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Abstract—Concurrently exploring both algorithmic and archi-
tectural optimizations is a new design paradigm. This survey
paper addresses the latest research and future perspectives
on the simultaneous development of video coding, processing,
and computing algorithms with emerging platforms that have
multiple cores and reconfigurable architecture. As the algorithms
in forthcoming visual systems become increasingly complex,
many applications must have different profiles with different
levels of performance. Hence, with expectations that the visual
experience in the future will become continuously better, it is
critical that advanced platforms provide higher performance,
better flexibility, and lower power consumption. To achieve these
goals, algorithm and architecture co-design is significant for char-
acterizing the algorithmic complexity used to optimize targeted
architecture. This paper shows that seamless weaving of the de-
velopment of previously autonomous visual computing algorithms
and multicore or reconfigurable architectures will unavoidably
become the leading trend in the future of video technology.

Index Terms—Algorithm/architecture co-exploration, complex-
ity analysis or characterization, dataflow, graphs, multicore,
reconfigurability, visual computing.

I. Introduction

N IKLAUS EMIL WIRTH introduced the innovative idea
that Programming = Algorithm + Data Structure. In-

spired by this paradigm, we advance this to the next level
by stating that Design = Algorithm + Architecture.

Traditional design methodologies are usually based on the
execution of a series of sequential stages: the theoretical study
of a fully specified algorithm, the mapping of the algorithm
to a selected architecture, the evaluation of the performance,
and the final implementation. However, these straightforward
design procedures are no longer adequate to cope with the
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increasing demands of video design challenges. Conventional
sequential design flow yields the independent design and
development of the algorithm from the architecture. However,
with the ever increasing complexity of both algorithm and
system platforms in each successive generation, such sequen-
tial steps in traditional designs will inevitably lead to the
scenario that designers may either develop highly efficient
but highly complex algorithms that cannot be implemented
or else may offer platforms that are impractical for real
world applications because the processing capabilities cannot
be efficiently exploited by the newly developed algorithms.
Hence, seamless weaving of the two previously autonomous
algorithmic development and architecture development will
unavoidably be observed.

As the algorithms in forthcoming visual systems become
more complex, many applications in digital video technology
must be deployed with different profiles having different levels
of performance. Fig. 1 ranks the spectrum of visual computing
algorithms based on qualitative complexity analysis.1

Extrapolating from a high-level description, as illustrated
in Fig. 1, future visual computing algorithms will have better
content adaptivity, extended use of temporal information, and
further increase the physical size and resolution of the image
sequences as they continuously deliver better visual quality.
Recent and future video coding standards such as MPEG have
been and will continue to focus on video coding tools that
are better adapted to the content and that are more refined
in motion estimation for more accurate motion compensation
models that yield greater complexity. Furthermore, the increase
in image-sequence sizes, from standard definition to high
definition (HD) and beyond, is also within the already defined
roadmaps of video coding standards development.

Similarly, the complexity of video processing algorithms,
such as motion adaptive deinterlacers [1], [2], scan-rate con-
verters, and other format converters, is also characterized
by studying the three complexity features discussed above.
Content-adaptive algorithms for high definition video process-
ing, such as those in scalers, deinterlacers, etc., which are
based on the texture contents from surrounding neighbors,
have also been documented in the literature [3], [4] and used

1Within the context of this paper the terms “complexity analysis” and
“characterization” both refer to the analysis of complexity metrics on number
of operations, potential for parallelism, data transfer, bandwidth, etc.
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Fig. 1. Complexity spectrum for advanced visual computing algorithms.

Fig. 2. Spectrum of platforms.

in many applications. Motion-compensated and content-aware
algorithms for increasingly higher definition video processing
technologies will also be seen in the future.

In addition to being content-adaptive, computer vision algo-
rithms are even more complex as they are content aware as the
required cognitive capabilities are added. Computer graphics
algorithms are highly computationally intensive: some graph-
ics algorithms, such as real-time rendering, demand a huge
amount of processing power, and visualizing graphic content
is possible when using many tremendously complex graphics
algorithms. The recent evolution of the processing power of
graphics processing units (GPUs) is a good indication that the
graphics algorithms require ever increasing computing power
to provide a better user experience.

Rapid and continuous improvements in semiconductor and
architecture design technologies have yielded innovations in
system architectures and platforms that offer advanced vi-
sual computing algorithms that target different applications.
Each application has versatile requirements for trading off
the performance per unit of silicon area (performance/silicon
area), flexibility of usage, algorithm changes, and power con-
sumption. Conventional implementations of algorithms were

usually placed at two architectural extremes: pure hardware or
pure software. Although application-specific integrated circuit
implementation of algorithms provides the highest speed or
best performance, this is however achieved via trading off
platform flexibility. Pure software implementations on single-
chip processors or CPUs are the most flexible, but require a
higher power overhead and yield a slower processing speed.
Hence, several other classes of architecture, such as instruction
set digital signal processors and application specific instruc-
tion set processors, have also been introduced (Fig. 2). We
argue and will show that embedded multicore processors and
reconfigurable architectures will become the leading trend in
architectures that use visual computing algorithms for versatile
visual systems.

