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Abstract. As testing often consumes over 40% of the typical project
development effort, there is great need for optimizing the testing effort.
In addition, as the cost of fixing defects is dramatically lower when fixing
those close to where they were introduced, finding defects in the early
life-cycle phases is critical. TTCN-3 (Testing and Test Control Notation),
developed at ETSI and standardized by the ITU-T, enables testers to
specify test cases for the various types of testing, and supports reuse
of test artifacts. We have used TTCN-3 as a complete test solution in
the development of network element software. This paper presents the
benefits we have observed during system development and provides a
comparison with other testing practices deployed in our organization.

1 Introduction

Testing consumes typically over 40% of the total software engineering effort in
telecommunication system development. A typical breakdown of the total test
effort is shown in Table 1, as based on our experience in developing telecommuni-
cation systems (the data in this table represents our base line of expected effort
as averaged from a reasonably large number of similar development projects).
These development projects traditionally have used languages such as C, Perl,
or Tcl to specify test suites and implement test environments. From this ta-
ble, it is apparent that most of the effort is spent on developing the environ-
ment for carrying out the overall test activity, followed by the development
of the test cases. It is also clear that most of the effort is spent in activi-
ties other than testing of the system under test. Test teams typically use or
develop different tools and environments for integration testing, performance
testing, conformance testing, and load testing, with minimal reuse between
them, or no-reuse at all. When a defect is detected, it takes considerable time
to associate this defect with the appropriate aspect of the system under test
due to the hand-crafted test environment, difference in environments, differ-
ent test scripts, and the manual effort of tracing tests to requirements, de-
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sign, or code artifacts. It is plain that development projects could save sig-
nificant efforts were they to spend time only on test objects by using stan-
dard test environments, which have the capability to support different types
of testing activities, rather than developing custom environments every time
again.

The results of an earlier pilot project in protocol implementation encouraged
us to rely on TTCN-3 and supporting tools for the development of a major
release of a telecommunication system. This system required, of course, unit
testing, and integration testing. As the developed network elements were per-
formance critical, we also needed to perform rigorous performance testing, con-
formance testing, load testing, and reliability testing. We wanted to rely on
a single environment that could support these testing needs in a transparent
manner and would allow us to reuse as much of the test artifacts as possible.
In addition, some of the network elements were developed using a new devel-
opment methodology (UML 2.0 and supporting tools), and thus, testing also
involved profiling the system under test to obtain performance measures such
as message queuing times, message processing times, timer delays, etc., under
different call load scenarios, in order to obtain insights about the adequacy of
this methodology.

Table 1. Effort Distribution in conventional testing

Test Activity Effort Spent

Test architecture 7%
Test design 10%
Test case identification 8%
Test case development 20%
Cost of Quality of Test System 7%
Communication, encoders and decoders 8%
Test Environment (Logging, Tracing, Defect detection support,
Validation, Regression testing, other support activities) 25%
Test Management (Test case Organization,
description, communication with customer, etc.) 7%
Other (Learning, procurement, setup) 8%

100%

This paper summarizes our experiences and the benefits observed of lever-
aging TTCN-3 in this development project. Section 2 highlights the features of
the TTCN-3 language and the supporting tools we deployed. This section also
overviews our testing approach and our test architecture. The sample test case
in section 3 illustrates various features of TTCN-3. Section 4 describes our de-
velopment project. In section 5, we give a comparison of the traditional test
development approach relying on programming languages such as C, Perl, or
Tcl with the TTCN-3 approach. We conclude with a summary of the impact
TTCN-3 had on our testing efforts.
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2 TTCN-3

Recent efforts at ETSI have led to the introduction of a common general purpose
testing language for the industry: TTCN-3 (Testing and Test Control Notation).
While its precursor TTCN-2 was mainly used for communication and network
system or subsytem testing, TTCN-3 has a rich set of features which make it
suitable for other domains also, such as automotive or telematics applications [5],
as well as for different types of testing activities. We believe that TTCN-3 ad-
dresses most of the issues raised in section 1.

2.1 TTCN-3 as a Test Solution

The following features of the TTCN-3 language make it suitable for the testing
of communication and network systems as well as for other domains.

– Synchronous and asynchronous communication mechanisms help in testing
of procedure based and message based systems.

