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Abstract

Many optimization problems can be phrased in terms of constraint satisfaction. In particular MAX-2-
SAT and MAX-2-CSP are known to generalize many hard combinatorial problems on graphs. Algorithms
solving the problem exactly have been designed but the running time is improved over trivial brute-force
solutions only for very sparse instances. Despite many efforts, the only known algorithm [28] solving
MAX-2-CSP over n variables in less than O*(2") steps uses exponential space.

Several authors have designed algorithms with running time O*(2"¥(9) where f : RT — (0,1) is
a slowly growing function and d is the average variable degree of the input formula. The current best
known algorithm for MAX-2-CSP [25] runs in time O* (2”(1_ d%l)) and polynomial space. In this paper we
continue this line of research and design new algorithms for the MAX-2-SAT and MAX-2-CSP problems.

First, we present a general technique for obtaining new bounds on the running time of a simple
algorithm for MAX-2-CSP analyzed with respect to the number of vertices from algorithms that are
analyzed with respect to the number of constraints. The best known bound for the problem is improved

to O* (2"(1_%“)) for d > 3. We further improve the bound for MAX-2-SAT, in particular for d > 6 we
achieve O* (2"~ G ).

As a second result we present an algorithm with asymptotically better running time for the case when
the input instance is not very sparse. Building on recent work of Feige and Kogan we derive an upper
bound on the size of a vertex separator for graphs in terms of the average degree of the graph. We then
design a simple algorithm solving MAX-2-CSP in time O*(2%"), ¢4 = 1 — 20‘%‘1{"1 for some a < 1 and
d = o(n).
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1 Introduction

1.1 Exponential time algorithms

A paradigm in computational complexity was to divide problems into efficiently solvable and hard problems,
in more precise terms NP-hard or #P-hard. Since hard problems are unlikely to be solvable exactly in
polynomial time, researchers started to design approximation algorithms such that one can efficiently find a
solution which is reasonably good. However, for many hard problems, approximation algorithms are either
inadequate or do not yield satisfactory results. For example, unless P=NP no polynomial time algorithm
can approximate MAX-2-SAT with a factor better than 0.9546 [13].

Hard problems were deemed intractable and except for a few results [14, 16, 21, 26], not much work
was invested in the design of exponential time algorithms improving upon the naive solution. However, the
increase in computational power and available memory led to a shift in these attitudes. The last two decades
have witnessed a growing interest in design and analysis of deterministic and randomized exponential time

*Part of this work was done when the first author was at St. Petersburg University of the Russian Academy of Sciences.



algorithms. New algorithms with considerably improved running times have increased the size of efficiently
computable instances of hard problems. Notable examples include solving k-COLORABILITY for graphs on
n vertices in time and space O*(2")! independent of k [3] and k-SATISFIABILITY on n variables in time

O*((@)”) and polynomial space [23, 24].

1.2 Problem Statement

The maximum satisfiability problem (MAX-SAT) is: given a Boolean formula in conjunctive normal form
(CNF), i.e. a conjunction of literal disjunctions, find the maximum number of simultaneously satisfiable
clauses of this formula. MAX-2-SAT is a restricted version of MAX-SAT, where each clause contains at
most two literals.

MAX-2-SAT is a special case of the maximum 2-constraint satisfaction problem (MAX-2-CSP). In the
MAZX-2-CSP problem one is given a graph G = (V, E) along with sets of “weight” functions S, : {0,1} = Z
for each vertex v € V and S, : {0,1}?> — Z for each edge e € E. (We will assume that the weight
functions can be evaluated and represented in polynomial time and space.) The goal is to find an assignment
¢V — {0,1} maximizing the sum

> Se(d(v1),6(v2)) + Y Sul(e(v)). (1)

e=(v1,v2)EE veEV

It is easy to see that by associating variables with vertices and clauses with edges, MAX-2-SAT corresponds
to the case when all functions from S, are disjunctions and each vertex v € V is assigned a weight of 0
by S,. In the following an instance of MAX-2-CSP will be described by the graph G and the set of weight
functions S = S, U S,, and an instance of MAX-2-SAT will be given only by the Boolean formula F' since
the weight function does not need to be explicitly defined.

