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Abstract-Health monitoring is used to analyze and predict the 

battery health status. However, no matter what health 

monitoring methods and parameters are, a major aim is to 

improve the battery reliability through surveillance and 

prognostics. Hence, the latest known methods of state estimation 

and life prediction based on battery health monitoring are 

discussed in this paper. Through comparing their characteristics 

respectively, a prognostics-based fusion technique is proposed 

that combines physics-of-failure (PoF) with data-driven 

technology. The fusion approach not only investigates battery 

failure mechanism caused by environmental and internal 

characteristics, but also assesses parameters with aid of real-time 

health monitoring. The specific method is presented to realize the 

estimation on remaining useful life (RUL) of batteries. 
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I. INTRODUCTION 

Lithium-ion battery has been widely applied from 
hand-held electronics to electric vehicles by virtue of its 
comprehensive perfonnance. As a critical component of power 
supplies, battery reliability has a primary effect on an overall 
system. Battery failures cause perfonnance degradation, 
potential safety hazard, and even catastrophic result (e.g., the 
laptop recall event of Dell in 2006 [1] and HP in 2009 [2]). 
Therefore, accurate state-of-charge (SOC), state-of-health 
(SOH) and remaining useful life (RUL) of a battery are 
significant to both manufacturers and end users. 

Many methodologies have been used to conduct state 
estimation and life prediction of batteries. Each of them falls 
into two main categories: physics-of-failure (PoF), and 
data-driven techniques. PoF is used to determine the reliability 
of batteries in terms of RUL under a specific failure 
mechanism due to a specific load condition. However, it cannot 
identity the correlated mechanisms and faults. The data-driven 
techniques are able to detect the fault, but they cannot 
distinguish between different failure mechanisms. Thus, we 
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propose a fusion technique that combines PoF with data-driven 
method on the reliability of the battery. Data-driven approaches 
contribute to distinguish the parameters relevant to the 
observed degradation and choose the PoF models 
correspondingly. Under the accelerated life test, RUL can be 
determined for a specific failure mechanism under certain load. 
The proposed method not only gives us a more reasonable and 
accurate prediction but also improves the cost efficiency during 
a battery qualification testing. 

II. CORE ISSUES IN BATTERY HEALTH MONTTORING 

A. Monitored Parameters 

Health monitoring for Lithium-ion battery is conducted to 
combine fundamental understanding of degradation 
performance and common monitoring methods. With the 
development of telecommunication techniques, more 
parameters have been monitored to form a further 
understanding of battery degradation. 

TABLE 1. BATTERY MONITOERED PARAMETERS [3] 

Categories Objectives SOC/SOH 

Voltage (Cut-off, 
Indicate rectifier 

Indicate state of charge, cannot 
High/low) predict capacity 

Battery 
Find weak cells 

No need for battery discharge to 
Conductance indicate relative state of health 

Temperature / Show high 
Combine with other data to 

Temperature battery 
verify battery fault Difference temperature 

Indicate Capacity prediction is based on 
Battery Discharge discharge is in history. Only reports what has 

progress happened 

Require battery Complex & variable calculations 
Run Time discharge and needing time, temperature, DC 

history current, and history 

Omine Battery Detects battery No capacity prediction (indicates 
Alarm availability battery is connect to system) 
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Table I shows relevant monitored parameters to battery 
health in the current battery industry. The objectives of health 
monitoring are to detect and predict the remaining charge and 
capacity of batteries, which will provide meaningful and 
accurate indication to the battery management. 

B. Health Monitoring 

Usually, SOC, SOH and RUL of batteries are used to 
characterize the battery health status. Through monitoring 
parameters mentioned above, these attributes can be estimated 
accurately. SOC is defined as a ratio of the remaining capacity 
and the rated capacity [4]. SOH is used to describe the physical 
condition of the battery, which is commonly characterized by 

the loss of rated capacity as shown in (2). Qmax is the 

maximal releasable capacity, which is equal to Qrafed for a 

brand-new battery. However, it declines as a function of time 
through consuming and aging. 