– Data and signature templates with corresponding matching mechanisms pro-
vide flexibility to the user to reuse these templates across various test cases.

– The user is able to specify the expected messages with all applicable message
parameters required to determine that a test case has passed.

– Separation of test case specification from execution control. The same test
case can be executed in a loop at specific time intervals, or it can be grouped
with other test cases, or it may be sequenced for stress testing, and so on.
Each test case can thus be independently controlled.

– Dynamic concurrent testing configurations provide the user with a flexible
option to simulate the behavior of unavailable components (for example,
components that are still under development). This feature also helps in
writing the test case in a more realistic scenario in the presence of concurrent
components.

– Encoding information can be specified along with the test case. Note that at
times the same message has to be encoded or decoded differently, depending
on the context.

– Test cases may be written in programming languages (such as C), MSC
notation, or the tabular format familiar from TTCN-2.

– External code integration provides the flexibility to integrate legacy encoders
or decoders, code libraries, transformations, etc.

– Regular expressions greatly simplify the specification of expected messages
– Extensions to implement automatic configuration of the system under test

(SUT) using SUT operations.
– Finally, TTCN-3 is a standardized language supported by commercial tools,

such as Telelogic Tau Tester or Testing Technologies TTThree.

2.2 Overview of Tau Tester

Telelogic Tau/Tester is a tool for designing, creating, and executing TTCN-3 test
suites. It includes editors for TTCN-3, ASN.1, and text. The tool provides build
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facilities, an integrated MSC viewer, and a log file creator. The major features
of Tau/Tester are as follows.

– Support for TTCN-3.
– Support for ASN.1 PER (aligned and unaligned) and BER (definite and

in-definite) encoding and decoding rules.
– TTCN-3 encoding/decoding must be written manually.
– Integrated development environment.
– On-line help.
– C code Generator.
– Support for TRI and PL (proprietary) integration mechanisms.
– Provides logging, document generation, and recording of the test execution.

2.3 Test Environment Architecture

The typical test system architecture and components/tools involved in test-
ing are shown in fig. 1. TTCN-3 files which comprise the test system archi-
tecture, its behavior, data and control, along with the adaptation code (en-
coder/decoders and communication between test system and SUT), are pro-
cessed by the TTCN-3 tool which generates code, produces a makefile, and
compiles the test system. Test cases can be controlled by the user through the
execution control UI. The communication between test system and SUT can
be implemented using standard TCP/UDP communication links or proprietary
protocols.

Fig. 1. Test Environment Architecture
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2.4 Test System Architecture

Figure 2 shows the components of the executable Test System. TTCN-3 gener-
ated code executes on top of the runtime system libraries that implement the
abstract constructs of the language. The runtime system controls the execution,
it encodes/decodes messages using appropriate codecs, and logs system events
via the log management system. Communication with the SUT is through the
communication system.

Fig. 2. Test System Architecture

2.5 Test Development Process

Figure 3 outlines the major phases of test development. Sequence Diagrams or
MSC/HMSC [6] are often used during the test requirements phase. Using these
notations, both valid and invalid test scenarios can be described easily. During
the architecture phase, a choice has to be made between multi-threading (the
multi component/concurrent model) and the simple/single component model.
In general, for integration or system testing, a single component model meets
most of the requirements. The concurrent model, on the other hand, is well-
suited for load testing. In a test architecture following the concurrent model,
the test verdict depends on the verdicts for the individual components. The test
data is represented using templates and passed as arguments to the messages.
Parameterized templates and regular expressions may help to increase the reuse
of test data and test cases. The test cases can be called in sequence to form an
integration suite.
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Fig. 3. Phases in test system development

3 Sample Test Case

From the example test case [1] below we can easily see the the various aspects of
a TTCN test: architecture, behavior, and control. The detailed test description
can be seen from the sequence diagram and objectives table in fig. 4.

module sampleTC_valid
{
// Data Definitions
type record Packet
{

integer info,
charstring data

}
type port DataPort message
{

inout all;
}
// Test Component declaration PTC
type component MyTestComponent
{

port DataPort CompPort;
timer TCWaitTimer:= 100.0; //seconds

}
type component SystemComponent
{

port DataPort SysPort ;
}
// template definitions
template Packet send_message :=
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{
info := 1,
data := "Connect"