Because visual algorithms are becoming ever more com-
plex, successfully mapping them onto platforms optimal for
versatile applications is a key consideration for forthcoming
design methodologies. The aforementioned sequential design
flow may provide either excellent visual algorithms that are
highly complex and, therefore, cannot be implemented, or that
can be used only on system platforms with limited applications
because of their poor visual quality. Hence, with the future in
mind, we introduce the concept of algorithm/architecture co-
exploration, which is now a leading paradigm.

The concurrent exploration of algorithm and architecture
optimizations consists of extracting complexity measures of
algorithms featuring architectural characteristics that, together
with the dataflow model, yield the best mapping onto a plat-
form for targeted applications. It is important to note that the
traditional order of growth used in the complexity analysis of
computer algorithms is insufficient because it is based on the
ideal Random Access Machine, which is merely a single point
or platform within the broad spectrum of platforms (Fig. 2).
Because contemporary and future platforms are beyond the
nanometer scale range, the complexity measures we discuss
provide quantitative measures of the intrinsic complexity of
algorithms for envisioning even the scope or spectrum of
future system architectures and platforms.

Furthermore, many complex algorithms such as those for
computer vision that was hard to implement can now be
modeled by better dataflow representation discussed in this
paper and hence making realization feasible.

II. Advanced Visual Computing Algorithms

for Versatile applications

Digital video technology has substantially transformed our
daily life by providing the user with many new ways of enjoy-
ing media content. A great deal of video content is now created
not only by the traditional content creators (e.g., studios and
broadcasting companies), but also by users themselves—who
used to be only the end users of the content creation. Newly
created objects and services [such as user-created content,
personal broadcasting, video telephony, and Internet protocol
television (IPTV)] would not exist without advanced digital
video technology.

At the core of the recent digital media evolution are
visual computing technologies that include the acquisition,
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representation, manipulation, analysis, synthesis, distribution,
and rendition of visual information. Visual computing emerged
from various areas in image and video-processing, computer
vision, computer graphics, and visualization. Interoperability
among the digital video devices was crucial for accelerating
the evolution of visual computing technologies. This interop-
erability was made possible by supporting common formats at
every stage of visual-content processing.

This section surveys advanced visual computing algorithms
for emerging applications in four areas: video coding, video
processing, computer vision, and computer graphics.

A. Video Coding

Video coding standards—produced by international stan-
dardization organizations such as the International Standards
Organization (ISO) and the International Telecommunication
Union—have laid a good foundation for fostering common
video formats in different applications. Among the existing
video coding standards, the MPEG format MPEG-1 was used
in video CD players to replace video cassette players. MPEG-
2 has been the most successful video coding standard: it
serves many application areas, including digital TV, DVD,
satellite/cable broadcasting, and high definition TV. MPEG-
4 Advanced Video Coding (AVC)/H.264 is now the most
advanced and highest performance video coding standard;
MPEG-4 is used in emerging media applications such as dig-
ital video broadcasting/digital multimedia broadcasting, and
IPTV. Currently, MPEG-4 AVC/H.264 is even challenging
its predecessor, MPEG-2, by competing in existing video
applications such as HD-DVD.

Recently, MPEG has developed several new coding stan-
dards, such as scalable video coding (SVC), multiview video
coding (MVC), and reconfigurable video coding (RVC) [5].
The SVC and MVC standards are based on MPEG-4 AVC.
Improving adaptation to video content and adding more coding
modes has allowed more sophisticated algorithms for these
two coding standards. Since the arrival of MPEG-4 AVC,
many designers have tried to develop an efficient decoder,
one able to reduce the complexity of the design architecture
[6]–[8]. RVC is one of the first attempts in video coding
standardization in providing a framework for specifying video
coding standards by means of a library of modular components
and their connections in configuring a codec [5]. It should be
noted that the notion of components in video coding is no
longer at the codec level, but at the tool level constituting the
codec.

We expect that the complexity of video coding tools will
further increase as the demand for more compression and
higher quality is always present because of compelling market
demand, especially from the newly emerging areas such as
HDTV and digital cinema aiming for 2 K and 4 K resolutions
[9]. The research on more efficient encoding and decoding
technologies, such as motion estimation for existing and new
codecs, will continue to thrive [10]–[12].

B. Video Processing

Although video coding is certainly one of the major areas
in visual computing, newly emerging application fields are

arising primarily from video processing areas with very high
computation requirements. Various digital video processing
technologies, such as video analysis [13]–[15], automatic
video annotation [16], object segmentation [17]–[19], and
region-based representation [20], are good examples. These
pre and postprocessing video technologies are anticipated
to be enriched with the more sophisticated algorithms for
better visual quality and compression. Such technologies
may include combined motion estimation and segmentation
[21]–[23].