(I) 

(2) 

In the battery manufacturing industry, State-of-Life (SOL) 
is introduced to quantify the RUL of battery as the maximal 
capacity falling below 80% of its initial rated capacity [5]. SOL 
is a prognostic metric. The number of charge-discharge cycles 
related to the specific performance (i.e. 80% of the nominal 
capacity) is the battery cycle life. In this paper, degradation 
trend of the time-varying capacity is tracked, and the 
time-to-failure is estimated to realize the proposed approach. 

III. HEALTH MONITORING BASED ON FAILURE 

MECHANISMS 

A. Failure Mechanisms 

Batteries are electrochemical devices, which convert 
between chemical energy and electrical energy by means of 
controlled chemical reactions between a set of active 
chemicals. Unfortunately, there is a slow deterioration of the 
chemicals as a result of unavoidable, unwanted chemical 
actions. For example, the crystal or dendrite growth changes 
the morphology of particles or causes the loss of electrolyte. 
These are the inherent failure mechanisms but barely 
perceptible to the users even to some manufacturers. Thus, 
most manufacturers test on the observable physical 
characteristics, which can be reflected due to the internal 
mechanisms. The common monitored parameters include: 

Discharge rate - the higher the discharge rate, the lower the 
discharged capacity [6]. 

Depth of Discharge (DOD) - cycling at a reduced depth of 
discharge improves the cycle life of a battery, decreases 
capacity fading, and slows down the changes observed in the 
shape of the discharge curves in Guena's paper [7]. 

Self-discharge/recharge - a main failure cause due to the 
loss of capacity occurring at the negative electrode. It is 
restricted by the electronic conductivity of the 
Solid-Electrolyte-Interface (SEt) layer [8]. Some fraction of 
voltage and capacity will increase at the next cycle during rest, 
and called self-recharge process. 

Temperature - high temperature reduces internal resistance 
and causes high self-discharge. The high temperature situation 
increases battery's performance temporarily, however, it makes 

the degradation of lithium-ion batteries much faster than that at 
the normal situation [9]. 

Besides, other physical causes, such as high voltage, abuse 
and mechanical stresses, will also lead to failure. However, 
these causes can be avoided by protection circuit or assured to 
work in a reasonable range through setting alarm signals. 
Hence, these causes are neglected in our current study. 

B. Health Monitoring Methods 

Specific Gravity Measurement is a traditional way of 
determining the charge condition of lead acid batteries. 
However, it is not suitable for other cell chemistries, such as 
lithium-ion battery. 

Direct measurement of the capacity can be realized at a 
constant discharge current rate because the charge is equal to 
the current multiplies the time. However, the discharge current 
varies continuously in a nonlinear way. Moreover, this method 
needs to know how much charge the battery contained before 
discharging. Thus, the manufacturers cannot achieve the initial 
charge and capacity information of the battery during 
qualification testing. 

Coulomb counting [10] measures from the charge 
transferred in to out of the cell by accumulating the current 
with time. A fully charged situation is viewed as the calibration 
reference point. However, as the battery performance fading, 
the reference point should be compensated continuously for the 
loss of the capacity. 

As a black box, an inherent failure of battery caused by 
internal parameters is more expected to be identified. With the 
development of the measurement technology and reduced cost, 
Electrochemical Impedance Spectroscopy (EIS), a 
non-invasive method, has been used to characterize the battery 
capacity degradation through variations of the internal 
parameters. In other words, battery life can be determined and 
predicted from the impedance changes. EIS is a significant 
technology in the construction of "PoF mechanism" including 
coatings, anodized films, corrosion inhibitors and detailed 
information of the system under testing [11]. By injecting a 
small AC signal into a battery, the responses will be extracted 
from the equivalent circuit model (fig. 1). The corresponding 
Nyquist plot (fig.2) can be used to explore the equivalent 
impedance parameters, which generally include double layer 
capacitor CDL, the charge transfer resistance ReT, the Warburg 
impedance Rw, and the electrolyte resistance RE. 
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[v. MODELING, STATE ESTIMATION, AND LIFE PREDICTION 

A. Existing Modeling 
Different models, such as analytical models and 

degradation models, have been developed to analyze the 
battery status. 