MAX-SAT and MAX-2-SAT are among the most famous NP-hard optimization problems generalizing
many graph problems. As already mentioned, the problem is hard to approximate with a factor better than
0.9546. Moreover, there is no known algorithm for either problem with polynomial space and running time
less than O*(2"), i.e. a running time of the form O*((2 — ¢€)™) for a constant ¢ > 0. The strong exponential
time hypothesis [4, 17] implies that MAX-SAT cannot be solved in time less than O*(2™).

1.3 The Main Definitions

Let G = (V, E) be an undirected graph?. In the following we give definitions only for MAX-2-CSP in terms of
graph terminology. By associating vertices with Boolean variables and edges with 2-clauses, i.e. disjunctions
of two variables or their negations, the definitions trivially extend to Boolean formulas in CNF form.

By n(G), m(G) we denote, respectively, the number of vertices and the number of edges in G. The size
of G is defined as |G| = m(G) + n(G). By the degree deg(z) of a vertex z we mean the number of edges
incident to . We say that a vertex y is the neighbor of a vertex x if there is an edge (x,y) € G. By A(G)
we denote the maximum vertex degree in G. d(G) = 2m/n is the average vertex degree. We omit G if it is
clear from the context.

Note that in the case of MAX-2-CSP one can assume without loss of generality that the corresponding
graph does not contain multiple edges (as any two parallel edges can be replaced by their “sum”). At the
same time one cannot exclude multiple edges from a MAX-2-SAT graph by the same argument (e.g., the
graph of a formula (z V y)(—z V y)(y V z) has two edges between x and y).

By (n, A)-MAX-2-CSP we denote MAX-2-CSP problems restricted to instances in which each vertex has
degree at most A. By Opt(G, S) we denote the maximal value of (1) for (G, S) over all possible assignments
¢V —{0,1}. Similarly we define (n, A)-MAX-2-SAT for a Boolean formula F, and define Opt(F') to be
the maximal number of simultaneously satisfiable clauses of the formula F'.

1The O* notation ignores polynomial factors.
2Note that we allow loops and multiple edges.



Let (G,S) be an instance of MAX-2-CSP, and v be a vertex in G. By (G, S)[v], or simply G[v] when
clear from the context, we denote the instance resulting from replacing all occurrences of v by 1 in (G, S).
Similarly, for G[-wv] we replace v by 0. The definition naturally transfers to MAX-2-SAT, clauses containing
a given literal [ or -l are either satisfied or shortened, i.e., 2-clauses become 1-clauses and 1-clauses are
removed. Recursively solving a MAX-2-CSP problem instance by considering the cases G[v] and G[-w] for
a vertex v, is referred to as splitting or branching on v.

A wertex cover of a graph G = (V, E) is a subset of vertices C C V such that for each (u,v) € E, u € C
or v € C holds. The complement set V\C' is an independent set in G. Two sets of vertices U C V,W C V
are called pairwise independent if U N W = () and there exist no edges (u,w) € F with u € U,w € W. We
will call a set S C V of vertices balanced graph separator of cardinality k if V\S = (U, W) such that (1) U

and W are pairwise independent and (2) |U| = [ 25%| and [W| = [25%].

1.4 Known Results

Running time Problem Authors Year

with respect to n

2", exp. space MAX-2-CSP Williams [28] 2005
c"e<?2 MAX-SAT with constant density Kulikov, Kutzkov [19] 2009
With respect to n and d
on(1—g47) MAX-2-CSP Scott, Sorkin [25] 2007
on(1-%) MAX-CUT Della Croce, Kaminski, Paschos [6] 2007
267 (n,3)-MAX-2-SAT Kulikov, Kutzkov [19] 2009
With respect to m
27465 MAX-SAT Chen, Kanj [5] 2004
25551 MAX-2-SAT Gaspers, Sorkin [10] 2012
25363 MAX-2-CSP Gaspers, Sorkin [10] 2012

Table 1: Known upper bounds for MAX-2-SAT and MAX-2-CSP

In a ground-breaking work Williams [28] presented an algorithm for MAX-2-CSP with running time
O*(2%") where w is the matrix multiplication exponent. Currently the best known bound is w < 2.3727 [27].
Unfortunately, the algorithm runs in @(2%”) space and this makes it intractable in practice. It is still an open
question whether MAX-2-SAT can be solved in less than O*(2") steps using polynomial memory. However,
the trivial 2" upper bound was improved for several special cases of the considered problems. Dantsin
and Wolpert [7] showed that MAX-SAT for formulas with constant clause density, i.e. the ratio of clauses
to variables is bounded by a constant, can be solved in faster than O(2") time using exponential space.
Kulikov and Kutzkov [19] developed an algorithm for MAX-SAT using polynomial space and with running
time O*(2°%™) for formulas with constant clause density p, where ¢, < 1 is a constant depending on p. Note
that unlike in [7] the running time does not admit a closed form expression.