}
template Packet expected_message :=
{

info := *,
data := "Response 1"

}
/* test case TC_01 */
testcase TC_01() runs on MyTestComponent // defines MTC
system SystemComponent
{

log("Start test case execution for TC_01");
map(mtc: CompPort, system: SysPort);
CompPort.send(send_message);
TCWaitTimer.start;
alt
{

[] CompPort.receive(expected_message){
TCWaitTimer.stop;
setverdict(pass)

}
[] any port.receive{

TCWaitTimer.stop;
setverdict(fail)

}
[] MaxTimer.timeout{

setverdict(fail)
}

}
unmap(mtc: CompPort, system: SysPort);

}
control /* control part of the module */
{

execute (TC_01 ());
}

} /* end of the module */

The architecture part of this module begins by declaring a simple message
data structure referred to as a packet, comprised of an info integer field followed
by the data characterstring. Then a simple port type able to convey arbitrary
bidirectional messages is declared. We then describe two components, the test
driver and the component representing the SUT. These communicate via the
identified ports.
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Then two templates for messages are defined: A message to be sent to the
SUT, and the expected reply message. The latter defines the pattern a message
received from the SUT has to satisfy to be recognized as a reply. In this particular
case, a reply message may have an arbitrary info field, as indicated by the *
(wildcard) symbol, but must have Response 1 as data. In the control behavior
section, a simple test case is defined. Upon invocation, the connection between
test driver and SUT is established, the first message above is sent to the SUT,
and a timer is started. The test component now is waiting for one of three events:
Either the defined reply message is received at the appropriate port, upon which
the timer is stopped and the test case is considered to have passed. If any other
message is received on any port, or the reply message is received on any other
port, the timer is stopped and the test case is considered to have failed. Similarly,
if the timer expires without the reply message having been received, the test case
is considered to have failed. Then the connection between test component and
SUT is deleted.

Finally, the control part simply tells us to execute that single test case.

Identifier MSC TC Valid

Reference to
requirement

Requirement #1

Initial
Condition

Initially in Idle State

Checks to be
performed

Test component should
now address a port of
SUT.

Verdict
criteria

Message has been received
successfully

Fig. 4. Sample MSC and Objectives Chart

4 Case Study Overview

This paper presents a case study of testing a basic network element developed
using UML 2.0 for a high-availability target platform [3]. It also outlines the ben-
efits of TTCN-3 as compared with conventional testing practices using languages
such as C, Perl, or Tcl.

In this project, we developed a new mobility management layer for a CDMA
network, with high availability and scalability to meet next generation demands.
The project involved development of the call processing stack, as well as mobility
management, resource management, and link management components of the
core network.
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The call processing layer was architected using configurable working threads
to share the call load (see fig. 5). This layer was developed from UML and imple-
mented on a High Availability platform. A main concern of this implementation
was the ability to handle are large call load, and be flexible to support further
increasing call loads. Calls are routed by the main thread (Router Thread) to
call processing threads (labelled Thr1, Thr2, etc., in fig. 5), which then process
these calls with the help of supporting threads. The Router Thread performs
load-balancing across the call processing threads. The number of call processing
threads can be configured dynamically depending on the call load.

Fig. 5. Architecture of the System Under Test

Test cases were developed for integration testing, system testing, component
testing, and load testing. The load system used two components to simulate
two interfaces of the system. Along with the test system, user defined library
functions had to be integrated to calculate the response times of the SUT. The
integration test cases were also used for system testing by systematically inte-
grating each module and interface.

4.1 Architecture

The Abstract Test System may have either one or two components in addition to
the encoder/decoder (Adaptation Layer) with ports for message exchange with
the SUT (see fig. 6). The Abstract Test System Interface (ATSI) receives two
kinds of messages; hence there are two ports, one for each kind of message. The
test system ports establish a TCP connection with SUT ports or use UDP data
packets to exchange messages with the SUT.

