
CloudFTP: A Case Study of Migrating Traditional Applications to the Cloud

Liang Zhou
School of Software, Shanghai Jiao Tong University, Shanghai, 200240, China

brightzhou.cn@gmail.com

Abstract—The cloud computing is growing rapidly for it offers
on-demand computing power and capacity. The power of
cloud enables dynamic scalability of applications facing
various business requirements. However, challenges arise
when considering the large amount of existing applications. In
this work we propose to move the traditional FTP service to
the cloud. We implement FTP service on Windows Azure
Platform along with the auto-scaling cloud feature. Based on
this, we implement a benchmark to measure the performance
of our CloudFTP. This case study illustrates the potential
benefits and technical issues associated with the migration of
the traditional applications to the clouds.

Keywords- cloud computing; cloud migration; auto-scaling;
dynamic scalability; Windows Azure; SaaS

I. INTRODUCTION
Recently, cloud computing[1] has been under a growing

spotlight in both industrial and academic areas. Cloud
computing is an on-demand and cost saving computing with
scalability, high-availability, and reduced management.
Amazon’s Elastic Compute Cloud (EC2) is an example of
IaaS (Infrastructure as a Service)[2] platform. It offers basic
infrastructure component such as CPUs, memory, and
storage. Google App Engine is an example of PaaS
(Platform as a Service) platform. It could deploy and
dynamically scale Java and Python based web applications.
Based on IaaS and PaaS platforms, a lot of time and money
have been saved for start-up companies, such as foursquare
and dropbox.

Along with the benefits, cloud computing also raises
severe concern when regarding the large amount of existing
applications. One major challenge is how to migrate these
traditional applications to the cloud. Current research
focuses on the migration of specific applications such as
high-performance applications[3], but little work has been
proposed for the migration of general services.

In this paper, we present a case study moving the
traditional FTP server to the cloud. We have implemented
the Cloud FTP server on Windows Azure and enabled the
auto-scaling feature. Based on this, we have implemented a
benchmark to measure the performance of our CloudFTP.
We use this case study to illustrate the potential benefits and
issues associated with the migration of the traditional
applications to the clouds.

The rest of this paper is organized as follows. Next
section presents cloud services with Windows Azure. In
Section 3, we give a short description of FTP service and
details we implement it in Windows Azure. We evaluate our

Cloud FTP and discuss advantages and technical issues in
Section 4. Finally, we list the related work in Section 5 and
conclude this paper in Section 6.

II. CLOUD SERVICES WITH AZURE
Windows Azure is the cloud computing platform offered

by Microsoft. Unlike IaaS provided by Amazon and PaaS
offered by Google App Engine, Windows Azure uses the
mixed PaaS and IaaS strategy, this paradigm makes
developing in the cloud fully flexible. Developers could
choose PaaS or IaaS depending on their own needs.

When developing cloud applications, three components
are mainly used: a Compute service that runs cloud
applications, a Storage service providing persistent storage
and a Service Bus to exchange messages in a loosely
coupled way.

Hosted services in Windows Azure are said to contain
roles and there are two types of roles available: a worker role
and a web role. Worker roles are frequently used for long-
running parallel tasks that non-interactive. Unlike the high
level parallel computing framework like Hadoop[4] and
Dryad[5], worker roles are not constrained in the way they
communicate with each other for each work role stands
alone in a virtual server. As to web roles, they are special
cases of worker roles that have web access enabled by
default. A web role instance responds to user requests and
may include an ASP.NET web application.

For persistent storage provided by Windows Azure, there
are three types: Tables, Blobs and Queues, all these types
could be easily accessed through REST-based web services.

Table Storage is an example of a NoSQL[6] approach
called a key/value store. Windows Azure Tables let an
application store properties of various types, such as strings,
integers and dates. An application can then retrieve a group
of properties by providing a unique key for that group.

Blob storage is designed to store unstructured binary data.
An application that stores video, for example, or backup data
or other binary information can use blobs.

Unlike blobs and tables, which are used to store data,
queues serve another purpose. A primary use is to allow web
roles to communicate with worker roles, typically for
notifications and to schedule work.