Several results on polynomial-space algorithms for MAX-2-CSP and some of its special cases have
been achieved. Fiirer and Kasiviswanathan [9] designed an algorithm for MAX-2-CSP with running time
o* (2"(1_ﬁ)). Scott and Sorkin [25] improved this bound to O*(Q”(l_d%l)). (Note that the bound is bet-
ter than the one shown by Fiirer and Kasiviswanathan since ﬁ < d—f_l for d > 3 and, as we discuss in
Section 2, we can restrict our attention to the case d > 3.) For the widely studied MAX-CUT problem, a
special case of MAX-2-CSP, Della Croce, Kaminski and Paschos [6] developed an algorithm with running

time O*(Q”(l’%)) for graphs of degree bounded by A. Their algorithm is better than the one by Scott and



Sorkin for nearly regular input graphs when A < d 4 1. For (n,3)-MAX-2-SAT, Kojevnikov and Kulikov
[18] proved an O*(2%) bound. This was later improved to O*(2&7) by Kulikov and Kutzkov [19].

The best known upper bound in terms of the number of clauses m for MAX-SAT, O* (27465 ), was given
by Chen and Kanj [5]. In a long sequence of works the best known upper bounds for MAX-2-SAT have been
improved [15, 12, 18, 25, 19, 2, 10]. The current record holders are Gaspers and Sorkin [10] who proved
that MAX-2-SAT and MAX-2-CSP can be deterministically solved in time O(2555) and O(252) time
respectively. Note that these bounds are better than the brute-force solution only for very sparse instances.
Table 1 summarizes the best known bounds with respect to different parameters.

1.5 New Upper Bounds

In this paper, we present two simple algorithms that achieve new upper bounds on the complexity of MAX-
2-SAT and MAX-2-CSP when only polynomial space is allowed.

The first algorithm solves MAX-2-CSP in time O*(2"(1_d%1))7 which improves over the best known algo-
rithm from [25] running in time O*(2"(1_di+l)). We improve this bound for MAX-2-SAT to 0(2"(1_%)) for
d > 6. For 3 < d < 6 our bound is at least 0(2"(1_%)) with ¢q > 3.4042 which grows monotonically with d.
Since MAX-CUT is a special case of MAX-2-CSP, we also get an improved upper bound of O*(Q"(l_d%rl))
for MAX-CUT.

Our second algorithm presents an asymptotically better bound for MAX-2-CSP for the case when the
underlying constraint graph is neither very sparse nor very dense. It follows the same simple idea as the
first algorithm but we make use of graph separators of bounded size whose existence we show by building on
recent result by Feige and Kogan [8]. We achieve running time of O(2°¢™) where ¢g = 1 — W for constant
a <1

A preliminary version of this work was presented at the 6th International Symposium on Parameterized
and Exact Computation [11]. In the full version of the paper we improve and simplify the analysis of the
first algorithm and also present the second algorithm.

2 An algorithm for MAX-2-CSP

In this section, we present a simple algorithm for MAX-2-SAT and MAX-2-CSP. To solve an instance of
average degree d, the algorithm branches on a variable of maximum degree until we obtain an instance of
low average degree. Then, we solve the problem by a known algorithm for MAX-2-SAT or MAX-2-CSP
analyzed with respect to the number of clauses or edges, respectively.

2.1 Intuition

Before formally presenting our algorithm in detail let us give a general overview on how it works and why we
are able to achieve better bounds than previously known algorithms. Let us recall how the simple algorithm
by Scott and Sorkin [25] works. Building on a result by Alon, Kahn and Seymour [1] for the size of an
induced forest in a graph of average degree d > 2, the authors use the fact that MAX-2-CSP is solvable in
polynomial time when the underlying constraint graph G is a forest. The observation easily follows from
the fact (see next section) that in MAX-2-CSP a vertex of degree at most 2 can be removed from G without
splitting. This simplification rule has played a crucial role for achieving improved upper bounds for MAX-2-
SAT and MAX-2-CSP with respect to the number of variables. However, the removal of variables of degree
at most 2 is not the only tool used in the design of exact algorithms for MAX-2-SAT. The best currently
known upper bounds are obtained through sophisticated algorithms using a plethora of simplification rules
and the algorithms are analyzed with respect to a suitably chosen non-standard complexity measure. Some
of these simplifications, for example clause learning [19], are specific to MAX-2-SAT and it is not clear how
to use them for algorithms for MAX-2-CSP. The basic idea of the new algorithm is to make use of all these
advanced techniques without explicitly using them. More concretely, we will branch on a variable of high
degree and in this way we will eliminate all of its incident edges. We will show that in this way the formula