Rakhmatov [[2] developed an analytical model for generic 
batteries. It is able to predict the time-to-failure for a given 
load. The model was developed from the Peukert Equations: 

C = IfJT where C denotes the theoretical capacity of a 
battery, and j3 is an appropriate coefficient [13] that needs to 

be estimated for analytical model. I and T are the average 
load current and time respectively during discharging process. 
To present the degradation trend, the capacity can be delineated 
as a function of current with time-varying through tracking the 
concentration of species. 

C(t) = I(t)+r(t) (3) 

Where l(t)= J >(T)dT r(t)=2I ! i(T).e-m2r(T-r)dr. 
o 

N � e -rm2 (T -I,) 
_ e _y'm2 (T -1,_1) 

C"' � /k_l(tk-tk_l+2� '1m2 
) (4) 

Where C(t) is viewed as the lost capacity of the battery 

under the specific i(t) , I(t) is the capacity consumed by 

external circuit, and ret) is the remaining unavailable charge 

during discharging. (4) is the numerical expression of (3) in the 
discrete current expression while (S) is a modified expression 
of Peukert's law with general case. 

(S) 

To predict the lifetime T, the parameter pair (C,j3) 

should be estimated from the experimental data for the 
modeled battery by virtue of fitting the load values for a given 
set of observed lifetimes. 

However, the analytical model employs an equivalent 
expression as (6) and goes through a high level of abstraction 
of the battery electrochemical phenomena. That means it 
cannot provide other battery physical features in terms of 
internal resistance and open-circuit voltage. 

Thomas utilized a simple empirical degradation model 
taking into account temperature factor from the statistical 
methodology [14]. The error model provides a basis for 
assessing a level of measurement error based on the experiment 
data. 

(6) 

Where f1(X; t) denotes the mean of relative resistance 

(relative to the initial resistance). 

Take the log formation of (6): 

1 
10g(f1(T; t) -1) = ao + at· -+ m · log t (7) 

T 

(7) is used to fit the degradation model through robust linear 
regression. 

(8) 

While (; (X; t) is the error including two parts: a unique 

effect to each cell and measurement error. Thus, the overall 
model parameters that need to be estimated include: ao' at, 

m, ()�, ()� .  The latter two represent the variances of <'i; 

and ff;, respectively. The degradation model was fitted under 

40°C, 47.SoC, and SsoC. The 30°C data were used to validate 
the model. 

This degradation model is an empirical-based model as a 
function of temperature and time to predict RUL. The key issue 
is whether different temperature level will take a risk of the 
internal chemical reactions of battery. Thus, the critical 
temperature should be used to distinguish between different 
models. If temperature does not give rise to other reactions in a 
certain range, the predictive result will be more convincing. 
Except for temperature, many other parameters leading to the 
degradation are ignored in the empirical model. Thus, we need 
to adopt PoF methods to quantify and distinguish the 
distinctive level caused by a specific factor. 

EIS technology has been developed to fmd the linear 
correlation between a battery capacity and internal impedance 
[IS]. The internal resistance is able to characterize the battery 
degradation. Through comparing different regression models, 
Gebel fmalized relevance vector machine (RVM) to fit the 
representative aging curves in terms of E[S data. RVM is used 
for model development by using a kernel-based 
regression/classification similar to support vector machine 
(SVM). However, RVM is constructed under Bayesian 
framework and has probabilistic outputs correspondingly. 
Exponential model as (11) was utilized to fit the aging curves 
so as to estimate the model parameters a and j3 .  

Rn = aexp(-j3t) (9) 

The estimated parameters are used to form an initial state 
vector of a life prediction. Thus, EIS technique can provide 
quantified internal parameters to fit a regressive curve more 
accurately. 