Figure 1 illustrates the typical design pattern of cloud
applications on Windows Azure. The web roles are the front
end to accept the user request, and then the task messages
are written into the message queue and the worker roles
reads from the message queue to take their jobs. Both web
roles and worker roles take the storage service to store
information.

2013 Third International Conference on Intelligent System Design and Engineering Applications

Figure 1. Typical design pattern of cloud applications on Windows Azure

III. CLOUD FTP

A. FTP
File Transfer Protocol (FTP) is a standard network

protocol used to transfer files from one host to another host
over a TCP-based network, such as the Internet. The
protocol is specified in RFC 959 [7].

FTP is built on client server architecture and uses
separate control and data connections between the client and
the server. FTP may run in active or passive mode, which
determines how the data connection is established:
� Active mode: In active mode, the client creates a TCP

control connection to the server and sends the server
the client's IP address and an arbitrary client port
number, and then waits until the server initiates the data
connection over TCP to that client IP address and client
port number.

� Passive Mode: In passive mode, the client uses the
control connection to send a PASV command to the
server and then receives a server IP address and server
port number from the server, which the client then uses
to open a data connection from an arbitrary client port
to the server IP address and server port number
received. Passive mode may be used in situations
where the client is behind a firewall and unable to
accept incoming TCP connections.

B. System Architecture
In this section we present the system architecture of

CloudFTP. CloudFTP follows the application model
suggested for general Azure development as shown in Figure
2.

The users could upload and download files through ftp
clients and the administrators could manage the cloud ftp
through web portal. After FTP server boot up, whenever a
connect request comes, there will be a slave thread spawned
to handle all FTP request from the connection. We employed
four components of Windows Azure to implement our
CloudFTP: web role, worker role, table storage service, and
blob storage service.

The web role receives user requests from web portal. The
responsibility of the web role is to manage, monitor, and
auto-scale. The web role is used to add, delete, update and
query ftp users, and it also shows the performance data, such
as CPU, memory, network connections and throughput.

With this information, the web role could perform auto
scaling according to the scaling rules, which is defined in
table storage.

The worker role is responsible for transferring data.
When an FTP client, such as FileZilla, requests a file, then
the worker role sends the requested file data to the FTP
client. And the number of worker role instances could be
adjusted dynamically without affecting other instances.
When a large number of clients attempt to connect, the
number of worker roles would be increased. When the
clients reduce, the number of worker roles would be
decreased.

The table storage service is in charge of storing users’
information, configuration information and the performance
information. The users’ information includes user name, the
password, and the home directory. The configuration
information includes permissions of users and groups. The
performance information is stored in a table called
performance counter, which is maintained by Azure
platform. All these three types of information are suitable for
table storage service, for they are all structured.

The blob storage service is responsible for storing the
auto-scaling rule file and data files. The auto-scaling rule file
is an xml file defining tuning strategies. For example, when
the CPU utilization is greater than 80%, we could increase
worker roles to distribute tasks. And the data files, which are
uploaded and downloaded from users, are also stored in blob
storage. The underlying file storage system is abstracted as
an interface to provide basic file operations, such as store,
get, mkdir, etc. The interpolated extra abstract layer indicates
the FTP server can be set on any file system as long as all
the operations defined in the interface are properly
implemented. We will explain how we simulate the files
system using blob storage in next section.

Figure 2. System architecture of Cloud FTP

C. Design of File System
In this section, we explain the design of file system in

Windows Azure platform, which is the most important part
of our cloud FTP. The Windows Azure Platform offers
several storage services, i.e. blobs, tables, queues and SQL
servers. Among these 4 storage services, we choose blob
storage service as the backend of our file system, because

437

blob storage service is able to store very large files and the
key-value style storage provide us convenient ways to
implement file system interfaces, such as find, create and
delete files. The design of blob service based file system is
shown in Figure 3.

Figure 3. File System Design

In our implementation, a file system corresponds to a
blob container in Windows Azure Blob Storage Service. For
a file in such a file system, we use a blob to store it and the
key of the blob is the absolute path of that file and the value
of the blob is file content, besides, we also use a blob to store
a directory. The absolute path of a directory is stored as a
blob key, which ends with a "/", and the blob that stores
directory has an empty value.