C. Computer Vision

Traditionally, attempts have been made by computer vision
technologies in the reconstruction of the structure of a 3-D
scene rendered by video data or several images. Memory
and computation-intensive technologies in computer vision are
no longer used exclusively only in research labs. Originated
from computer vision, MVC and free viewpoint TV (FTV),
have been standardized in MPEG for commercial applications
[24]–[26].

In MVC, multiple video bitstreams (e.g., 16 video cameras)
are encoded and transmitted. These bitstreams are decoded
using multiple decoders and subsequently used to produce
a synthetic view generated from an arbitrary viewing angle
[27]–[29]. Having tens of decoders in a system was something
unimaginable merely a decade ago, but has now become
the reality. FTV [30] is yet another computational intensive
technology. Using hundreds of cameras and based highly on
content information, the video data is captured to build a ray
space for reconstructing a free viewpoint video at the terminal.

Medical applications are one of the most prominent fields
of computer vision. The principle of vision technologies in
medicine is the same as in other areas: the extraction of
visual information from image data for medical diagnosis.
For example, computer tomographic image reconstruction and
medical image registration are among the very active topics
of computer vision for medical applications [31]–[33]. Along
with other tasks in computer vision, applications in medical
imaging have been regarded as computation-intensive tasks
because of the large size of the test-data sets used (in tens of
gigabytes) and of the highly detailed low-level features that
must be extracted from medical images acquired from different
energy modalities.

D. Computer Graphics

The complexity of providing visual computing services from
digital video to 3-D games is ever increasing, and this has
been one of the compelling reasons to continuously develop
new and more powerful platforms. For most computer graphics
algorithms, ordinary single-CPU-based systems are insuffi-
cient. However, graphics computing is now possible via dis-
crete GPUs with speeds up to ten times faster than those
integrated with the CPU. GPUs have been introduced for
computationally intensive processes in the graphics pipeline,
and primarily for interactive 3-D graphics such as games.
Many computationally intensive operations in the graphics
pipeline are now processed by GPUs [34].
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Visual processing technologies in computer graphics are
classified as: 1) modeling and animation, and 2) render-
ing. Modeling and animation technologies, despite the huge
amount of data they require to be processed, are not as
computationally intensive as rendering technologies. This is
why there are two different levels of visual quality, such as
those in animated movies and in games.

Many modeling and animation technologies have been
standardized as industry standards [35]–[37]. Like video, the
compression of modeling and animation data received more at-
tention in standardization activities like ISO/MPEG [38]–[40].
Animation framework extension is an MPEG standard defining
many modeling and animation technologies [36], [41].

Rendering technologies demand high computational capa-
bilities provided by graphics architectures to support colli-
sion detection, physics simulations, scene management, and
ray tracing. With further evolution of GPU architecture in
graphics, highly sophisticated rendering technologies will
be used in commercial devices in the very near future
[42]–[44].

III. Visual Computing on Multicore

and Reconfigurable Architectures

Before we describe the details of algorithm/architecture co-
exploration, we first survey the spectrum of the emerging
architectures for visual computing, describe the challenges
of mapping and porting algorithms onto those platforms, and
explain the need for algorithm/architecture co-exploration.

Because of the increasing complexity of visual computing,
and of the expectations of users that they will have the
best possible visual experience, it is necessary that advanced
platforms provide higher performance, better flexibility, and
lower power consumption. To offer numerous functionalities
in a single platform with high flexibility and a faster time-to-
market, programmable or reconfigurable designs are preferred
because these designs will remain on the market longer.
Systems with multiple cores, reconfigurable components, or
both, open new possibilities for visual system designers to
create highly complex visual computing algorithms that are
not feasible on single-CPU platforms.

Multicore processors are theoretically capable of providing
tremendously high performance. Cell processors, for example,
offer 200 Giga floating-point operations per second [45];
NVIDIA’s GeForce GTX 280 GPU delivers 933 giga floating
point operations per second [46]; and Intel’s experimental 80-
core floating-point processor exceeded 1 trillion floating point
operations per second [47] in 2007. Intel’s Larrabee proces-
sors [48] have revealed incessant increase in the number of
processors. In addition, multiprocessor system-on-chips have
emerged as an important class of very-large-scale integration
systems since their first debut in 2000 [49]. Systems with
multiple cores have become the preferred choice in many
vendors’ solutions [50], [51], ranging from a simple game
console [52], [53] to a high-end workstation [54]. Even in
embedded systems, multicore platforms are just as prevalent,
e.g., [57], [58]. Hence, it is desirable that highly sophisticated
visual computing algorithms are mapped onto multiple cores.

In general, there are four classes of multicore architectures
and fine-grain reconfigurable architecture.

