
Harvesting-Aware Energy Management for Multicore
Platforms with Hybrid Energy Storage

Yi Xiang and Sudeep Pasricha
Department of Electrical and Computer Engineering,

Colorado State University, Fort Collins, CO, USA

E-mail: {yix, sudeep}@colostate.edu

ABSTRACT
In this paper, we propose a novel framework for energy and

workload management in multi-core embedded systems with solar

energy harvesting and a periodic hard real-time task set as the

workload. Compared to prior work, our energy management

framework possesses several advantages, including (i) a battery-

supercapacitor hybrid energy storage module for more efficient

system energy management, (ii) a semi-dynamic scheduling

heuristic that continuously adapts to run-time harvested power

variations without losing the consistency of the periodic task set,

and (iii) a coarse-grained core shutdown heuristic for additional

energy savings. Experimental studies show that our framework

results in a reduction in task miss rate by up to 61% and task miss

penalty by up to 65% compared to the best known prior work.

Categories and Subject Descriptors

C.3 [Computer Systems Organization]: Special-Purpose and

Application-Based Systems -- Real-time and embedded systems.

B.8.2 [Performance and Reliability]: Performance Analysis and

Design Aids

General Terms

Algorithms, Design, Performance

Keywords

Energy Harvesting, Supercapacitor, Dynamic Power Management,

Dynamic Voltage and Frequency Scaling, Task Scheduling

1. INTRODUCTION
Power and energy constraints have led to significant changes in the

design of contemporary computing systems. In the last decade, the

concept of thread-level parallelism (TLP) to improve performance

within a power budget has seen widespread adoption across

various computing platforms, ranging from high-end servers to

desktops, as well as embedded devices. Recent years have also

witnessed a significant increase in the use of multi-core processors

in low-power embedded devices [1]. With advances in parallel

programming and power management techniques, embedded

devices with multi-core processors and TLP support are

outperforming single-core platforms in terms of both performance

and energy efficiency [2]. But as core counts rise to cope with

increasing application complexity, techniques for workload

distribution and energy management are the key to achieving

energy savings in emerging multi-core embedded systems.

For some applications, we need energy autonomous devices that

utilize ambient energy to perform computations without relying

entirely on an external power supply or frequent battery charges.

As the most widely available energy source, solar energy

harvesting has attracted a lot of attention and is rapidly gaining

momentum. [3][4] To fully exploit the capability of energy

harvesting systems, a considerable amount of work has explored

task scheduling, primarily for embedded systems with real-time

task sets. An early work [8] proposed the lazy scheduling

algorithm (LSA) that executed tasks as late as possible, reducing

deadline miss rates when compared to the EDF algorithm.

However, the approach in [8] does not consider DVFS and always

executes tasks at full speed. Because a processor’s dynamic power

is generally a convex function of frequency, operating the

processor at a lower frequency often results in higher energy

efficiency. Liu et al. [9] proposed the EA-DVFS technique that

takes processor DVFS into consideration. EA-DVFS utilized task

slack to slow down execution speed, thus achieving more energy

savings than LSA especially when total task utilization is low.

Later the same authors proposed a more intelligent technique

called HA-DVFS [10], which improved energy efficiency mainly

by distributing multiple arriving tasks as evenly as possible over

time and executing them with more uniform frequency. However,

these works focus on uni-processor systems and have not

considered execution on multi-core platforms. Recently, a

utilization-based technique (UTB) was proposed in [11] to better

address periodic task scheduling in energy-harvesting system. UTB

takes advantage of predictability provided by periodic task

information for better task distribution. Moreover, UTB proposed a

simple extension to support multi-core platforms by allocating a

subset of tasks to each core and executing the single-core UTB

algorithm separately on each core.

All of these prior efforts on harvesting aware task scheduling

assume an ideal battery as the energy storage medium limited

merely by it capacity, ignoring other factors such as rate capacity,

recovery effect, and lifetime in terms of recharge cycles [6]. When

applied to real-world platforms, overlooking these factors can

result in suboptimal or even false scheduling that diminishes

system efficiency, stability and lifespan. For example, rate capacity

effect leads to decreasing battery capacity when discharging

current increases [12]. Supercapacitors present an interesting

alternative to batteries for energy storage. A substantial amount of

research on supercapacitors has demonstrated their benefits over

electrochemical batteries, including orders of magnitude higher

recharge cycles, much less charge overhead, and significantly

higher efficiency with high current discharge. However, high

capacity supercapacitors are not practical for small-package low-

power embedded systems due to their significantly lower energy

density and higher leakage overhead than an electrochemical

battery, even with the state-of-art supercapacitor technology [14].