D. Design of FTP Server
In this section we present the design of FTP server in

Windows Azure platform. We use a worker role with an
infinite main loop to listen at the request port and once a
client sends a connect request, the server creates a new
thread to handle that request. The codes running in the new
thread implement all commands in standard FTP. Many
storage services can implement our VFS interface. In our
project, we use the Azure Storage Service to implement it.
Figure 4 depicts the design of FTP server.

Figure 4. FTP server design

E. Passive Mode
Developing on Windows Azure Storage service is just

like playing with a black box, you are not as free as
developing on local operating systems. One of the noticeable
difficulties is that we cannot allocate ports freely leaving a
gap between the specification and implementation for
passive-mode data transfer. Given the fact that we can pre-

allocate endpoints on Azure, we take an alternative strategy
to bridge it so that passive-mode data transfer is integrated
into our Azure FTP seamlessly. We set aside a set of free
endpoints as an endpoint pool. Once passive-mode is
required, available port number is assigned and will be later
reclaimed when connection closed. For the sake of
synchronization, the procedures acquiring and releasing
endpoint are monitored. Since incoming connection requests
will be blocked if no endpoints available, the size of
endpoint pool will be a factor having effect on concurrency
of our FTP. The auto-scaling strategy will be explained in
detail in the following section.

F. Auto scale
The most powerful feature of cloud platforms is

scalability. However, Windows Azure doesn’t enable the
auto-scaling feature by default due to the accounting
problem. In our CloudFTP, we use the Autoscaling
Application Block, which is a library, to auto scale our FTP
server. We host the Autoscaling Application Block in a web
role together with the web portal. In the OnStart method of
the web role, we create an auto-scaler instance and the
instance would be running once the web role starts. The
responsibility of the auto-scaler is to monitor the
performance status and scale our FTP Server worker roles
automatically according to auto-scaling rules.

There are two types of rules. One is constraint rules and
the other is reactive rules.

The constraint rules define some constraint conditions.
Figure 5 is an example of constraint rules, which defines the
lower and upper bounds on the number of FTP server worker
roles.

Figure 5. Example of constraint rules

The reactive rules are used to do scale-up and scale-
down. We use 4 operands to perform auto-scaling:
� CPU_Avg: The average of CPU Utilization during

the last 5 minutes.
� Mem_Available_Avg: The average of available

memory during the last 5 minutes.
� FTP_Connections_Avg: The average number of

clients connected to the FTP server during the last 5
minutes.

� FTP_WaitClients_Avg: The average number of
clients who are waiting to acquire a passive port
during the last 5 minutes.

To scale up instances, we use any condition. When the
CPU Utilization is greater than 80% or the percentage of
available memory is less than 20%, or the number of clients
waiting to acquire a passive port is greater than 20 we scale
up the instances. Figure 6 depicts the example of scale up
rules.

<constraintRules>
<rule name="default" enabled="true" rank="1">

<actions>
<range min="m" max="n" target="AutoscaleRole"/>

</actions>
</rule>

</constraintRules>

438

Figure 6. Example of scale up rules

To scale down instances, we use all condition. When the
CPU Utilization is less than 20%, the percentage of available
memory is greater than 80%, the number of clients waiting
to acquire a passive port is less than 10 and the number of
FTP client connections is less than 100, we scale down the
instances. Figure 7 depicts the example of scale down rules.

Figure 7. Example of scale down rules

IV. EVALUATION AND DISCUSSION
In this section we present the evaluation of CloudFTP

and discuss the advantages and issues of migrating
traditional applications to the cloud.

We implement a benchmark to evaluate the performance
of our cloud FTP server. The bandwidth is 100Mbps and it is
adequate for the network connections to Azure platform.

We record the download speed while increasing the
number of work loaders, which continually send pwd
commands to the server. We increase the number of work
loaders by 10. Figure 8 depicts the download speed of
different workloads. It shows that the average download
speed is decreasing as the work load increases. When the
number of work loaders is 180, the worker role instances
increase by one. Thus the download speed arises.

