the fact that SDA drops all job 

instances of τ4 in Figure 2(c), its semi-dynamic framework provide 

flexibility to deal with this issue; e.g., by dynamically increasing 

miss penalty of τ4 later to give it more priority in the next time 

epoch when rescheduling becomes possible again. 

3) On multi-core platforms, UTB partitions tasks into separate sets 

and then executes each set on a core using a single-core scheduling 

algorithm. However, as all cores are dependent on the same energy 

source, such isolated run-time adjustment is not amenable to 

learning upcoming energy requirements of other cores, leading to 

suboptimal or even faulty schedules. In addition, static task 

partitioning in UTB wastes the flexibility provided by a multi-core 

platform. In contrast, SDA triggers task rescheduling to exploit 

multi-core flexibility. 

In summary, there are many limitations with the best known prior 

work on harvesting-aware task scheduling. Our HY-SDA approach 

(described in the next section) addresses these limitations.  

3.2 Semi-Dynamic Algorithm  
In this section, we describe our novel energy and workload 

management framework (HY-SDA) based on a semi-dynamic 

algorithm, for systems with hybrid battery-supercapacitor energy 

storage, solar energy harvesting, and periodic task sets.  

 
One of the underlying ideas behind HY-SDA is to exploit time-

segmentation during energy management, as illustrated in Figure 3. 

At each specified time interval (epoch), there is a reschedule point, 

where the execution strategy can be adjusted based on the energy 

budget available in the hybrid energy storage system. A time frame 

between two reschedule points is called a schedule window, within 

which a strategy specified at the beginning is in effect until the 

next reschedule point. Thus reschedule points provide dynamic 

adaptivity needed by the energy harvesting aware system to adjust 

the task execution strategy, while the schedule window enables 

stable execution so that periodic task information can be utilized 

for better energy savings, as in Figure 2(c). From schedule window 

1 to 4 in Figure 3, it can be seen that under low energy conditions, 

HY-SDA maintains execution at optimal low (critical) frequency 

and increases the number of active cores to finish more tasks as 

Figure 2. Motivation for proposed semi-dynamic approach 
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Figure 3. Illustration of semi-dynamic framework 
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harvested energy increases. Cores only execute at higher frequency 

when the energy harvested is abundant. Thus HY-SDA has better 

energy efficiency as execution frequency within a schedule 

window remains stable.   

At each reschedule point, our technique is composed of three 

stages: (i) energy budgeting, to take advantage of our proposed 

hybrid storage system, (ii) active core count selection, which 

selects the number of processing cores to activate, and (iii) penalty-

aware task rejection, to filter out subset of tasks that are less 

important and cannot be supported by the energy budget. These 

three stages are organized in an order that successor stages make 

use of efforts made by previous stages, rather than diminishing 

them, and are described in the following sections (3.2.1-3.2.3). 

3.2.1 Hybrid Storage System and Energy Budgeting 
In this section, we introduce our hybrid energy storage system and 

an energy budgeting heuristic to make use of its properties. 

Battery-Supercapacitor Hybrid Energy Storage: Inspired by 

Ongaro et al.’s work [5], we propose a hybrid energy storage 

system with one Li-Ion battery and two separate supercapacitors 

connected by a dc bus, as shown in Figure 4. During each 

schedule window, one capacitor is used to collect energy extracted 

from the PV array, while the other one is used as a power source 

for system operation or battery charging. At each reschedule point, 

the two supercapacitors switch their roles. Supercapacitors charge 

the battery only when their saved energy exceeds peak 

requirements of processors running at full speed. The PV array, 

battery and supercapacitors are coupled with bidirectional dc-dc 

converters to serve the purpose of voltage conversions between 

components with maximum power point tracking (MPPT) [7] and 

voltage level compatibility. This hybrid battery and dual-

supercapacitor design has many advantages:  

 It requires small capacity for the two supercapacitors, as each of 

them is only used to keep energy harvested during one single 

schedule window and is discharged in the next schedule window; 

 The supercapacitor with energy buffered during the last schedule 

window acts as a known stable energy source for the system, 

which filters out short term solar energy variation. Thus, no 

energy prediction scheme is needed in our design, avoiding 

complexity and inaccuracy introduced by non-ideal prediction 

mechanisms. Moreover, the stable energy source makes it 

possible to charge the battery with a steady constant current for 

more effective charging [6]; 

 The supercapacitors can support embedded processors directly, 

taking advantage of a much lower charging/discharging 

overhead compared to an electrochemical battery;  

 The battery offers high capacity to preserve energy especially in 

scenarios with excessive harvested energy.   