The static test execution setup is shown in fig. 7. It shows the system under
test (right-hand side) and the Test System (left-hand side) communicating via a
TCP/IP connection. The SUT is comprised of application code (in this case gen-
erated from UML 2.0 designs), encoder/decoder, tool-specific run-time library,
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Fig. 6. Test System Architecture

and a communication module, whereas the major components of the test system
are the TTCN-3 generated code, the TTCN-3 run-time library, encoder/decoder
and the communication module. In-coming messages are sent to the application
layer after decoding by the respective decoders. Out-going messages are encoded
by the respective encoders and then sent to the target system. As there are two
types of messages being exchanged, both systems have two threads for receiving
each type of message. The Telelogic Runtime Library simplified the creation of
these threads by providing appropriate hooks, for both SUT and the test system.
The generated application code too executes on separate threads; the underlying
Runtime Library provides mutual exclusion for all these interacting threads.

Fig. 7. Static Test Execution Setup

Both single (S-TTCN) and multi component models (C-TTCN) are used for
load testing; the single component model is used for integration and system test-
ing. During load testing, the SUT receives messages from different test systems,
instead of a single test system as in conformance testing and integration testing.
The dynamic execution setup for load testing is shown in fig. 8.

A TTCN-3 implementation has 4 modules: Data types, architecture, behav-
ior, and control modules. The external functions are defined in a separate mod-
ule. The relationships among the modules are shown in fig. 9.
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Fig. 8. Load testing execution setup

Fig. 9. Relationships among TTCN-3 modules

4.2 Test Case Development

For integration testing, separate test cases were developed for call setup, call
termination, and hand-off. Both success and failure test cases were defined to
gain further confidence in the system behavior. Most of the system test cases
were obtained by reordering and combining the individual integration test cases.
For example, the reference MSC in fig. 10 below shows that the system test
case “end-to-end Call Test” results from the integration of the three basic test
cases for call setup, handoff, and call termination. Such integration is achieved in
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Fig. 10. Reference MSC for Call Setup

the control module; in addition, some templates were changed to obtain invalid
behaviors to ensure better coverage of the SUT.

4.3 Load Testing

After ensuring that the system is initialized properly, the test system gener-
ates the first call setup message following the single component load test system
model. Calls are generated as per the configuration at different rates (from one
call per second to 30 calls per second) with other messages interleaved. Timers
are used to configure the load on the system. Since the structure of each message
was similar, a message type was created, and all messages contained this struc-
ture as their parameter. The contents of this structure was changed whenever
messages were exchanged by the corresponding systems. On the concurrent com-
ponent model, the main test component creates the call generator component
after every interval, which in turn generates one call and dies after termination of
that call. External functions were used to measure the time taken before sending
and after receiving messages. These functions measure the performance of the
SUT as well as of the test system. Based on performance measurements, the call
rate was increased or decreased. The result of each test case was logged to a file.

5 Comparison with Conventional Testing

Languages such as C, Perl, or Tcl are not primarily intended as testing languages,
but they do enable us to write test cases. Often engineers think that testing is

B. Rao , K. Timmaraju, and T. WeigertG.



Network Element Testing Using TTCN-3: Benefits and Comparison 277

merely calling a function to send a message and later comparing the result ob-
tained with the expected result; this mentality eventually leads to ad-hoc testing.
In such testing, different test environments are often repeatedly developed, and
unnecessary logic for comparisons often reduces the time available for implement-
ing test cases and the test system. Conventional languages provide few or no sup-
porting facilities to go beyond ad-hoc testing and to manage testing in a system-
atic way. Developers have to visualize, plan, and implement everything starting
with architecture, the separation of encoding/decoding from behavior, communi-
cation, comparison logic, logging, data management, reporting, document genera-
tion and so on. However, most of these features are provided directly by TTCN-3,
which may immediately impact various business parameters (see Table 2).

Table 2. TTCN-3 impact compared to that of conventional languages

Business Parameters Conventional Testing TTCN-3

Productivity 1x 2x (Better)
Impact on Quality 1x 2x (Better)
Impact on CTR 1x 1.5x (Better)
Reuse 1x 2x (Better)
SUT coverage (same effort) 60% 90%

These parameters were estimated before the project and have been verified by
other projects. Test coverage was estimated to be at 90% with the same amount
of test effort, based on the baselines of the organization (as compared to 60%
test coverage with conventional testing).

With respect to features of the TTCN-3 language, the following observations
surfaced:

– Templates and timer handling enabled good solutions for integration testing,
reliability testing, performance testing, and load testing.