We evaluate the quality of service by recording
successful requests per 100 requests. Every request will send
pwd, list, store, retrieve, and delete command in order. The
transferring data fie is created randomly and uploaded to the
server. Then it would be downloaded and MD5 checksum
would be calculated to ensure the file is the same as before.
Each request with correct checksum is labeled as successful
request. Figure 9 depicts successful requests per 100 requests
while increasing the workloads. The increasing step is also
10. It shows that the quality of service in Windows Azure

platform could keep 100% approximately with the workload
increases. But when the workload is up to 180, the
successful requests decrease. It is because the server is
performing auto-scaling and it requires a certain time to
increase the instance.

Figure 8. Download speed of different workloads

Figure 9. QoS of different workloads

From our design and evaluation results, we could see
some advantages and issues migrating traditional
applications to the clouds. We list the items below for they
are universal problems when we choose to migrate
applications to PaaS platforms.

A. Benefits
1) On-demand computing & cost-saving

Cloud computing provides users resources and services
on demand. Companies could provide services without
spending a great deal of money on in-house resources and
technical equipment. And the cost depends on how the
infrastructure is used, such as the usage time, the number of
computing cores, and the storage size. In our example, we
don't need to buy expensive web and storage servers, but we
could provide high quality ftp services through high
performance hardware.

2) High Availability
Cloud platforms could guarantee QoS for users, such as

network bandwidth, CPU speed and storage availability. In
our case, the file storage is the most important part of the
application. The Azure platform keeps several copies of files
on different servers[8]. So even if one server is crashed,
other servers could still provide users the requested files.

3) Less Management

<rule name="scale down" rank="2" enabled="true">
<when>
<all>
<less operand="CPU_Avg" than="20"/>
<greaterOrEqual operand="Mem_Available_Avg" than="20%"/>
<less operand="FTP_Connections_Avg" than="100">
<lessOrEqual operand="FTP_WaitClients_Avg" than="10"/>

</all>
</when>
<actions>
<scale target="AutoscaleRole" by="-1"/>

</actions>
</rule>

<rule name="scale up" rank="2" enabled="true" >
<when>
<any>
<greaterOrEqual operand="CPU_Avg" than="80"/>
<lessOrEqual operand="Mem_Available_Avg" than="20%"/>
<greaterOrEqual operand="FTP_WaitClients_Avg" than="20"/>

</any>
</when>
<actions>
<scale target="AutoscaleRole" by="1"/>

</actions>
</rule>

439

The less management means the cloud platforms could
be managed by users transparently. There is no need to
consider hardware maintain, load balance, and storage
management.

4) Scalability
Scalability is one of the greatest benefits to cloud

computing. Space, storage and RAM are quick and easy to
add. There is no need to wait for quotes to be drafted and
equipment to be ordered and shipped. Instead of taking days,
a firm’s needs can be fulfilled in a matter of hours. And in
our case, we could perform auto-scale in only serveral
minutes.

B. Issues
In our paper we focus on the technical issues of

migration. The issues are as follows:
1) File Systems

In traditional applications, there is always a concept of
file system, such as FAT32, NTFS and Ext3. But in PaaS
platforms, we use key-value storage instead of file systems.
When migrating traditional applications, file-related codes
needs to be refactored. And in our case, we provide a good
paradigm, virtual file system on the cloud platforms, to
refactor the traditional FTP. We replaced every file operation
with interfaces and provided the implementations on
Windows Azure. In this mode, the migration could be reused
on any other cloud platform, such as Google App Engine or
VMware Cloud Foundry.

2) Network Issues
Traditional application could use network without

limitations. But on cloud platforms, the network port must
be controlled for management and security issues. We could
only use allocated ports to implement our business model. In
some platforms, we could only use port 80 and 443. In
Azure, we face the network issues when implementing
passive mode of FTP. We make the use of endpoints in
Azure to achieve our goal. By pre-allocating some free ports
in a pool, passive mode can be implemented. We could also
use endpoints when facing protocols like DNS, DHCP, NTP,
and SMTP.

V. RELATED WORK
In this section, we discuss some previous work related to

cloud migration. As mentioned in [1], cloud migration is still
a new topic in research of cloud computing. Only a few
papers have proposed the cloud migration. Some of these
papers mentioned the cloud migration explicitly, while in
others the cloud migration is implicit, but all have indicated
the idea of cloud migration.