Recent work by Ongaro et al. [5] and Mirhoseini et al. [12] has

shown that a battery-supercapacitor hybrid system can overcome

the limitations of both types of energy storage mediums.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

GLSVLSI’13, May 2–3, 2013, Paris, France.

Copyright © 2013 ACM 978-1-4503-1902-7/13/05...$15.00.

25

In this paper, we propose a novel framework based on a semi-

dynamic algorithm (HY-SDA) for energy and workload

management in multi-core embedded systems with solar energy

harvesting and a hybrid battery-supercapacitor energy storage

system. HY-SDA aims to minimize deadline miss rate or penalty of

periodic tasks in the presence of variant and insufficient energy

harvesting. Compared to prior work, HY-SDA reacts to run-time

energy shortages and fluctuations proactively to find significantly

greater scope for energy savings, especially in multi-core platforms.

At the system level, HY-SDA is triggered at specified time epochs

to adjust inter-core task allocation and set a per-core execution

strategy based on the energy budget provided by the hybrid energy

storage system. Our experimental studies show that HY-SDA

outperforms the best known prior work (UTB [11]), achieving

superior task drop rate reduction and energy efficiency.

2. PROBLEM FORMULATION

2.1 System Model
Our focus is on the problem of effective workload and energy

management of real-time multi-core embedded systems with

periodic tasks, powered by solar energy, as shown in Figure 1.

2.1.1 Energy Harvesting and Energy Storage Module
A photovoltaic (PV) array is used as a power source for our

embedded system, converting ambient solar energy into electric

power. Naturally, the amount of harvested power varies over time

due to changing environmental conditions, like angle of sunlight

incidence, cloud density, temperature, humidity, etc. To cope with

the unstable nature of the solar energy source, rechargeable

batteries and/or supercapacitors can be used to buffer solar energy

collected by photovoltaic cells. In our study, the converted solar

power at time t is denoted as PH(t). The energy EH charged into

energy storage system between time instances t1 and t2 is given by

 𝐸𝐻(𝑡1 ~ 𝑡2) = ηharv ∫ 𝑃𝐻(𝑡)
𝑡2

𝑡1
𝑑𝑡 (1)

where ηharv is a coefficient between 0 and 1 to represent charging

efficiency of the energy storage system. The capacity of the energy

storage device is limited. Clearly harvested energy will be wasted

if the energy storage device is already fully charged. We assume

that task execution must be halted when the remaining energy in

the system is less than 10 percent, thus reserving enough storage to

maintain system status and ensure graceful shutdown. In this paper,

we focus on the scenario where nominal power of the PV array

exceeds peak power consumption of the embedded processors.

Thus it is necessary to have a storage system that can preserve a

considerable amount of energy for later system execution when

solar energy is insufficient. A hybrid battery-supercapacitor storage

system meets these goals, and is described in Section 3.2.1.

2.1.2 Periodic Real-Time Task Model
We assume a task set of N independent periodic real-time tasks ψ:

{τ1, … , τN}, in which each periodic task τi has a characteristic

triplet (Ci, Di, Ti), i {1, …, N}. Ci is the maximum number of CPU

clock cycles needed to finish a job instance of task τi, referred to as

worst-case execution cycles (WCEC). The relative deadline of the

task, Di, is the time interval between a job’s arrival time and its

deadline. A job instance is missed if it is not finished before its

deadline. Ti is the period of the task. At the beginning of each

period, a new job instance of that task will be dispatched to the

system. Like most recent works on periodic task scheduling (e.g.,

[11]) we assume that Di equals Ti, with all jobs finishing before the

arrival of the next job instance of the same task. In addition, we

define an attribute Xi, which is the miss penalty associated with

each task. Each time that a task’s job misses the deadline, the job

will be aborted and the penalty applied to the system. Thus, we can

refine the triplet for task τi as (Ci, Ti, Xi). The relative importance of

a task can be characterized by a penalty density, defined as the

ratio of the task miss penalty and WCEC (⁄) [15].