– Control logic, modified templates, and concurrency allowed us to write load
generation and processing logic conveniently as part of the test case.

– TTCN-3 code is independent of the platform it is developed on, and it further
is very portable. The same TTCN-3 code was used with another tool, with
only minor modifications to integration code (adaptation layer).

– Considerable amount of reuse across different types of testing was achieved,
in particular resulting from reusing test cases and templates.

– The cost of quality of the test system was substantially less by virtue of
concentrating only on test objectives.

– Generated test systems can be used as back ends because of their easy inte-
gration with other system components, developed in arbitrary languages.

Table 3 shows the distribution of the total test effort for projects leveraging
TTCN-3. From this we can conclude that within a given time one can develop
more test cases with better quality using TTCN-3, as compared with the conven-
tional approach (in Table 1). While a new network element was developed during
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this case study, we feel that the data observed is representative of telecommuni-
cation system software in general.

In our experience, the test effort spent on projects following the conventional
approach is roughly 1.5 times the effort spent in projects developing test suites
using TTCN-3 and leveraging a TTCN-3 execution environment.

Table 3. Effort Distribution using TTCN-3

Test Activity Conventional TTCN-3

Test architecture 7% 8%
Test design 10% 7%
Test case identification 8% 15%
Test case development 20% 45%
Cost of Quality of Test System 7% 7%
Communication, encoders and decoders 8% 8%
Test Environment (Logging, Tracing, Defect detection
support, Validation, Regression testing, other support
activities)

25% -

Test Management (Test case Organization, descrip-
tion, communication to customer etc.)

7% 5%

Other (Learning, procurement, set-up) 8% 5%

100% 100%

Table 4 further summarizes the impact of TTCN-3 on testing based on the
test projects done in our organization.

6 Conclusions and Recommendations

TTCN-3 enabled the development of a test environment which supported the
various types of testing required and the reuse of test artifacts between these test
efforts. Further opportunities for automation were identified and implemented,
such as the generation of proprietary encoders/decoders and the generation of
TTCN-3 data types from UML 2.0 data types.

Based on our experience and observations from this and similar projects, we
feel that test automation with TTCN-3 can be beneficially employed for module
testing, integration testing, performance testing, conformance testing, and load
testing of communicating and event driven systems. Though TTCN-3 is claimed
to be general purpose, some enhancements are required to truly make it suitable
for testing GUI and data base systems.

We strongly feel that TTCN-3 is well suited for testing in the infrastructure
domain. Not only did it help the testing and development teams to generate
test cases faster, but also, debugging of test cases became easy. The benefits are
significant for medium and long-term projects (but impact is harder to assess
for projects with short cycle times). We expect the emergence of TTCN-3 as a
prominent testing technology, across a wide variety of domains.
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Table 4. TTCN-3 Impact on testing

Feature Aspects Our Rating

Test architecture The framework provides good mechanism with
Simple TTCN and Concurrent TTCN

Excellent

Test design The design is modular and independent from
the platform

Excellent

Test case
specification

No explicit support but MSC can be used
extensively to document the test cases

Very good

Test data Very good support with templates, parameter-
ized templates etc.

Excellent

Test execution Good support for execution of a test cases
from the test control block

Very good.
Scope for some
improvements

Modifiability of test
cases

Templates, modular development Excellent

Test reporting Indicates which test have failed and passed,
with reasons and byte information

Good.

Reuse Test case and data level reuse Excellent

Log management Supports MSC and text based logging Excellent

Ease of learning of
the language

4 days of learning and practice are needed Satisfactory

Support for ASN.1 Support for ASN.1 data types Excellent

Support for
Encoder/Decoder
generation

Automatic generation of support for
encoders/decoders from TTCN-3, ASN.1
and mixed types

Very good for
ASN.1

Support for test
management

Support dynamic selection of test cases Good

Support for test
case verification and
validation

Compilation of the test cases, definitions etc Very good

Scope for further
automation

TTCN-3 encoder/decoder, structures,
generation of test cases from requirements,
test management integration etc.

Excellent

Legacy and External
code Integration in
Test System

Library Integration and encoders/decoders for
the library parameters have to be written
explicitly

Bad
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