B. State Estimation 
As mentioned in Section III.B, coulomb counting can be 

used to estimate the battery capacity. However, due to coulomb 
efficiency, the loss of the charge needs to be compensated to 
estimate SOC accurately. At the same time, both the effects of 
self-discharge and self-recharge should be considered. Ng. 
proposed an advanced coulomb counting method to estimate 
SOC and SOH [10]. Considering the weakness of coulomb 
counting, charge and discharge stages should be separated for 
SOC calculation. The core idea is to build up an individual 
correction coefficient to calibrate the DOD through monitoring 
charge-discharge Ib with a 2 seconds monitoring frequency. 

Thereby, the accurate SOC is established and recalibrated in 
distinctive stage 
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Where 77 have different values at charge and discharge stage. 

Generally, this estimation method utilizes simple calculations 
and has an uncomplicated hardware requirement that can be 
easily implemented. Although Ng. [10] also mentioned the 
estimation of SOH, the weakness of the method is SOH cannot 
be estimated until the voltage reaches the cut-off voltage in 
each cycle. The determination of SOH is not a real-time result 
as a result of ignoring the process information in a fully 
charge-discharge cycle. Thus, the result of SOH cannot be 
considered comprehensively. 

The contribution of EIS is to estimate SOC in 
electrode-electrolyte interface according to the impedance 
variations during a cell life. The linear correlation connected 
the Cil (capacity at nominal rated current of lA) capacity with 
the internal impedance parameter RE+RcT [15], which reflected 
on electrochemical characteristics directly. Thus, internal 
impedance is a good indicator to quantify the loss of capacity. 
Although EIS provides a non-invasive method to extract PoF 
information from battery equivalent circuit for on-board battery 
monitoring, it is costly and requires bulky measurement 
equipment. 

Kalman filter [16] is an intelligent for estimating the 
present value of the time-varying "state" of a dynamic linear 
system. However, the battery degradation is a typical nonlinear 
problem. The extended Kalman filter (EKF) [17] was 
developed with a linearization process at every time step to 
approximate the nonlinear system. A battery state-space model 
is as below: 

A+ 

Xk = !(Xk-l,Uk_1) 

I
-

I+ �'/ I � = Ak_1 - Ak-l + I x,k x.k-l w 

(14) 

(15) 

(16) 

(17) 

Where ! denotes a nonlinear state transition function, and 

g denotes a nonlinear measurement function. x denotes the 

state, y is the measured output. Thus, a predicted state and 

output can be computed from the previous estimation. (14), 
(15), and (16) compute state estimate time update, error 

covariance time update, and Kalman gain matrix [16]. UJk and 

vk follow independent, zero-mean, Gaussian noise processes 

of covariance matrices IOJ and I v respectively. Gaussian 

noise cannot be eliminated in the iteration process. Thus, a 
desired probability density function (PDF) is approximated by 
a Gaussian. An estimation result is subject to the deviation 
from a true distribution and an initial estimation of the state. 
Thus, if the initial estimate of the state is off-target, the filter 
may diverge quickly. 

C. Life Prediction 

The analytical model stated in Equation (5) can be used to 
predict a time-to-failure of battery for a given load, which is 
viewed as the constant or variable current. Thus, the end of 
battery life is a specific value corresponding to different load 
conditions. This kind of prediction cannot provide a 
degradation trend or a real-time performance of battery during 
charge-discharge cycles. As Rakhmatov said, the aging 
parameters that will reflect on degradation performance of the 
battery are valuable to discuss. 