The first class comprehends homogenous general-purpose
multicore processors that are often seen in general-purpose
computers, e.g., laptops, desktops, or workstations [54]. In the
past, we used to increase the performance through higher clock
speed. However, increasing the clock speed comes with a cost
of power consumption. For example from the mid-1980s to the
late 1990s, the power consumption of Intel’s microprocessors
doubled every 2 to 3 years and was approaching a level
in which we can no longer provide power and dissipate
heat efficiently. Almost all the major computer vendors are
shipping their systems with such kinds of multicore processor
architectures today. This is because a dual-core processor at a
50% clock frequency can provide the same performance of a
single core in theory, but consumes only 25% of the power.
It becomes a new trend that the major processor vendors
are exploiting multicore architectures. Recently, homogenous
multicore processors are also available for embedded applica-
tions [58]. In order to provide efficient performance to various
general-purpose applications, this class of processors consists
of cores that are equipped with a “reasonable” amount of
cache, whose coherency is provided by hardware means. These
cores implicitly communicate with each other via a memory-
sharing architecture.

The second class of multicore architectures includes homo-
genous special-purpose, programmable multicore processors.
One of the prominent examples is the GPU as seen in the high-
end graphics cards for personal computers [46]. In the past,
GPUs were traditionally designed for a specific purpose and
thus dedicated pipelines were used initially. However, as the
users demand more realistic visual effects, increasingly more
programmable functionalities, such as vertex and fragment
shaders, are added to the graphics pipeline. Therefore, in
the past few years, GPUs begin to develop in the trend ho-
mogenous, special-purpose, programmable multicore proces-
sors. Furthermore, with more general-purpose programming
environment, GPUs are beginning to be applied for many
non-graphics purposes. This is often known as the GPGPU
phenomenon. Due to the nature of the graphics applications,
the cores in this second class of processor architectures are
designed with limited amount of cache, but with very large
memory bandwidth for supporting heavy streaming workloads.

The third class of multicore architectures is the heteroge-
neous general-purpose multicore processors that are often seen
in the special-purpose systems. Each of the cores may be pro-
grammable, but they are designed and optimized for different
and specific control-intensive or compute-intensive tasks. For
example, Cell Broadband Engine [52], [53], jointly developed
by Sony Computer Entertainment, Toshiba, and IBM, has
one power processor element and eight synergistic process-
ing elements. The power processor element will work with
conventional operating systems and act as the controller for
the eight synergistic processing elements, which are designed
for highly data parallel execution. Industrial Technology Re-
search Institute’s parallel architecture core (PAC) project
provides another good example of heterogeneous multicore
platform for multimedia applications [59]. The audio/video
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codec parallelism is exploited from fine-grain 5-way very
long instruction word (VLIW) perspective [60]. At the system
level the dynamic voltage and frequency scaling scheme is
adopted to further reduce the power consumption in PAC-
based system-on-chip (SoC) for multimedia applications [61].
Processors in this class are often designed with local storage
and communication, which are both managed explicitly by
software.

The fourth class is heterogeneous special-purpose multi-
core processors, which are often seen in embedded systems
[7], [55], [56]. Some of these cores may still be programmable,
while some of the others may be dedicated only to a partic-
ular function, e.g., motion estimation, entropy decoding, etc.
Toshiba’s SpursEngine, for example, has a combination of four
synergistic processor elements from the cell broadband en-
gine and four dedicated accelerators supporting various video
codecs [57]. Processors in this class are also designed with
local storage and communication, which are both managed
explicitly by software.

In reconfigurable computing, coarse grain dataflow models
can be implemented via multicore processors and fine grain
dataflow models are realized using reconfigurable architec-
tures. Reconfigurable architecture designs have also become
an emerging technology to support multiple algorithms with
high similarity. Different video coding standards such as
those in MPEG, VC-1, and even AVS, for example, share
high percentage of commonalities in algorithmic processing.
A proper choice of lower data granularity will reveal the
commonalities of the algorithm. If these algorithms, targeted
for different purposes or different standards, will not be used
or executed at the same time, they can then share the same
processing element or datapath in reconfigurable architectures.

Due to the specific architectural characteristics of such
different classes of multicore processors discussed, the im-
plementation of visual computing algorithms for different ap-
plications may result in preference on one class of processors
over the others. For example, each class of processors has
its own unique data storage or core-to-core communication
mechanism. No specific architecture is a clear winner due to
various different characteristics and complexities of the broad
spectrum of visual computing algorithms. This is the typical
case for which algorithm and architecture co-design become
essential.

The objective of algorithm and architecture co-design is to
facilitate the mapping of highly sophisticated visual computing
algorithms onto the most suitable platform, as depicted in
Fig. 2, based on the constraints of the targeted application.
In general, as coarse grain dataflow models are preferably
mapped onto multicore platforms and dataflow models with
finer or lower granularity are ported onto reconfigurable archi-
tectures. Important steps to achieving these objectives require
the consideration of the following: 1) the characterization of
algorithmic intrinsic complexity for the appropriate choice
of data granularity in corresponding dataflow models, and
2) the data dependence analysis for the characterization of
the potential parallelism in algorithmic complexity analysis.