2.1.3 DVFS-Enabled Processor Model
We consider an embedded system with homogeneous multi-core

processors. The processors possess DVFS capability at the core

level and have support for task preemption. Each core has M

discrete voltage and frequency levels: φ: {L0, ... , LM}. Each level is

characterized by Lj: (vj, pj, fj), j {1, …, M}, which represents

voltage, average power, and frequency respectively. We consider

power-frequency levels of the Xscale processor as shown in Table

1. Here level 0 represents the idle power of the processor when no

task is executed while the system stays in active state. Typically,

the dynamic power-frequency function is convex. Thus, a

processor running at lower frequency can execute the same number

of cycles with lower energy consumption. However, this is not

always the case when static power is considered. To find an energy

optimal frequency, we represent energy efficiency of a v-f level Li

by i = cycles executed/energy consumed = fi/pi. From Table 1 we

can conclude that level 2 is the most energy efficient because

executing at this level consumes the least energy for a given

number of cycles. We call the most energy efficient level as the

critical level and thus fcrt = f2,. Although it is desirable to execute

tasks at this critical frequency level, due to unique task timing

constraints executing tasks at the critical level may end up being

insufficient to finish all task instances by their deadlines.

We also define utilization of a periodic task (U) with respect to the

full speed provided by the processor; i.e., a task’s utilization is its

execution time under highest frequency divided by its period,

 =
 ⁄

 (2)

The utilization for an entire task set is simply the accumulation of

all tasks’ utilization. In preemptive real-time system, a task set is

schedulable by the EDF algorithm under a frequency level j if it
meets the following condition:

 𝑡 𝑡

 (3)

When total utilization is known, the most energy efficient

frequency can be deduced from the equation, assuming 𝑡.

In this paper, we focus on a fully subscribed system with Utotal =

100% to maximally utilize the available system resources. Our

proposed framework aims to finish as many tasks as possible in

such a system under any given energy harvesting profile.

Table 1. XScale Processor [13] Power and Frequency Levels

Level 0 1 2 3 4 5

Voltage(V) - 0.75 1.0 1.3 1.6 1.8

Power(mW) 40 80 170 400 900 1600

Frequency(MHz) idle 150 400 600 800 1000

Energy Efficiency 0 1.875 2.353 1.5 0.889 0.625

Figure 1. Real-time embedded processing with energy harvesting

.

26

2.1.4 Energy Manager Module

A scheduler module is an important component of the system for

information gathering and execution control. The scheduler gathers

information by monitoring the energy storage medium and multi-

core processor state (Figure 1). The gathered data, together with

profiled periodic task set information, informs a management

algorithm in our scheduler that coordinates operation of the multi-

core platform. Each core is eventually assigned a strategy by the

scheduler to guide intra-core task execution.

2.2 Scheduling Objective
Our primary objective is to reduce total task miss rate or penalty

under variant harvested energy conditions at run-time. Our

technique should react to changing harvested energy dynamics to

complete as much (critical) work as possible, thus maximizing

overall system utility and cost effectiveness.

3. PROPOSED FRAMEWORK

3.1 Motivation
Most prior work deals with dynamic solar energy variation by

halting, dropping, or speeding up execution of a current task,

changing instantly from an initial schedule deduced offline. For

energy harvesting aware periodic task set scheduling, the most

recent work, UTB [11], also follows this route. Although UTB

deduces an optimal initial schedule offline assuming sufficient

energy, it does not cope well with run-time energy variations, and

there is scope for significant improvement as discussed below:

1) The task drop mechanism in UTB reacts to run-time energy

shortages passively, only when the current task lacks sufficient

energy to finish in time. In the motivational example shown in

Figure 2, we assume a task set with four periodic tasks (τ1 ~ τ4),

where each task has WCEC of 2.4 million CPU cycles and task

period of 12ms. According to Table 1, Eq. (2) and Ineq. (3), UTB

initially sets execution frequency to 800MHz so that all tasks can

finish with the best efficiency if energy is sufficient, as shown in

Figure 2(a). However, the real issue lies in the run-time energy

management with an insufficient energy budget. Let us assume

remaining energy in the energy storage is 7200μJ and harvested

power in the next 36ms (3 periods) is 200mW, i.e., 200μJ of

incoming energy per microsecond. After finishing three jobs, the

energy storage is depleted, and UTB has to drop jobs due to

insufficient energy, as shown in Figure 2(b). Only 6 out of 12 job

instances are finished with UTB, resulting in a 50% miss rate. With

the same energy budget, our proposed semi-dynamic algorithm

(SDA) copes with energy shortage by proactively dropping tasks.