becomes sparser and sparser, and at some point it will be sparse enough such that the best known algorithms
analyzed with respect to the number of edges or clauses become more efficient than the brute-force splitting
algorithm. In this way we can design a simple algorithm using as a black-box a sophisticated splitting
algorithm. There are better algorithms for solving MAX-2-SAT than for solving MAX-2-CSP w.r.t. m, and
hence we get better bounds for MAX-2-SAT.

2.2 Tools used in the analysis

Jensen’s inequality. We use the following version of Jensen’s inequality:

Theorem 1 If f is concave function, x1,xa, ..., T, are in its domain, and Vi,n; > 0, then:

Znif(l”i) Z n;T;
don >on;

Corollary 1 For any positive ¢,n;, if a; <1 — ii and Y n; = n, then

< f( )-

1

ngag + ...+ naaa <n(l— ﬁ)»
where d = Z%
Proof: Tt is easy to see that for any ¢ > 0, f(z) =1— -7 Is concave function for > 3. By Theorem 1,
>ongi c
n3az +...+naaa < (an)f( S0 ) =nf(d)=n(l - d—&—l)'

Removing variables of degree 2.

Lemma 1 Let F be an instance of MAX-2-SAT or MAX-2-CSP containing a vertex u of degree at most 2.
Then F can be transformed in polynomial time into a formula F’ s.t.

1. degp/(u) =0,
2. for all v, degp/ (v) < degr(v),
3. Opt(F) can be computed from Opt(F') in polynomial time.

This lemma is proved for MAX-2-SAT in [18, Lemma 3.1], and for MAX-2-CSP in [10, Section 5.9]. It allows
us to assume that a simplified formula only contains variables of degree at least 3.

Frequently co-occurring variables. The following lemma, specific to the MAX-2-SAT problem, has
been proved in [18].

Lemma 2 Let F be a 2-CNF formula and x and y two variables occurring in it, such that x occurs in at
most one clause without y. Then we can obtain in polynomial time a formula F' such that degp: (x) = 0, for
all variables y € F\{z}, degp: (y) < degr(y) and Opt(F') can be computed from Opt(F') in polynomial time.



Non-standard complexity measures. Let us consider the MAX-2-SAT problem for a 2-CNF formula
F over m 2-clauses and n variables. The standard complexity measure number of clauses can be written as

’i'fLi

m(F) = 5

i=1
where n; denotes the number of variables of degree 1.

Kojevnikov and Kulikov [18] observed that the following alternative measure for MAX-2-SAT:
p(F) =Y aim;
i=1

for a;; < i/2, is more suitable for the analysis of the running time of exact splitting algorithms. Due to various
simplification rules, variables of low degree allow the elimination of more 2-clauses. Hence the variables of
low degree contribute more to a better running time than variables of higher degree. For the new MAX-2-
SAT algorithm we will also use a similar measure so that we can obtain an improved bound on the running
time of the algorithm.

2.3 Meta-Algorithm

Let us first consider the case when the constraint graph is of bounded degree. We present a generic algorithm
for (n, A)-MAX-2-CSP. The algorithm branches on a vertex of maximum degree A until it gets a graph of
maximum degree A — 1. It then calls a known algorithm for (n, A —1)-MAX-2-CSP. Although the presented
algorithm works for both MAX-2-SAT and MAX-2-CSP, we use MAX-2-CSP notation for simplicity.

Denote by n; the number of vertices of degree ¢ for i € {3,...,A}. Consider a problem instance of
(n, A)-MAX-2-CSP given as a graph G = (V, E) and weight functions S = S, U S.. We use the following
complexity measure:

,u(G) =Q3ng + ...+ aAnA,

where «; denotes the weight of a vertex of degree i. The values of «; will be determined later. We would
like to find a; such that for any problem instance (G,.S) we can show that the algorithm has running time
bounded by poly(|G|) - 2#(&).