The concept of cloud computing has been proposed for
about six years, a lot of works [9-12] have discussed the
definition, the scope, and the advantages and challenges of
cloud computing. And current works [3, 13-15] focus on
scientific computing, which needs high performance
calculating. The mode of cloud computing is natural for
scientific calculations, but we can’t ignore the existing large
amount of general applications. In [16], Ali et al. presented a
case study to migrate an Enterprise system to IaaS. In their

work, they evaluated the cost and summarized the benefits
and risks. But they didn’t analyze the risks from the
technical view.

In summary, though cloud migration is not a totally new
idea, there is no case study to present potential advantages
and technical issues on cloud migration, especially on
Windows Azure platform.

VI. CONCLUSIONS
This paper presents a case study to migrate traditional

applications to the cloud. We implement CloudFTP on
Windows Azure along with the auto-scaling feature. We also
implement a benchmark to evaluate the performance of the
cloud ftp server. From the design and the evaluation results,
we summarized potential benefits and risks to migrate
traditional applications to the cloud. The summary could
help cloud developers migrate traditional applications
quickly and safely, especially on Windows Azure platform.

REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith et al., “A view of cloud

computing,” Communications of the ACM, vol. 53, no. 4, pp. 50-58,
2010.

[2] S. Bhardwaj, L. Jain, and S. Jain, “Cloud computing: A study of
infrastructure as a service (IAAS),” International Journal of
engineering and information Technology, vol. 2, no. 1, pp. 60-63,
2010.

[3] W. Lu, J. Jackson, and R. Barga, "Azureblast: a case study of
developing science applications on the cloud." pp. 413-420.

[4] T. White, Hadoop: The definitive guide: Yahoo Press, 2010.
[5] M. Isard, M. Budiu, Y. Yu et al., “Dryad: distributed data-parallel

programs from sequential building blocks,” ACM SIGOPS Operating
Systems Review, vol. 41, no. 3, pp. 59-72, 2007.

[6] M. Stonebraker, “SQL databases v. NoSQL databases,”
Communications of the ACM, vol. 53, no. 4, pp. 10-11, 2010.

[7] J. Postel, and J. Reynolds, “Rfc 959: File transfer protocol (ftp),”
InterNet Network Working Group, 1985.

[8] B. Calder, J. Wang, A. Ogus et al., "Windows Azure Storage: a highly
available cloud storage service with strong consistency." pp. 143-157.

[9] R. Buyya, C. S. Yeo, S. Venugopal et al., “Cloud computing and
emerging IT platforms: Vision, hype, and reality for delivering
computing as the 5th utility,” Future Generation computer systems,
vol. 25, no. 6, pp. 599-616, 2009.

[10] N. Leavitt, “Is cloud computing really ready for prime time?,”
Computer, vol. 42, no. 1, pp. 15-20, 2009.

[11] P. Mell, and T. Grance, “The NIST definition of cloud computing,”
National Institute of Standards and Technology, vol. 53, no. 6, pp. 50,
2009.

[12] L. M. Vaquero, L. Rodero-Merino, J. Caceres et al., “A break in the
clouds: towards a cloud definition,” SIGCOMM Comput. Commun.
Rev., vol. 39, no. 1, pp. 50-55, 2008.

[13] C. Evangelinos, and C. N. Hill, “Cloud Computing for parallel
Scientific HPC Applications: Feasibility of running Coupled
Atmosphere-Ocean Climate Models on Amazon’s EC2,” ratio, vol. 2,
no. 2.40, pp. 2.34, 2008.

[14] C. Hoffa, G. Mehta, T. Freeman et al., "On the use of cloud computing
for scientific workflows." pp. 640-645.

[15] S. Ostermann, A. Iosup, N. Yigitbasi et al., “A performance analysis
of EC2 cloud computing services for scientific computing,” Cloud
Computing, pp. 115-131, 2010.

[16] A. Khajeh-Hosseini, D. Greenwood, and I. Sommerville, "Cloud
migration: A case study of migrating an enterprise it system to iaas."
pp. 450-457.

440