It drops one task, τ4, based on the energy budget which helps to

execute the remaining tasks steadily at a lower frequency of 600

MHz. According to Table 1, executing at 600MHz has power

consumption of 400mW, which is dramatically lower than 900mW

at 800MHz due to the nonlinear relation between frequency and

power consumption. As can be seen in Figure 2(c), all accepted job

instances for τ1 ~ τ3 are finished and the overall miss rate is 25%,

which is significantly lower than 50% achieved by UTB.

2) UTB encourages dropping tasks with longer execution time,

because finishing them requires more energy than others. This

biased dropping may be undesirable for real-world applications, as

tasks with longer execution time may represent complex

applications of high importance. Furthermore, the fundamental

problem is the absence of flexibility in UTB to schedule tasks with

controlled priority. In spite of the fact that SDA drops all job

instances of τ4 in Figure 2(c), its semi-dynamic framework provide

flexibility to deal with this issue; e.g., by dynamically increasing

miss penalty of τ4 later to give it more priority in the next time

epoch when rescheduling becomes possible again.

3) On multi-core platforms, UTB partitions tasks into separate sets

and then executes each set on a core using a single-core scheduling

algorithm. However, as all cores are dependent on the same energy

source, such isolated run-time adjustment is not amenable to

learning upcoming energy requirements of other cores, leading to

suboptimal or even faulty schedules. In addition, static task

partitioning in UTB wastes the flexibility provided by a multi-core

platform. In contrast, SDA triggers task rescheduling to exploit

multi-core flexibility.

In summary, there are many limitations with the best known prior

work on harvesting-aware task scheduling. Our HY-SDA approach

(described in the next section) addresses these limitations.

3.2 Semi-Dynamic Algorithm
In this section, we describe our novel energy and workload

management framework (HY-SDA) based on a semi-dynamic

algorithm, for systems with hybrid battery-supercapacitor energy

storage, solar energy harvesting, and periodic task sets.

One of the underlying ideas behind HY-SDA is to exploit time-

segmentation during energy management, as illustrated in Figure 3.

At each specified time interval (epoch), there is a reschedule point,

where the execution strategy can be adjusted based on the energy

budget available in the hybrid energy storage system. A time frame

between two reschedule points is called a schedule window, within

which a strategy specified at the beginning is in effect until the

next reschedule point. Thus reschedule points provide dynamic

adaptivity needed by the energy harvesting aware system to adjust

the task execution strategy, while the schedule window enables

stable execution so that periodic task information can be utilized

for better energy savings, as in Figure 2(c). From schedule window

1 to 4 in Figure 3, it can be seen that under low energy conditions,

HY-SDA maintains execution at optimal low (critical) frequency

and increases the number of active cores to finish more tasks as

Figure 2. Motivation for proposed semi-dynamic approach

.

Figure 3. Illustration of semi-dynamic framework

.

27

harvested energy increases. Cores only execute at higher frequency

when the energy harvested is abundant. Thus HY-SDA has better

energy efficiency as execution frequency within a schedule

window remains stable.

At each reschedule point, our technique is composed of three

stages: (i) energy budgeting, to take advantage of our proposed

hybrid storage system, (ii) active core count selection, which

selects the number of processing cores to activate, and (iii) penalty-

aware task rejection, to filter out subset of tasks that are less

important and cannot be supported by the energy budget. These

three stages are organized in an order that successor stages make

use of efforts made by previous stages, rather than diminishing

them, and are described in the following sections (3.2.1-3.2.3).

3.2.1 Hybrid Storage System and Energy Budgeting
In this section, we introduce our hybrid energy storage system and

an energy budgeting heuristic to make use of its properties.