Characterizing the algorithms with intrinsic complexity
measures helps in making the best choice among the four

Fig. 3. Algorithm/architecture co-exploration.

classes of multicore processors and results in their optimal
usage. By understanding the complexity and by measuring
the degree of parallelism and other criteria discussed be-
low, visual computing algorithms can also be mapped onto
reconfigurable architectures, e.g., RVC. Depending on the
application in mind, this broad spectrum of algorithms can
also be mapped onto other platforms depicted in Fig. 2. In
short, it is highly essential that algorithm and architecture co-
exploration be applied in obtaining the best design for versatile
applications.

IV. Algorithm/Architecture Co-Exploration

Visual system development can be categorized into a num-
ber of different design scenarios and can be named architec-
ture, algorithm, and algorithm/architecture design. The first
scenario, architecture-oriented design, involves implementing
a fully specified algorithm that must be mapped onto a
platform specifically designed for the algorithm. The second
scenario, algorithm-oriented design, allows the algorithm, or
parts of it, to be freely specified, but requires it to be mapped
onto an already existing architecture. The third scenario,
algorithm/architecture design, allows both algorithm and ar-
chitecture to be freely developed, but is subject to the usual
project and application constraints: performance per unit of
silicon area, flexibility, power consumption, and so on. The
implementation of video decoders with nonexisting platforms
is a typically architecture-oriented design, video encoders onto
existing platforms are typically algorithm-oriented design, and
other video processing applications, such as de-interlacing,
scan-rate up-conversion, and decoder resilience to transmis-
sion errors, are an algorithm/architecture design. Concurrent
exploration of both algorithmic and architecture optimizations
(Fig. 3) is an appropriate approach and is now becoming a
new design paradigm.

In this top-down design methodology, it is important to
understand the anticipated architecture and evaluate the design
space early (Fig. 3) [62]–[64]. The profiling of high-level
software codes for complexity analysis has been documented
[65], [66]. Because the codes were written to be executed on
processors, these methods are high-level and specific for map-
ping onto processor-oriented platforms. algorithm/architecture
co-exploration includes a generic method that enables mapping
algorithms onto all the architectures in the spectrum of
platforms by extracting complexity measures and quantifying
the dataflow models of the algorithms for the mapping and
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architecture design. These intrinsic algorithmic complexity
measures, together with the dataflow model, will help in the
architecture-oriented design. Even for the algorithm-oriented
design in the second scenario, complexity characterization or
analysis of the dataflow will reveal its optimal utilization.

Furthermore, as illustrated in Fig. 3, in algorithm/
architecture co-exploration, it is also possible to back an-
notation or feedback the architectural features characterized
by algorithmic intrinsic complexity metrics for algorithmic
development which will result in much more efficient designs.

A. Dataflow Models for the Representation and Co-Design
of Algorithms and Architectures

Dataflow representations provide good models for the
co-exploration of algorithms and architecture. These models
should depict the algorithmic behavior and implicitly reveal
and specify the required architecture for the visual system
design.

Transaction level modeling (TLM) is a form of dataflow
representation that raises the level of abstraction of standard
algorithmic descriptions. TLM is a discrete-event model of
computation in which modules interchange events with time
stamps. Interactions between software and hardware are mod-
eled using shared data channels. Inside this model of computa-
tion, modules can be specified at several levels of abstraction,
making it possible to specify functionalities and untimed state
machine models for the application, as well as to specify an
instruction-accurate performance model for the architecture.
However, the level of abstraction of this model of computation
remains quite low for video algorithm co-design problems. At
a higher level of abstraction, we find Kahn process networks
(KPN), introduced in 1974 [67]. This model consists of con-
current processes that communicate through unbounded and
unidirectional first in, first out. Each process is sequential, but
the global execution at the processes level is parallel. The Y-
chart Application Programmer’s Interface model [68] extends
KPNs because it associates a data type with each channel, and
because it introduces nondeterminism by allowing dynamic
decisions to select the next communication channel. Thus,
scheduling shared resources can be modeled.