Assume that an algorithm A solves (n, A — 1)-MAX-2-CSP in time 2%37s+--+@a-1na-1_ Consider the
following algorithm for (n, A)-MAX-2-CSP.

Algorithm 1 METAALG — a template for the new algorithms.

Parameter: Algorithm A for (n, A — 1)-MAX-2-CSP.
Input: (G,S) - instance of MAX-2-CSP.
Output: Opt(G,S).

remove all vertices of degree < 3 (using Lemma 1).

if G contains no edges then
return the result.

if the maximum vertex degree of G is less than A then
return A(G,S).

choose a vertex x of maximum degree A.

return max(METAALG(A, G[z]), METAALG(A, G|—z])).

Lemma 3 Let A > 3, o; < 1, for alli. If A solves (n, A —1)-MAX-2-CSP in time 2%37sF--Ftaa-1na-1 gng

) 1—aa
d = min(aa — @A—1,QA_1 — AA—2, ..., 04 — Q3,Q3) > N (2)

then the running time of the algorithm METAALG for (n, A)-MAX-2-CSP is 20sns+t--toana,



Proof: Denote by T'(ng,...,na) the running time of the algorithm on a graph that has n; vertices of
degree i, for all 3 <4 < A. If there are no vertices of degree A (i.e., na = 0), then METAALG just calls A.
Then, clearly,

T(n3 nA) < 2a3n3+...+aA71nA71 — 20¢3n3+-»~+0¢AnA
sy < .

Now assume that there exists a vertex z of degree A. Then METAALG branches on a vertex of degree A at
step 6. We show that in both branches G[z] and G[—x], p is reduced by at least 1.

Indeed, the measure decreases by aa, because the algorithm branches on a vertex of degree A. The
degree of each neighbor of x is reduced, so p is decreased by at least ¢ (as ¢ is the minimal amount by which
u is decreased when the degree of a vertex is reduced). This causes a complexity decrease of A-4§. Lemma 1
guarantees that removing variables of degree 2 does not increase p. It follows from (2) that A-d+ aa > 1.
Therefore p decreases by at least 1. Then

T(ng,...,na) <2- gasmat. taana—l + poly(|G|) < 22snst-Faana 4 poly(|G|).

Thus, the running time of the algorithm METAALG is O*(2%snst--Ftaana) O

We will use the above “template” for two new algorithms for MAX-2-SAT and MAX-2-CSP. The only
difference will be the algorithm A used as a subroutine. For the running time analysis we will apply Jensen’s
inequality as shown in Corollary 1 to estimate the running time in terms of the average degree.

2.4 An algorithm for MAX-2-CSP

The fact that vertices of degree at most 2 can be removed without splitting implies that (n,3)-MAX-2-CSP
can be solved in O*(2"/%) time. Indeed, when branching on a vertex of degree 3 we can remove all its
neighbors in both branches (so, the number of vertices is decreased by at least 4). Denote by CUBICALG
the above sketched algorithm.

Algorithm 2 MaXx2CSPALG — solving exactly the MAX-2-CSP problem over n vertices.

Input: (G,S) - instance of MAX-2-CSP.
Output: Opt(G,S).

while there is a vertex v of degree less than 3 do
remove v (using Lemma 1).
if G contains no 2-clauses then
evaluate the scoring S, functions for each vertex.
return the result.
choose a vertex x of maximum degree A.
if d(x) = 3 then
return CUBICALG(G, S).
else
return max(MAx2CSPALG(G[z], S), MAX2CSPALG(G[-z], S)).

-
<

Theorem 2 There exists a deterministic polynomial space algorithm solving MAX-2-CSP in time O*(2"(1_d%1)).
Proof: In the following we will show that MAXx2CSPALG solves MAX-2-CSP in time O*(2"(1_ﬁ)).
MAx2CSPALG is obtained from METAALG. MAX2CSPALG takes itself as parameter A if ¢ > 3 and
takes CUBICALG if i = 3. We will choose «; satisfying (2). As mentioned above, (n,3)-MAX-2-CSP can be
solved by CUBICALG in O*(2"/*) time. Hence, we can choose a3 = . Now let A > 3. For (2) to hold, we

can set «; as follows:
1+ ;-1 1 — 3+ 4ag 3
a; = =

i+1 i+l i+l




We show that (2) holds. First, note that 1‘% <az= i, for A > 4.
1-— A o 3 < 1
A AA+1) 4