 

Energy Budgeting: Our energy budgeting heuristic selects 

among energy sources (supercapacitors and battery), sets the 

amount of energy to charge the battery for (Echrg), and, assigns 

energy budget for system execution in the upcoming schedule 

window (Ewindow), as shown in Algorithm 1. The heuristic is based 

on storage levels of the battery (LVB) and supercapacitor (LVC). 

We assume that LVB is provided directly by the energy storage, 

while the storage level of the supercapacitor can be classified into 

three levels of LVC, (lines 1-3). As we want to avoid battery 

charging/discharging overhead, there are only 2 scenarios where 

the battery is selected as a power source: one is when energy 

harvested in the supercapacitor is below a critical level (LVC = 1); 

the other is when battery storage level is high (LVB = 3) such that 

battery overflow becomes a possibility (line 4). On the other hand, 

the battery is charged only when energy in the supercapacitor 

exceeds peak requirements of the processors (lines 12-14). 

Algorithm 1 Energy Budgeting Heuristic 

Input: (i) harvested energy in charged capacitor, EC; (ii) battery energy 

storage level, LVB; (iii) energy budget to execute one core at critical 
frequency, Ecrt; (iv) energy budget to execute one core at maximum 

frequency, Emax; (v) number of cores in embedded processor, NUM_CORE 

Output: (i) assigned energy budget for next schedule window, Ewindow; (ii) 
decision to activate battery as power source, Bon; (iii) energy to be charged 

into battery during next window with constant current, Echrg 
 

1.  if EC < Ecrt then       LVC = 1 
2.  else if EC > Emax × NUM_CORE then       LVC = 3 

3.  else    LVC = 2  

4.  if LVB > LVC then 
5.        Bon = true  

6.        if LVB = 2 then       Ewindow = Ecrt × NUM_CORE 

7.        if LVB = 3 then       Ewindow = Emax × NUM_CORE 

8.  else  
9.        Bon = false      

10.      if LVC = 1 then       Ewindow = 0 
11.      if LVC = 2 then       Ewindow = EC 

12.      if LVC = 3 then  

13.             Ewindow = Emax × NUM_CORE 

  14.             Echrg = EC - Ewindow  

3.2.2 Active Core Count Selection 
The main reason for having an active core count selection heuristic 

is that running a processor below its critical frequency actually 

decreases energy efficiency, as can be seen in Table 1. This 

situation can occur when the energy budget is so low that only a 

small subset of tasks can be accepted, i.e., after evenly distributing 

these tasks to all cores, utilization on each core is smaller than 

maximum utilization supported by the critical frequency. With our 

active core count selection heuristic, we can shut down some cores 

at each reschedule point based on the estimated energy budget. The 

power dissipated by inactive cores is negligible and the remaining 

cores can then receive enough workload to run at critical frequency. 

Also the associated power state switching overhead is minimal as 

we only trigger core shutdown at reschedule points. Also our 

heuristic should compare resulting efficiencies before making 

shutdown decisions.  

The pseudo code of the active core count selection heuristic is 

given in Algorithm 2. Initially, the scheduler gets the energy 

budget for the upcoming schedule window from the hybrid energy 

storage system. Then, the core shutdown procedure is triggered 

when the energy budget is unable to support all active cores to 

execute at the critical frequency (line 2). Subsequently (lines 3-10) 

if one less active core results in a better efficiency, then the 

scheduler shuts down one core. If the energy budget for the current 

schedule window is extremely low, eventually all cores in the 

system will be shut down to save harvested energy for future 

execution. Recursively, these steps set the number of cores to keep 

Figure 4. Proposed hybrid energy storage module 
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active. Finally, the objective task-set utilization for penalty-aware 

task rejection is obtained by summing up supported utilization of 

each core (line 11). As a result of this selection, the number of 

cores activated is tightly related to the energy budget available. 