Graphs also provide good representations of algorithms.
In directed acyclic graphs (DAGs), nodes represent atomic
operations as well as directed edge data dependences between
operations. DAGs depict the dataflow of an application and
can be applied at different levels of granularity, ranging from
logic operators [69] to tasks [70], [71] or packet processing
[72]. These depictions can be extended in DAGs with periods
and deadlines, in which computation tasks are annotated with
execution deadlines and periods. As in DAGs, in synchronous
dataflow (SDF) graphs, nodes represent atomic operations as
well as directed edge data dependences between nodes. SDF
extends DAG because each SDF node is annotated with the
number of data exchanges produced and consumed by the
computation at the node. It is static information from which
feasible schedules can be determined. This information is also
useful for determining the memory requirements for buffering
data between the processing entities. Another type of graph is
the control data flow graph (CDFG), which can be extracted

from the source code description of a program. Directors
regulate how actors in the design fire and how tokens are
used to communicate between them. This mechanism allows
different models of computation (MoC) to be constructed
within Ptolemy II. The graph describes the static control flow
of the program, showing all the possible paths of computations
and dynamic decision points at run-time. It also describes the
flow of the data inside the program, showing the concurrency
of the application. CDFGs are discussed in [72]. Other graphs
focus on the communications between the processing entities
like arrival curves [73] (for modeling the workload imposed
on an application or system as well as on the output generated
by the system) or communication analysis graphs (CAGs)
[74]. CAGs represent communication and computation traces
extracted from system-level simulations. It is a DAG with
communication and computation nodes, which includes timing
information. A CAG can thus be seen as an abstract task-
level performance model of the application that also includes
a schedule.

An algorithmic model can also be represented with co-
design finite state machines (CFSMs). The communication
between CFSM components is asynchronous, whereas, within
a finite state machine, the execution is synchronous, based
on events. This representation allows the expression of con-
currence. Asynchronous data flow models that specify us-
ing actor-based program languages have recently also been
applied in the video coding field. A network of concurrent
actors called functional units has been selected as an MoC
for the specification of the ISO/International Electrotechnical
Commission (IEC) MPEG RVC standard. The CAL actor
language, originally proposed by Janneck and Eker [75], has
been profiled and standardized by ISO/IEC MPEG [76], [77].
In this framework, CAL is used for specifying the data-flow
description of a video decoder and for reference software
of the RVC toolbox library [78]. The MPEG RVC data
flow specification provides a very attractive starting point for
algorithm-architecture co-design. The CAL data flow specifi-
cations can be directly synthesized to software, hardware, and
mixed software/hardware implementations using appropriate
tools that enable efficient exploration of the design space [79]–
[81]. Moreover, because it is based on autonomous concurrent
actors, the RVC data flow specification can potentially be
directly mapped onto multicore architectures [82]. Although
efficient mapping may require appropriate partitioning and
platform-dependent optimizations, the RVC data flow specifi-
cations provide very attractive features for multicore platforms.
That was not the case for the classical specifications of video
compression, which were based on imperative sequential mod-
els for which concurrency and parallelism were not explicitly
provided but needed to be extracted using ad hoc reverse
engineering techniques.

Architecture models instead focus more on platform-specific
features. These models are useful for analyzing and revealing
architectural information, such as speed, power, memory, and
area consumption. They may consist of an abstract description
of the hardware with a set of associated constraints and char-
acteristics, or of an executable description. Abstract models
are only symbolic representations of performance, whereas
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executable specifications allow for a more concise analysis
of the underlying hardware for communication, computation,
and memory.

B. Algorithmic Intrinsic Complexity Characterization

One of the essentials of algorithm/architecture co-exp-
loration is that intrinsic complexity metrics or measures of
algorithms that provide architectural information, can be feed-
back or back-annotated in early design stages to facilitate
concurrent exploration of both algorithmic and architectural
optimizations [83], [84]. To understand the anticipated archi-
tectural features and electronic ingredients in the early design
stages, it is important that complexity measures intrinsic to
the algorithm be estimated and are not biased toward either
hardware or software.

1) Number of Operations: The number of arithmetic or
logical operations is one of the most basic measures (metrics)
that quantifies the complexities of the algorithms during the
computation, because more operations will require more com-
putational power in either the software on the CPU platform or
the hardware on other system platforms. Hence, the number of
operations in addition, subtraction, multiplication, and division
can be used to measure the complexity of the algorithm. How-
ever, these arithmetic operations are not necessarily equally
complex as multiplications are constructed from additions
(Booth’s algorithm [85]). Division is the most complicated
operation because it involves addition, subtraction, and more.
Because subtraction can be done using addition of two’s com-
plement, the two operations are quantified to be equally com-
plex. Logical operations such as larger than, smaller than, and
equal to are also thought to have the same complexity as addi-
tion and subtraction because they can be done using subtrac-
tion. Shifting is the least complex because only the required
significant bits are used in the right and left shifting operations.

The precision of these operations also needs to be con-
sidered in complexity analysis, because stricter requirements
for precision need operators with more bits. In addition,
both arithmetic and logical binary operators have different
complexities when either a second variable or a constant is
added to the variable first operand. This is because of the
difference in the degree of complication in accessing a variable
or a constant.

2) Degree of Parallelism: The degree of parallelism
provides yet another intrinsic measure of algorithmic com-
plexities; this measure is independent of design constraints
and has been a significant topic of research for many years
[86], [87]. This metric characterizes the tendency with which
the operations can be processed independently of each other
based on their data dependence. Hence, data defined with
appropriate granularity can be unfolded [88] and assigned to
more or different corresponding processing elements with a
greater degree of parallelism should there be less or possibly
no dependence in the data. These algorithms are therefore
characterized as being less complex. Greater dependence in
the data would then result in less parallelism, therefore giving
a more complex algorithm.