Now observe that 1*% < a; —a;_q for 1 < A.

l—OéA 3 3

A TAGFD iy T
By Lemma 3 the running time of the algorithm is O*(2%sms+--F@ana) From a; = 1 — Hil and Corollary 1
it follows that the running time of the algorithm is O*(Q"(lfﬁ)). O

2.5 An Algorithm for MAX-2-SAT

We further improve the bound for MAX-2-SAT, using algorithms analyzed with respect to the number of
clauses for instances of small average degree. We use the analysis outlined in Section 2.3. We can again
remove variables of degree at most two without splitting, but there is a subtle difference compared to the
MAX-2-CSP problem. In MAX-2-CSP one can assume that all neighbors of a given vertex are different since
multi-edges can be unified in a single constraint over two variables. On the other hand in a 2-CNF formula
a given variable can have the same neighbor more than once. Thus, by simply removing variables of degree
at most two we cannot assure that by assigning a Boolean value to a variable z (2) will hold for the decrease
in all of z’s neighbors. Fortunately, by Lemma 2 we can assume that each of v’s neighbors occurs at least
two times outside of v’s neighborhood. Thus, (2) will hold again implying a complexity decrease.

The algorithm by Binkele-Raible and Fernau [2], in the following denoted as BRF, turns out to be
suitable for our goals. It improves upon the approach by Kojevnikov and Kulikov [18] by performing a
careful analysis of the possible cases, applying recently developed simplification rules like clause learning [19]
and using the best known bound for (n,3)-MAX-2-SAT from [19]. The running time they achieve can be
written as 2535 2 ¥ where ws = 0.9354, w4 = 1.8230, w5 = 2.4779 and w; = & for i > 5.

The best known upper bound for MAX-2-SAT however is O(2™/6321) [10]. The complexity measure
in [10] does not have the convenient form of the measure from [2]. Moreover, it does not use the best known
bound for (n,3)-MAX-2-SAT from [19] and thus it does not achieve results as good for formulas of small
average degree. In order to improve upper bounds for graphs of large average degree, we use the algorithm
by Gaspers and Sorkin [10], denoted as GS. In MAX2SATALG we decide which algorithm to apply, GS or
BRF, depending on the average variable degree. Then, in MAX2SATALGPARAM, we simplify the formula,
if possible, and recursively branch on a variable of maximum degree until there exists a variable of degree
more than six. Once the mazimum variable degree is at most six, we apply the selected algorithm to the
formula.

Algorithm 3 Max2SATALG.

Input: F' - instance of MAX-2-SAT.
Output: Opt(F).

1: if the average variable degree d(F') < 6 then
2: A =BRF.

3: else

4: A= GS.

5:

return MAX2SATALGPARAM(A, F).

Theorem 3 Let F' be a Boolean formula over n variables with average degree d > 3. Let ag = 0.1494, ay =
0.2909, a5 = 0.3956, g = 0.4789. Then the algorithm MAX2SATALG solves MAX-2-SAT in time
0(2(‘““_ai)d“‘(i“)ai_mi“) for3<d<6,i=|d|, and in time 0(2"(1_%)) for d > 6.



Algorithm 4 MAX2SATALGPARAM.

Input: Algorithm A for (n,6)-MAX-2-SAT, F' - instance of MAX-2-SAT.
Output: Opt(F).

remove all variables of degree < 3 by Lemma 1 and all frequently co-occurring variables by Lemma 2.
if I’ contains no 2-clauses then
return the result.
if the maximum variable degree of F' < 6 then
return A(F).
choose a vertex x of maximum degree A.
return max(MAX2SATALGPARAM(A, Fz]), MAX2SATALGPARAM(A, F[—x])).

Proof: First we analyze the running time of MAX2SATALGPARAM for the case d < 6, i.e. A = BRF.
Note that in this case the maximum degree A might be greater than 6. We observe that we can set

0.9354 1.8230 24779

—0.1494 > —222% 0 =0.2909 > —= e = 0.3956 > —— 0 g = 0.4789 >
as 6.265 * 6.265 “° 6.265 ¢

_ 6
2.6.265°

For the case that A < 6 we do not need to satisfy (2) since Binkele-Raible and Fernau have shown that for
the given values of «; for all possible cases the algorithm may have to handle, the running time is bounded
by O(2#(F)). For i > 6 we set the weights a; such that (2) holds:

It . 3.6477
i+l i+1°

Q;