In Thomas's paper [14], the lifetime prediction of 
lithium-ion cells was realized in terms of accelerated 
degradation testing. Based on the empirical relative resistance 
model stated as (8), the simulation data were used in battery 
state estimation at the 40°C, 47.5°C, and 55°C respectively as 
shown in fig.3. If the degradation process is assumed as a 
memoryless process, the resistance model will be accurate to 
estimate SOC and SOH of a battery. However, currently, 
whether that the rate of future degradation depends on the 
environment condition have not been proved. Thus the 
predictive accuracy based on this model in dynamic conditions 
also can not be accepted without suspicion. Furthermore, lack 
of analyzing the failure causes and mechanisms, similarly, the 
model can merely present the degradation trend but not present 
the RUL according to the specific failure threshold. 

1.4 r-----r------,,....---.------r--�----...-____, 

+ 30C 

1.35 ... D 40C 

o 47.5C 

1.3 ... D SSC 

........ � ........... ;., ... , .... , .; .. ,.,.,.,., � ..... ,.,., 

..... ........ ....... ....... � : 

.. , . , ... , ... : . , .... , ... , � .. , . , . ...
. 

0.3 0.4 0.5 0.6 0.7 

Times (Years) 

FIG.3 FITTED DEGRADATION MODEL [14] 

Autoregressive Moving Average (ARMA) is used to 
predict future values of time series data. It is a purely 
data-driven method and does not incorporate with any 
physics-based modeling during computation. The weakness is 
that this method will cause a large uncertainty margin to the 
long-term prediction. Additionally, it may not be possible to 
eliminate all non-stationarity from a dataset even though 
differencing repeatedly. 

RVM combined with Particle Filter (PF) teclmology [15,19] 
was developed to estimate and predict the battery RUL. 
Particle Filter (PF) is a sequential Monte Carlo algorithm 
implementing with Bayesian filter. It utilizes a set of weighted 
samples or particles updated recursively to represent the PDF. 
The evolution in time of the system can be described 
Compared with Kalman Filter, PF makes few multivariate 
Gaussian assumptions. Thus, PF is more general and suitable to 
track a nonlinear process. Gobel [15] combined PF with RVM 
which provide not only a general rigorous construction for the 
dynamic state estimation problems, but also the estimates of 
RUL in PDF form. He presented that PF shows better accuracy 
when compared with other approaches above. 

V. FUSION TECHNIQUE BASED ON PROGNOSTICS AND 

HEALTH MONITORING (PHM) 

By analyzing and comparing the characteristics of 
modeling, state estimation, and prognosis methods, we can see 
that a prediction of RUL of a battery allows exploiting the 
battery failure mechanism in conjunction with the data-driven 
technique. 

PHM presents a new and comprehensive horizon to assess 
and optimize reliability of a battery. PHM can be used to 
estimate the battery failure with a high accuracy, and in tum, 
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provide early alarm and improve the cost efficiency. 
Prognostic-based reliability [20] predicts a reliable situation in 
future by assessing the extent of deviation or the degradation of 
the battery under normal operating conditions. Health 
monitoring of batteries provides a way to respond in a 
preemptive manner and opportunistic manner to the 
anticipation of failures. Based on the prediction results, a 
recommendation for when should the battery be discarded, 
repaired or recharged could be made. These decisions can 
reduce the cost of replacement based on the extent of 
degradation. 

PoF is an approach that utilizes the knowledge of a 
product's life cycle loading and failure mechanisms to assess 
reliability of the product [20, 21]. For batteries, the external 
configuration, inner structure, and material variations can be 
characterized by a PoF approach. Through the accelerated life 
testing, the reliability of a battery is determined in terms of 
time-to-failure for a specific failure mechanism under a given 
load condition. The accelerated factor is quantified in PoF 
approach by comparing test loads with the environment loads. 
It will be used to determine the equivalent life if a battery runs 
at normal operating conditions. 

As mentioned before, EIS is a non-invasive method to 
monitor the shifts in battery orientation or separation of 
materials. Besides, X-ray analysis, and CT scans are also good 
non-invasive methods to spot cracks, internal shorts, and 
delaminating of the electrodes from the current collectors. 
However, from the inherent failure mechanisms perspective, 
destructive failure analysis is more direct to observe the failure. 
Both the electrodes and the electrolyte are the internal 
attributes, such as the electron motion in electrolyte, and the 
volume expansion with gas evolution, which have a function 
on nonlinear degradation. All of these electrochemical 
characteristics can be conducted to build up a generalized 
degradation model or modify the existing models based on PoF 
of lithium-ion batteries. 