Battery-Supercapacitor Hybrid Energy Storage: Inspired by

Ongaro et al.’s work [5], we propose a hybrid energy storage

system with one Li-Ion battery and two separate supercapacitors

connected by a dc bus, as shown in Figure 4. During each

schedule window, one capacitor is used to collect energy extracted

from the PV array, while the other one is used as a power source

for system operation or battery charging. At each reschedule point,

the two supercapacitors switch their roles. Supercapacitors charge

the battery only when their saved energy exceeds peak

requirements of processors running at full speed. The PV array,

battery and supercapacitors are coupled with bidirectional dc-dc

converters to serve the purpose of voltage conversions between

components with maximum power point tracking (MPPT) [7] and

voltage level compatibility. This hybrid battery and dual-

supercapacitor design has many advantages:

 It requires small capacity for the two supercapacitors, as each of

them is only used to keep energy harvested during one single

schedule window and is discharged in the next schedule window;

 The supercapacitor with energy buffered during the last schedule

window acts as a known stable energy source for the system,

which filters out short term solar energy variation. Thus, no

energy prediction scheme is needed in our design, avoiding

complexity and inaccuracy introduced by non-ideal prediction

mechanisms. Moreover, the stable energy source makes it

possible to charge the battery with a steady constant current for

more effective charging [6];

 The supercapacitors can support embedded processors directly,

taking advantage of a much lower charging/discharging

overhead compared to an electrochemical battery;

 The battery offers high capacity to preserve energy especially in

scenarios with excessive harvested energy.

Energy Budgeting: Our energy budgeting heuristic selects

among energy sources (supercapacitors and battery), sets the

amount of energy to charge the battery for (Echrg), and, assigns

energy budget for system execution in the upcoming schedule

window (Ewindow), as shown in Algorithm 1. The heuristic is based

on storage levels of the battery (LVB) and supercapacitor (LVC).

We assume that LVB is provided directly by the energy storage,

while the storage level of the supercapacitor can be classified into

three levels of LVC, (lines 1-3). As we want to avoid battery

charging/discharging overhead, there are only 2 scenarios where

the battery is selected as a power source: one is when energy

harvested in the supercapacitor is below a critical level (LVC = 1);

the other is when battery storage level is high (LVB = 3) such that

battery overflow becomes a possibility (line 4). On the other hand,

the battery is charged only when energy in the supercapacitor

exceeds peak requirements of the processors (lines 12-14).

Algorithm 1 Energy Budgeting Heuristic

Input: (i) harvested energy in charged capacitor, EC; (ii) battery energy

storage level, LVB; (iii) energy budget to execute one core at critical
frequency, Ecrt; (iv) energy budget to execute one core at maximum

frequency, Emax; (v) number of cores in embedded processor, NUM_CORE

Output: (i) assigned energy budget for next schedule window, Ewindow; (ii)
decision to activate battery as power source, Bon; (iii) energy to be charged

into battery during next window with constant current, Echrg

1. if EC < Ecrt then LVC = 1
2. else if EC > Emax × NUM_CORE then LVC = 3

3. else LVC = 2

4. if LVB > LVC then
5. Bon = true

6. if LVB = 2 then Ewindow = Ecrt × NUM_CORE

7. if LVB = 3 then Ewindow = Emax × NUM_CORE

8. else
9. Bon = false

10. if LVC = 1 then Ewindow = 0
11. if LVC = 2 then Ewindow = EC

12. if LVC = 3 then

13. Ewindow = Emax × NUM_CORE

 14. Echrg = EC - Ewindow

3.2.2 Active Core Count Selection
The main reason for having an active core count selection heuristic

is that running a processor below its critical frequency actually

decreases energy efficiency, as can be seen in Table 1. This

situation can occur when the energy budget is so low that only a

small subset of tasks can be accepted, i.e., after evenly distributing

these tasks to all cores, utilization on each core is smaller than

maximum utilization supported by the critical frequency. With our

active core count selection heuristic, we can shut down some cores

at each reschedule point based on the estimated energy budget. The

power dissipated by inactive cores is negligible and the remaining

cores can then receive enough workload to run at critical frequency.

Also the associated power state switching overhead is minimal as

we only trigger core shutdown at reschedule points. Also our

heuristic should compare resulting efficiencies before making

shutdown decisions.