If the maximum vertex degree A < 6, then MAX2SATALGPARAM solves MAX-2-SAT in O(2%sns+--Faana)
time by [2]. Now we prove that (2) holds for A > 6. Indeed,

d = min(aa — aA_1,0A 1 —QA_2,..., 04 — Q3,03) =

3.6477 1-—
min(aA —OA-1, A1 — OA_-2,...,07 — (g, 0.0833) = O0A — OA_1 = A(A T 1) = AOéA

Lemma 3 implies that the running time of the algorithm is 2¢sns+--+taana,

Now we generalize to the case when the formula has average degree d > 3, ie. ) . .in; = dn. We
define a function f(x) with straight lines connecting points «;, a1 for 3 <4 < 6 and for x > 6 we set f(z)
according to (2):

fa) = {(Oéi+1 —a)r+ (i 4+ Da; —iayr forzeli,i+1),3<i<6

3.6477
1—=24 forx > 6

It is easy to see that for the given values of the a;’s the function is piecewise-linear concave for 3 < z < 6
and concave for > 6. Thus, Corollary 1 implies that agns + ...+ aana < nf(d). This yields the claimed
running time. ,

The algorithm by Gaspers and Sorkin [10] solves MAX-2-SAT in time O*(2m/6321) = O* (2X:>2 75327,
Therefore, we analyze the running time of MAX2SATALGPARAM for A = GS by setting a; = m for

3 <4 < 6. This yields the measure p(F) = > .. 5 a;n; on the complexity of solving MAX-2-SAT w.r.t. n.
3.677

We see that for i > 6 one can set a; = 1 — “75" such that (2) holds for branching on a variable of degree

. . . . . . o 3.677
> 6. Connecting again the o; for i € {3,4,5,6} by straight lines and for z > 6 setting f(z) =1 — 225 we

obtain a concave function and by applying Corollary 1 the claimed running time follows for the case d < 6.
O

We would like to note that Theorem 3 naturally extends to obtaining a bound on the complexity of the
MAX-2-SAT problem with respect to the number of variables from an upper bound on the problem with



respect to the number of clauses. In particular, given an algorithm with running time of O*(2m/ ), ¢>1,
and set £ = |c|. We then set a; = o fori < fand oy =1— (e+11)_(~_7117w) for i > ¢. However, as we have seen,
this is not guaranteed to be the optimal result for arbitrary average degree d and a more careful analysis

can yield better bounds.

2.6 Discussion

Figure 1 plots the running times of Scott and Sorkin’s MAX-2-CSP algorithm, our MAX-2-CSP algorithm
and the MAX-2-SAT algorithm from the previous section. Note that the MAX-2-SAT running time is
obtained by combining the bounds from BRF and GS. For formulas with average degree at most 6 the
bounds yielded by the BRF algorithm are better, while for higher average degree GS yields the best bound.
We note that the best known deterministic poly-space algorithm for MAX-2-CSP w.r.t. the number of
constraints is O*(2"™/%263) (from [25, 10]) essentially works in the same way as MAX2CSPALG: branch on
a vertex of maximum degree and eliminate vertices of degree at most 2. This is the reason why we cannot
obtain a better bound for MAX-2-CSP using similar techniques as in MAX2SATALGPARAM. Therefore,
an improved upper bound for either MAX-2-CSP or MAX-2-SAT w.r.t. the number of constraints will also
improve the above bounds.

T T
L Scott-Sorkin MAX-2-CSP

—H&— Golovnev-Kutzkov MAX-2-CSP|
—©— Golovnev-Kutzkov MAX-2-SAT

Running time

14r

1.2

1 1 1 1 1 1
0 5 10 15 20 25 30

Average degree

Figure 1: Running times of the Scott-Sorkin Max-2-CSP algorithm and the two new algorithms.

3 An algorithm based on graph separators

In this section we show how to obtain an exponential time algorithm for MAX-2-CSP such that the exponent
is growing asymptotically slower with the average degree than the algorithms from the previous sections.

Algorithm 5 MAX-2-CSP-GRAPHSEPARATOR.

Input: (G,S) - instance of MAX-2-CSP.
Output: Opt(G,S).

1: Find a balanced graph separator S of maximum cardinality.

2: Recursively branch on each vertex v € S.

3: In each leaf of the splitting tree solve MAX-2-CSP for the connected components induced by V\S by
the brute-force splitting algorithm.