Most current prediction technologies are still data-driven 
that monitor and record the health information of large 
multivariate systems through an online mechanism. The 
approaches are capable to detect intelligently and assess 
correlated trends in the system dynamically to estimate the 
current and future health. The data features, such as correlation, 
covariance and residuals etc., provide fault or damage 
information over time. With the aid of prognostic algorithms, it 
is possible to state from the beginning of battery degradation 
towards unhealthy occurrence. Comparing healthy states with 
unhealthy ones, it is possible to estimate the RUL or the time to 
failure of the battery. 

This prediction method is based on fairly predictable 
degradation trend. We have known that the battery 
performance is subject to various external parameters, which 
will present non-exact, non-linear, and non-stationary 
characteristics due to the imperceptible electrochemical 
process. Depending on the data-driven technique, it will predict 
remaining useful life accurately near the failure point. If this is 
the case, the prediction makes no sense and can even lead to a 
diagnosis problem. Furthermore, if multivariable lead the 
battery degradation, data-driven cannot distinguish the 
corresponding relationship between the data features and the 
specific failure causes. 

Our objective is to develop a formal and generalized way to 
predict the RUL of a battery with high accuracy and high 
efficiency, which leads to save the qualification testing time. 
The proposed fusion approach combines the merits of both PoF 

and data-driven techniques. It not only extracts the root causes 
and failure mechanisms that contribute to product failure, but 
also addresses the complexity and the density of systems by 
utilizing operational data. Simply, it can improve the prediction 
accuracy (a smaller deviation of failure time) and precision (a 
narrower confidence bound). The method is worth to extending 
and applying into prognostics for battery qualification and 
health monitoring. The framework is given in figA. 

FIGA HEALTH MONITORING ON LITHIUM-ION BATTERY 

Before the fusion work, the battery degradation under 
common operating conditions is used to achieve the baseline 
data and to select the fundamental monitored parameters. 
Through monitoring battery status continuously, some 
parameters that contribute significantly to the observed 
anomaly are isolated and used to choose PoF model. For 
example, as mentioned before, the higher the discharge rate, 
the lower the battery capacity. Ci [22] also gave a relationship 
between the available capacity and the specified discharge rate 
with nonlinear characteristics. When a discharge rate goes up 
to the threshold, a usable capacity will drop to 80% of its 
original value to failure. Hence, the C-rate becomes a primary 
parameter relevant to battery degradation. On one hand, the 
discharge rate should be extracted and input into a PoF model 
to conduct a single factor experiment. We can conduct the 
accelerated life test with the different factor levels and predict 
the RUL at the normal operating condition in terms of the 
certain failure mechanism. On the other hand, the threshold of 
C-rate will also become an alarm signal from safety concerns. 
(Other specified parameters will not be introduced here.) 
Furthermore, depending on the different specific failure causes 
and thresholds, the data-driven algorithms can classify 
correlated mechanisms that affect the battery degradation. 
Thus, the RUL of battery can present a more accurate and 
precise result. This kind of monitoring and predictive method 
will have a great promotion on battery qualification with 
time-saving. 

VI. CONCLUSIONS 

Prognostics and health monitoring is an enabling technique 
to conduct the state estimation and predict the remaining useful 
life of battery at an early stage of detection. To solve the 
widely concerned issues of battery health, this paper discussed 
the common failure mechanisms of the battery and compared 
the existing methods of battery modeling, state estimation and 
life prediction under health monitoring. Through combining the 
inherent failure characteristics of the Lithium-ion battery with 
the existing research methods, we proposed to apply a fusion 
technique combining health monitoring and the prognostics of 
battery life. The specific method was presented as a 
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comparative study that makes a solid foundation on the further 
study. 
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