The pseudo code of the active core count selection heuristic is

given in Algorithm 2. Initially, the scheduler gets the energy

budget for the upcoming schedule window from the hybrid energy

storage system. Then, the core shutdown procedure is triggered

when the energy budget is unable to support all active cores to

execute at the critical frequency (line 2). Subsequently (lines 3-10)

if one less active core results in a better efficiency, then the

scheduler shuts down one core. If the energy budget for the current

schedule window is extremely low, eventually all cores in the

system will be shut down to save harvested energy for future

execution. Recursively, these steps set the number of cores to keep

Figure 4. Proposed hybrid energy storage module

.

28

active. Finally, the objective task-set utilization for penalty-aware

task rejection is obtained by summing up supported utilization of

each core (line 11). As a result of this selection, the number of

cores activated is tightly related to the energy budget available.

Algorithm 2 Active Core Count Selection Heuristic

Input: (i) energy budget for coming schedule window, Ewindow; (ii) energy
budget to execute one core at critical frequency, Ecrt; (iii) dual-speed

method energy efficiency profile for task utilizations from 0 to 1, δ(U);

(iv) number of cores in embedded processor, NUM_CORE
Output: (i) number of cores to active in next schedule window,

num_active_core; (ii) objective utilization for next window, Uobj

1. num_active_core ← NUM_CORE

2. while Eper_core < Ecrt and num_active_core > 0 do

3. Enum_core ← Ewindow / num_active_core
4. Enum_core-1 ← Ewindow / (num_active_core-1)

5. calculate fnum_ core-1 and fnum_ core, maximum frequencies supported by

Enum_ core-1 and Enum_ core
6. based on Inequality (3), calculate Unum_ core-1 and Unum_ core,

maximum utilization supported by fnum_ core-1 and fnum_ core

7. look up profile for δ (Unum _core) and δ (Unum _core-1)
8. if δ(Unum _core) < δ(Unum _core-1) then

9. num_active_core ← num_active_core – 1

10. update Eper_core , Uper_core

11. Uobj ← Uper_core × num_active_core

3.2.3 Penalty-Aware Task Rejection and Assignment
To add task priority control in HY-SDA, we distinguish a task’s

importance by assigning a miss penalty to each task [15]. In this

step, our scheme rejects tasks with lower penalty density (see

Section 2.1.2) first, rather than simply drop tasks with longer

execution time to allocate the limited energy budget to more

important tasks for miss penalty reduction. In particular, for the

case when all tasks are assigned an identical miss penalty, this

scheme reduces miss penalty equivalent to miss rate. We describe

our task rejection heuristic below in Algorithm 3.

Algorithm 3 Penalty Aware Task Rejection and Assignment Heuristic

Input: objective utilization from algorithm 2, Uobj

Output: optimal execution frequency for each core, fopt(core_id)

 1. sort task set T in non-decreasing order of tasks’ penalty densities

 2. Taccepted ← T

 3. for n = 1:N do
 4. if Uaccepted > Uobj then

 5. reject nth task

 6. else
 7. done with task rejection, break

 8. sort accepted task set Taccepted in non-increasing order of task utilization

 9. for n = 1:Naccepted do

10. assign nth task to active core with the lowest utilization

11. get assigned task utilization for each active core, U(core_id)

12. based on Inequality (3), calculate fopt(core_id)
13. execute assigned tasks on each core with dual-speed heuristic

In lines 1-7, we sort all tasks in non-decreasing order of tasks’

penalty densities so that we can then reject tasks one by one until

the remaining tasks’ total utilization is lower than objective

utilization given by Algorithm 2. The remaining tasks form the

accepted task set and are assigned to all active cores using a simple

but effective heuristic in lines 8-10. This heuristic not only enables

priority control among tasks, but also evenly distributes workload

to each core for execution under a stable frequency for better

efficiency. After all accepted tasks are assigned, we get actual

utilization and optimal frequency for each core. A dual-speed

heuristic is implemented to approximate each core’s designated

optimal frequency by switching between two discrete frequency

levels available in our XScale model [17].