The main idea is based on the observation that for a graph of average degree d < n/2 one can find a

10



balanced graph separator S of cardinality ncy for ¢4 < 1. Then a simple algorithm for the Max 2-CSP
problem is straightforward: branch on all vertices in & and for each leaf in the resulting tree solve the
problem for each connected component. (See Fig. ?77.)

Building on a result by Feige and Kogan [8] we present results on the existence of balanced graph
separators and efficient algorithms for finding them. The following result is a straightforward adjustment
of Lemma 3.4 in [8] for our purposes and shows the existence of a balanced graph separator of cardinality
depending on the average degree d.

Lemma 4 Let G = (V, E) be a simple connected graph over m edges and n vertices, and let G have average
degree d = o(n). Then for any constant 0 < o < 1 and sufficiently large d, there exists a balanced graph
separator S of cardinality n(1 — %).

Proof: Let k£ = %lnd for some constant aw < 1. We choose at random a set R of k vertices in G. We next
show that the probability there exists a set D C V, DN R = () with cardinality at least k such that there are
no edges (u,v) € E:u € R,v € D is more than 0. By the probabilistic method this will prove the theorem.

n—dqy
For each v € V\R the probability that v has no neighbors in R is ( (’;L) ) Let X be a random variable
k
counting the number of vertices in V\R with no neighbors in R. For each vertex v € V\R we introduce
an indicator random variable I,, such that I, = 1 if v has no neighbors in R, and I,, = 0 otherwise. Thus,

X =3 ev\r 1o and for the expectation of X we get

EETRD i ur  EYURRIU Y | Ll

(Z) i=0 -

for sufficiently large d and some v < 1. The first inequality follows by convexity of a sum of binomial
coefficients. Thus, we need to show that Hkil n=ts < 2% We have

i=0 n—d—i
k—1 . k—1
n—71 d d
gn—dfi g( +n—d7i)_( +n7dfk)

Since d = o(n), one can choose sufficiently large d such that the last term can be bounded by (14 <4)F =
O(exp(<£4)) for some ¢ > 1 such that ac < 1. For k = 22124 we obtain that 1) -2 = O(d*°). On the

n i=0 n—d—i
other hand we have 4+ = Oﬂlr‘f 5= Q(ﬁ). Thus, for a sufficiently large average degree d there exists a graph
separator of cardinality n(1 — Mf}l“d). O

For sufficiently large average degree d, an asymptotically better bound on the complexity of MAX-2-CSP
than the ones presented in the previous sections is now easy to show.

Theorem 4 Given a 2-CSP formula over n variables with constraint graph of average degree d = o(n), MAX-

. . . . . (1+cg)n
2-CSP-GRAPHSEPARATOR finds an optimal variable assignment in time O*(2 2 ) forcg =1— 2"%%

0 < a <1, and polynomial space.

Proof: A (ki,ks)-pairwise independent set in G can be found in time O(1.561") by [20]. Clearly, the
remaining vertices are balanced graph separator. By Lemma 4 there exists a balanced graph separator S of
cardinality n(1 — mf}l“d). Then after branching on all vertices S, in each leaf of the splitting tree the graph
induced by V\S consists of at least two pairwise disjoint connected components with at most “=*“4 vertices.
Thus we can separately solve MAX-2-CSP for each of them and combine the solutions in order to obtain an

)
). O

n—ncy

optimal variable assignment. We assume we apply the brute-force algorithm with running time O*(2

. . . n—nec (1+eg)n
and thus we obtain a running time of O*(27¢¢ . 2= “+1) = 0*(27 2"
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Figure 2: An example of the graph separator construction. The red and yellow vertices form a (5,5)-pairwise
independent set. Thus, the blue vertices are balanced graph separator of cardinality 10. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

4 Conclusions and future directions

The second algorithm seems to pose some interesting questions. Graph separators are widely used in the
design of efficient algorithms for planar graphs since by the planar separator theorem [22] there exist graph
separators of size O(y/n). The bounds from Lemma 4 cannot yield asymptotically faster polynomial time
algorithms. On the other hand, for exponential time algorithms the existence of small graph separators of
linear size can result in asymptotically better upper bounds. To the best of our knowledge, the upper bound
on the size of a balanced graph separator shown in Lemma 4 is the first of this kind. It is natural to ask
whether better bounds in terms of the average graph degree are possible. Also, it is interesting whether
exponential time algorithms for other hard problems can be designed using similar techniques.
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