Prihozhy et al. [89] defined a metric that measures the
parallelization potential of an algorithm by estimating the

ratio between the complexity and the length of the critical
path of the algorithm. The complexity is defined as the total
number of operations, and the length of the critical path
quantifies the maximum number of operations that could be
sequentially executed because of the inherent computational
dependences intrinsically embedded in the algorithm. This
criterion thus quantitatively measures the potential of perfor-
mance speedup should the algorithm be processed in parallel
rather than sequentially. Janneck et al. [90] measured the
degree of parallelism by the generation of causation races from
dataflow models by studying the computation dependences of
algorithms with which resource assignment and scheduling
were performed in architecture exploration.

The methodology used by Kung et al. [91] to design array
processors began with the analysis of dependence graphs
capable of characterizing data dependences in order to ex-
tract the intrinsic parallelism embedded in algorithms. This
nonetheless provided systemic guidelines for both hardware
and software designs by exploiting the parallelism contained
within algorithms depicted in dependence graphs.

The degree of parallelism also provides an insightful crite-
rion for selecting the appropriate CPU architecture required,
such as single instruction multiple data, multiple instruction
multiple data, VLIW, and even the multicore architectures
described above.

3) Pipeline Depth: Data required to process several por-
tions of the algorithm reveal the intrinsic pipeline depth of
algorithms. Because some data are reused in the dataflow
of algorithms, these data must be stored, thereby inherently
increasing the number of stages in the pipeline depth. In
addition to the local memory required to store these data, the
inherent pipeline depth also results in latencies, which, in turn,
increase the lower boundary on the clock speed required for
real-time applications.

4) Memory Requirements: Visual computing algorithms
are frequently required to store intermediate data in memory.
Because more-complicated algorithms require more memory,
insight into the complexity of visual signal processing can thus
be gained from the sizes of the memory used by analyzing
the lifetime of the required intermediate data. Furthermore,
algorithms normally prescribe the scheduling of data being
processed. Hence, to perform the proper algorithmic process-
ing, memory must be appropriately configured based on the
scheduling of the intermediate data.

Memory configuration is also an intrinsic algorithmic metric
in algorithm/architecture co-exploration design methodology,
which is not biased toward either software or hardware de-
signs. For hardware applications, data can be saved, based
on algorithmic scheduling, in local memory. In software, this
metric facilitates the data arrangement schemes for cache or a
scratch-pad system within the embedded CPU.

5) Data Transfer and Bandwidth: Visual computing algo-
rithms require the transfer of a large amount of data within a
specified time. Therefore, the average bandwidth is a mea-
sure of the complexity of the algorithm by providing an
estimate of the amount of data transferred in one second.
The average bandwidth directly estimated from the algorithm
is intrinsic to the algorithm itself, whether the algorithm is
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implemented in software or hardware. However, the instan-
taneous or peak bandwidth requirements of algorithms are
significantly influenced by design constraints from several
architectural details, including the type of data transaction,
memory hierarchy, data alignment in memory, and datapath
architecture. Consequently, peak bandwidth is not intrinsic to
algorithms. This metric, however, provides further insight into
clock-speed requirements and bit widths of the interconnect
bus in the design of system platforms for reconfigurable and
multicore architectures.

C. Dataflow Modeling and Complexity Characterization
for Multicore and Reconfigurable Systems Design

In multicore architectures, complexity measurements, espe-
cially of the potential for parallelism embedded in the dataflow,
will also help in mapping onto homogeneous or multigrain
heterogeneous platforms. For software, a quantitative analysis
of the complexity metrics will also provide information for
designing retargetable compilers for multigrain, heterogeneous
architectures. It may even help in porting operating systems
onto the platforms, because we are now familiar with the
complexity and, therefore, know how to do scheduling, etc.

In addition, by properly choosing lower data granularities
for dataflow models, the complexity analysis technique de-
scribed in this subsection can be used to extract features
common to various algorithms and formats adapted for versa-
tile video content, in designing highly efficient reconfigurable
visual computing architectures. This will help, of course, in the
datapath from the hardware perspective resulting in different
reconfigurable architectures in lower granularities. RVC in
MPEG is a good example of this category.

Constructing a good dataflow model and doing a thorough
quantitative exploration of the complexity that characterizes
the algorithms reveals system architecture information and,
therefore, provides a systematic top-down methodology for
designing and mapping onto the broad spectrum of platforms
at different levels of granularity and performance (Fig. 2).

D. Innovative Architectures with Multiple Processors and
Reconfigurability for Video Coding and Processing

In this section, we survey how visual computing algorithms
are implemented on multicore platforms and how architecture-
algorithm co-exploration can be used to map visual computing
applications onto multicore platforms.