4. EXPERIMENTAL STUDIES
4.1 Experiment Setup
We developed a simulator in C++ to evaluate the effectiveness of

our proposed semi-dynamic energy and workload management

algorithm with hybrid energy storage (HY-SDA). We use the

approach given in Mirhoseini et al.’s work to model rate capacity

effect of batteries [12]. We compared our scheme to the state of the

art Utilization-Based Algorithm (UTB) [11], which we modeled in

our environment. In addition, we implemented three variants of

HY-SDA, namely (i) BA-SDA: SDA for battery-only system with

doubled battery capacity; (ii) CA-SDA: SDA for supercapacitor-

only system with doubled supercapacitor capacity, and (iii) MISS-

SDA: a modified version of HY-SDA to focus on miss rate

reduction. UTB, BA-SDA and CA-SDA rely on moving average

algorithm for energy harvesting prediction [10] as they do not have

a supercapacitor to buffer harvested energy in each schedule

window. The processor power model is shown in Table 1. The

energy harvesting profile is obtained from historical weather data

from Golden, Colorado, USA, provided by the Measurement and

Instrumentation Data Center (MIDC) of National Renewable

Energy Laboratory (NREL) [16]. Our system only executes during

daytime over a span of 750 minutes, from 6:00 AM to 6:30 PM,

when solar energy is available. We randomly generate 50 task sets

with full utilization. In each task set, tasks are assigned with miss

penalty ranging from 1 to 100 with uniform distribution. Finally,

we set schedule window size (for all SDA based algorithms) to be

five minutes compared to the average task execution time of a few

hundred milliseconds – not too short to cause frequent changes in

the execution policy and not too long to lead to high capacity

requirements from the supercapacitors in the system.

4.2 Experiment Results

We first compared average overall miss penalty for the various

techniques, with increasing multi-core platform complexity (1 to

16 cores). Capacities of batteries and supercapacitors, and nominal

harvested energy scale linearly with number of cores in the

processors. The results for this experiment are shown in Figure 5.

UTB, BA-SDA and CA-SDA can be seen to have a much higher

miss penalty. Respectively, the performances of these techniques

mainly suffer from unstable execution frequencies, lower charging/

discharging efficiency of the battery, and limited capacity of the

supercapacitor. Moreover, UTB has much higher variation in

results, due to the limitation that its run-time task dropping scheme

does not take task miss penalty into consideration. Also note that

CA-SDA has an advantage over BA-SDA with increasing number

of cores in system. This is due to the rate capacity effect of the

battery and the fact that more cores means higher current demand.

On the other hand, our HY-SDA scheme leads to the lowest task

miss penalty, while MISS-SDA results in slightly higher miss

penalty than HY-SDA because it instead focuses on miss rate

Figure 5. Overall miss penalty comparison

.

29

reduction. Figure 6 shows a comparison of the miss rate for the

various techniques. The miss rate of MISS-SDA is lower and has

less variation compared to that of HY-SDA, which is to be

expected as MISS-SDA aims to reduce miss rate. Note that

although HY-SDA is aimed at miss penalty reduction, it still

achieves much lower miss rate than UTB, BA-SDA and CA-SDA.

We also compared HY-SDA with UTB for a scenario where

harvested power fluctuates over time. The result of this experiment

on a 16 core system is shown in Figure 7. First of all, we can see

that the HY-SDA actually results in a higher miss rate than UTB at

the beginning, because it waits until the supercapacitor is charged

to the critical level. Subsequently, higher miss rate reduction for

HY-SDA is achieved when harvesting power is low or changes

dramatically, reflecting the advantage that HY-SDA has over UTB

to cope with stringent energy budgets and filter out solar harvesting

variations. Moreover, HY-SDA results in a more significant miss

rate reduction after 12 PM. The reason for this is that HY-SDA’s

high energy efficiency leads to more energy savings in the battery,

which enables more tasks to be executed and meet their deadlines.

To highlight the advantage of the dual-supercapacitor design in our

proposed hybrid energy storage system, we define a new metric,

budget violation rate, which is the percentage of unfinished jobs

for the accepted tasks. Results for a 16-core configuration are

shown in Figure 8. HY-SDA and MISS-SDA, which make use of

the hybrid energy storage system, have much lower budget

violation rates, because for most of the time their energy budgeting

is based on the known amount of energy buffered in supercapacitor.

In contrast, other schemes’ energy budgeting can be misled by

inaccuracy in their solar energy harvesting prediction, which

explains their higher energy budget violation rates.