Algorithm 2 Active Core Count Selection Heuristic 

Input: (i) energy budget for coming schedule window, Ewindow; (ii) energy 
budget to execute one core at critical frequency, Ecrt; (iii) dual-speed 

method energy efficiency profile for task utilizations from 0 to 1, δ(U); 

(iv) number of cores in embedded processor, NUM_CORE  
Output: (i) number of cores to active in next schedule window, 

num_active_core; (ii) objective utilization for next window, Uobj 
 

1.  num_active_core ← NUM_CORE 

2.  while Eper_core < Ecrt and num_active_core > 0 do 

3.        Enum_core ← Ewindow / num_active_core 
4.        Enum_core-1 ← Ewindow / (num_active_core-1) 

5.        calculate fnum_ core-1 and fnum_ core, maximum frequencies supported by 

Enum_ core-1 and Enum_ core 
6.        based on Inequality (3), calculate Unum_ core-1 and Unum_ core, 

maximum utilization supported by fnum_ core-1 and fnum_ core 

7.        look up profile for δ (Unum _core) and δ (Unum _core-1)  
8.        if δ(Unum _core) < δ(Unum _core-1) then  

9.              num_active_core ← num_active_core – 1 

10.            update Eper_core , Uper_core  

11. Uobj ← Uper_core × num_active_core 

3.2.3 Penalty-Aware Task Rejection and Assignment 
To add task priority control in HY-SDA, we distinguish a task’s 

importance by assigning a miss penalty to each task [15]. In this 

step, our scheme rejects tasks with lower penalty density (see 

Section 2.1.2) first, rather than simply drop tasks with longer 

execution time to allocate the limited energy budget to more 

important tasks for miss penalty reduction. In particular, for the 

case when all tasks are assigned an identical miss penalty, this 

scheme reduces miss penalty equivalent to miss rate. We describe 

our task rejection heuristic below in Algorithm 3.  

Algorithm 3 Penalty Aware Task Rejection and Assignment Heuristic 

Input: objective utilization from algorithm 2, Uobj 

Output: optimal execution frequency for each core, fopt(core_id) 

 
  1. sort task set T in non-decreasing order of tasks’ penalty densities 

  2. Taccepted ← T 

  3. for n = 1:N do 
  4.       if Uaccepted > Uobj then 

  5.             reject nth task 

  6.       else  
  7.             done with task rejection, break 

  8. sort accepted task set Taccepted in non-increasing order of task utilization 

  9. for n = 1:Naccepted do 

10.       assign nth task to active core with the lowest utilization 

11. get assigned task utilization for each active core, U(core_id) 

12. based on Inequality (3), calculate fopt(core_id) 
13. execute assigned tasks on each core with dual-speed heuristic 

In lines 1-7, we sort all tasks in non-decreasing order of tasks’ 

penalty densities so that we can then reject tasks one by one until 

the remaining tasks’ total utilization is lower than objective 

utilization given by Algorithm 2. The remaining tasks form the 

accepted task set and are assigned to all active cores using a simple 

but effective heuristic in lines 8-10. This heuristic not only enables 

priority control among tasks, but also evenly distributes workload 

to each core for execution under a stable frequency for better 

efficiency. After all accepted tasks are assigned, we get actual 

utilization and optimal frequency for each core. A dual-speed 

heuristic is implemented to approximate each core’s designated 

optimal frequency by switching between two discrete frequency 

levels available in our XScale model [17]. 