Many visual computing algorithms can be mapped onto
multicore platforms and reconfigurable architectures. Exam-
ples include video encoding/decoding, analysis, understanding,
search, retrieval, and medical imaging. Video coding has been
studied more extensively than other visual computing applica-
tions, from submodules like motion estimation and deblocking
filters to complete codecs have been implemented on platforms
with multiple cores. Examples of all four previously dis-
cussed classes of multicore architectures for visual computing
are available: 1) software implementation of video codecs
on homogenous general-purpose multicore processors [27],
[28], [113], [92]; 2) implementation on homogenous special-
purpose processors, e.g., GPU [93]–[95]; 3) implementation of

video codec on heterogeneous [60], [97], [98]; and 4) imple-
mentation on heterogeneous and dedicated multiple-IP to ac-
celerate video codecs is shown in [7], [55], and [56]. The next
class of visual computing applications on multicore is video
analysis, understanding, search, and retrieval. Almost no soft-
ware implementation of video analysis, understanding, search,
and retrieval existed a few years ago, given the huge amount
of computation required. In the last couple of years, examples
[99]–[101] have begun to emerge. Video analysis, understand-
ing, search, and retrieval have various algorithms (unlike video
codecs which have a standard set of algorithms), most of which
are implemented on homogenous general-purpose processors.
Recently, some researchers have studied on how to implement
computer vision applications on GPUs [103]. Yet another class
of visual computing applications that we mentioned earlier is
medical imaging, e.g., volume reconstruction and volume ren-
dering. They have become very popular real-time applications
on GPUs [106]–[107] because the algorithms are similar to
graphics algorithms. For special-purpose GPUs, programmable
processors offer a large number of computations. Currently
from the perspective of dataflow modeling, it can be seen that
traditional signal processing algorithms such as video coding
have a more regular dataflow model whereas the algorithms
which have been implemented more recently, such as video
analysis, search, and retrieving are modeled with dataflow
models that are more irregular and complex.

While mapping the algorithms to the multicore architec-
ture, we learned that algorithm and architecture co-design is
unavoidable. For example, for future systems with hundreds
of cores, we must consider whether there is enough paral-
lelism in the applications, cf., Section IV-A. Meenderinck
et al. [107] perform a comprehensive parallelism analy-
sis of the H.264 decoder, which was considered hard to
conventionally parallelize. They found that if the decoder
is parallelized using a dynamic 3-D wave-front approach,
even mobile video will have enough parallelism. For another
instance, to increase parallelism, it is important to break
data dependence. To achieve the best compression quality,
H.264/AVC has incorporated many algorithms with heavy
data dependence. Wang et al. [108] carefully reviewed the
deblocking filter algorithm and observed that the results of
each deblocking filtering step affect only a limited region
of pixels. Therefore, a novel algorithm is proposed to take
advantage of the parallelism. For yet another example, as
mentioned earlier, one important factor in efficient implemen-
tation on a multicore platform is performance analysis. Li
et al. [109] showed that properly parallelizing the media-
mining workloads is key to effectively using existing small-
scale multicore processors and future large-scale multicore
platforms, but requires extra effort. One important factor
in parallelization is performance analysis, and memory-
subsystem performance in particular. After performance bot-
tlenecks are identified, various parallelization techniques can
be used. In addition to parallelizing emerging media-mining
workloads, the method presented in this paper is also applica-
ble to other applications.

Algorithm/architecture co-exploration is also significant
in the design of finer grain reconfigurable architectures.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on January 21, 2010 at 06:35 from IEEE Xplore.  Restrictions apply. 



1584 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 11, NOVEMBER 2009

Examples can be found in the emerging RVC, multipur-
pose DCT, and reconfigurable de-interlacers [110], [111]. Lee
et al. [83], [110], [111] have also shown that back annotation
or feeding back of the architectural features characterized
by algorithmic intrinsic complexity metrics for algorithmic
development and reference result in a much more efficient
design. With application to 3-D spatio-temporal motion esti-
mation for video coding [83], [112], [113], Lee et al. have
demonstrated significant reduction in design cost while the
algorithmic performance still surpasses recent published works
and even full search under many circumstances.

V. Conclusion

To cope with the increasing complexity of future visual
computer algorithms and with expectations in rendering the
best visual experience, we have shown the importance of
concurrently optimizing both algorithm and architecture so
that architecture information is back annotated to the algorithm
and is thus being considered as early as the algorithm design
phase. We have also shown that advanced multicore platforms
provide the best tradeoff for higher performance per unit area
(gate count), better flexibility, and lower power consumption.
Reconfigurable architectures with lower granularity are also fa-
vored in applications for higher performance and lower power,
but at the cost of less flexibility. AAC for multicore platforms
and reconfigurable architectures will inevitably become a trend
for implementing the coming generation of visual computing
algorithms.
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