5. CONCLUSION
In this paper, we proposed a new framework for energy and

workload management (HY-SDA) based on a semi-dynamic

algorithm, for real-time multiprocessor embedded systems with

solar energy harvesting and a hybrid battery-supercapacitor energy

storage system. Compared to the best known previous work, our

approach is very promising, reducing miss rate by up to 61 % and

miss penalty by up to 65% for high intensity workloads.

ACKNOWLEDGEMENTS
This research is sponsored in part by grants from NSF (CCF-

1252500) and SRC.

REFERENCES
[1] Nvdia Tegra 3 processor, http://www.nvidia.com/object/tegra-3-

processor.html.

[2] The benefits of multiple CPU cores in mobile devices,

http://www.nvidia.com/content/PDF/tegra_white_papers/Benefits-
of-Multi-core-CPUs-in-Mobile-Devices_Ver1.2.pdf.

[3] V. Raghunathan et al., “Design considerations for solar energy

harvesting wireless embedded systems,” in IPSN, 2005, pp. 457-462.
[4] X. Jiang, J. Polastre, and D. Culler, “Perpetual environmentally

powered sensor networks,” IPSN, 2005, pp. 463-468.

[5] F. Ongaro, S. Saggini, and P. Mattavelli, “Li-Ion battery-
supercapacitor hybrid storage system for a Long Lifetime,

Photovoltaic-Based Wireless Sensor Network,” IEEE Trans. Power

Electron., vol. 27, issue 9, pp. 3944-3952, Sept. 2012.
[6] B. Carter, J. Matsumoto, A. Prater, and D. Smith, “Lithium ion

battery performance and charge control,” in IECEC, 1996, vol. 1, pp.

363-368.
[7] N. Femia et al., “Distributed maximum power point tracking of

photovoltaic arrays: novel approach and system analysis,” IEEE

Trans. Indust. Electron., vol. 55, no. 7, pp. 2610-2621, Jul. 2008.
[8] C. Moser, D. Brunelli, L. Thiele, and L. Benini, “Lazy scheduling

for energy-harvesting sensor nodes,” in DIPES, 2006, pp. 125-134.

[9] S. Liu, Q. Qiu, and Q. Wu, “Energy aware dynamic voltage and
frequency selection for real-time systems with energy harvesting,” in

DATE, 2008, pp. 236-241.
[10] S. Liu, J. Lu, Q. Wu, and Q. Qiu, “Harvesting-aware power

management for real-time systems with renewable energy,” IEEE

Trans. VLSI Syst., vol. 20, no. 8, pp. 1473-1486, Aug. 2012.

[11] J. Lu, Q. Qiu, “Scheduling and mapping of periodic tasks on multi-

core embedded systems with energy harvesting,” in IGCC, 2011.

[12] A. Mirhoseini, F. Koushanfar, “HypoEnergy: hybrid supercapacitor-
battery power-supply optimization for energy efficiency,” DATE ‘11.

[13] Intel XScale,

http://download.intel.com/design/intelxscale/27347302.pdf
[14] Z. Xu et al., “Electrochemical supercapacitor electrodes from

Sponge-like graphene nanoarchitectures with ultrahigh power

density”, J. Phys. Chem. Lett., pp. 2928-2933, Oct, 2012 (3).
[15] J. Chen, T. Kuo, C. Yang, and K. King, “Energy-efficient real-time

task scheduling with task rejection”, in DATE, 2007, pp. 1-6.

[16] NREL Measurement and Instrumentation Data Center (MIDC),
http://www.nrel.gov/midc/.

[17] D. Rajan, R. Zuck, and, C. Poellabauer, “Workload-aware dual-

speed dynamic voltage scaling”, in RTSCA, 2006, pp. 251-256

Figure 6. Overall miss rate comparison

.

Figure 7. Miss rate reduction of HY-SDA compared to UTB

.

Figure 8. Budget violation rate comparison

.

30

http://www.nvidia.com/object/tegra-3-processor.html
http://www.nvidia.com/object/tegra-3-processor.html
http://www.nvidia.com/content/PDF/tegra_white_papers/Benefits-of-Multi-core-CPUs-in-Mobile-Devices_Ver1.2.pdf
http://www.nvidia.com/content/PDF/tegra_white_papers/Benefits-of-Multi-core-CPUs-in-Mobile-Devices_Ver1.2.pdf
http://download.intel.com/design/intelxscale/27347302.pdf
http://www.nrel.gov/midc/