4. EXPERIMENTAL STUDIES 
4.1 Experiment Setup 
We developed a simulator in C++ to evaluate the effectiveness of 

our proposed semi-dynamic energy and workload management 

algorithm with hybrid energy storage (HY-SDA). We use the 

approach given in Mirhoseini et al.’s work to model rate capacity 

effect of batteries [12]. We compared our scheme to the state of the 

art Utilization-Based Algorithm (UTB) [11], which we modeled in 

our environment. In addition, we implemented three variants of 

HY-SDA, namely (i) BA-SDA: SDA for battery-only system with 

doubled battery capacity; (ii) CA-SDA: SDA for supercapacitor-

only system with doubled supercapacitor capacity, and (iii) MISS-

SDA: a modified version of HY-SDA to focus on miss rate 

reduction. UTB, BA-SDA and CA-SDA rely on moving average 

algorithm for energy harvesting prediction [10] as they do not have 

a supercapacitor to buffer harvested energy in each schedule 

window. The processor power model is shown in Table 1. The 

energy harvesting profile is obtained from historical weather data 

from Golden, Colorado, USA, provided by the Measurement and 

Instrumentation Data Center (MIDC) of National Renewable 

Energy Laboratory (NREL) [16]. Our system only executes during 

daytime over a span of 750 minutes, from 6:00 AM to 6:30 PM, 

when solar energy is available. We randomly generate 50 task sets 

with full utilization. In each task set, tasks are assigned with miss 

penalty ranging from 1 to 100 with uniform distribution. Finally, 

we set schedule window size (for all SDA based algorithms) to be 

five minutes compared to the average task execution time of a few 

hundred milliseconds – not too short to cause frequent changes in 

the execution policy and not too long to lead to high capacity 

requirements from the supercapacitors in the system. 

4.2 Experiment Results 

 
We first compared average overall miss penalty for the various 

techniques, with increasing multi-core platform complexity (1 to 

16 cores). Capacities of batteries and supercapacitors, and nominal 

harvested energy scale linearly with number of cores in the 

processors. The results for this experiment are shown in Figure 5. 

UTB, BA-SDA and CA-SDA can be seen to have a much higher 

miss penalty. Respectively, the performances of these techniques 

mainly suffer from unstable execution frequencies, lower charging/ 

discharging efficiency of the battery, and limited capacity of the 

supercapacitor. Moreover, UTB has much higher variation in 

results, due to the limitation that its run-time task dropping scheme 

does not take task miss penalty into consideration. Also note that 

CA-SDA has an advantage over BA-SDA with increasing number 

of cores in system. This is due to the rate capacity effect of the 

battery and the fact that more cores means higher current demand. 

On the other hand, our HY-SDA scheme leads to the lowest task 

miss penalty, while MISS-SDA results in slightly higher miss 

penalty than HY-SDA because it instead focuses on miss rate 

Figure 5. Overall miss penalty comparison 
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reduction. Figure 6 shows a comparison of the miss rate for the 

various techniques. The miss rate of MISS-SDA is lower and has 

less variation compared to that of HY-SDA, which is to be 

expected as MISS-SDA aims to reduce miss rate. Note that 

although HY-SDA is aimed at miss penalty reduction, it still 

achieves much lower miss rate than UTB, BA-SDA and CA-SDA. 

 
We also compared HY-SDA with UTB for a scenario where 

harvested power fluctuates over time. The result of this experiment 

on a 16 core system is shown in Figure 7. First of all, we can see 

that the HY-SDA actually results in a higher miss rate than UTB at 

the beginning, because it waits until the supercapacitor is charged 

to the critical level. Subsequently, higher miss rate reduction for 

HY-SDA is achieved when harvesting power is low or changes 

dramatically, reflecting the advantage that HY-SDA has over UTB 

to cope with stringent energy budgets and filter out solar harvesting 

variations. Moreover, HY-SDA results in a more significant miss 

rate reduction after 12 PM. The reason for this is that HY-SDA’s 

high energy efficiency leads to more energy savings in the battery, 

which enables more tasks to be executed and meet their deadlines. 

 
To highlight the advantage of the dual-supercapacitor design in our 

proposed hybrid energy storage system, we define a new metric, 

budget violation rate, which is the percentage of unfinished jobs 

for the accepted tasks. Results for a 16-core configuration are 

shown in Figure 8. HY-SDA and MISS-SDA, which make use of 

the hybrid energy storage system, have much lower budget 

violation rates, because for most of the time their energy budgeting 

is based on the known amount of energy buffered in supercapacitor. 

In contrast, other schemes’ energy budgeting can be misled by 

inaccuracy in their solar energy harvesting prediction, which 

explains their higher energy budget violation rates.  

 

5. CONCLUSION 
In this paper, we proposed a new framework for energy and 

workload management (HY-SDA) based on a semi-dynamic 

algorithm, for real-time multiprocessor embedded systems with 

solar energy harvesting and a hybrid battery-supercapacitor energy 

storage system. Compared to the best known previous work, our 

approach is very promising, reducing miss rate by up to 61 % and 

miss penalty by up to 65% for high intensity workloads.  
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Figure 7. Miss rate reduction of HY-SDA compared to UTB 
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