
An Architecture for Collaborative Driving Systems
Shou-pon Lin

Department of Electrical Engineering
Columbia University

New York, USA
shouponlin@ee.columbia.edu

Nicholas F. Maxemchuk
Department of Electrical Engineering

Columbia University
New York, USA

nick@ee.columbia.edu

I. INTRODUCTION

Vehicle automation has progressed from systems that mon-
itor the operation of a vehicle and assist a driver, with
functions such as antilock braking and cruise control, to
systems that detect the operation of adjacent vehicles, to
implement emergency braking and intelligent cruise control.
The next generation of systems will share sensor readings and
collaborate to control braking operations by looking several
cars ahead or by creating safe gaps for merging vehicles.
The rules that control the interaction between automobiles are
protocols.

It is not sufficient to demonstrate that collaborative driving
systems work. Before we allow these systems on public high-
ways we must prove that these systems will do no harm even
when rare, multiple failures occur. The failures will include
loss of communications, failures or inaccuracies of sensors,
mechanical failures of the automobile, aggressive drivers who
are not participating in the protocol, and unusual obstacles or
events on the roadways. To verify that such systems not only
work but are also safe, we apply the techniques developed for
communications protocols.

The problem with the protocols used in collaborative driving
systems is that:

1) They are much more complex than communications
protocols. Communications protocols interact with the
physical world in a single way, through the commu-
nications channel, while collaborative driving systems
interact with physical world in several ways, including
the communications channel, a collection of sensors
that detect conditions surrounding the vehicle, and the
computers that monitor and control the operation of
the vehicle. Each interaction with the physical world
requires its own control and monitoring structure, and
presents its own failure mechanisms;

2) They may have more than two parties participating in
the protocol. Simple communications protocols have two
parties. When the protocol that operates on each machine
is modeled as a finite state machine, the verification
process examines the composite state of all of the
machines. The number of states increases exponentially
with the number of parties that are participating.

To assist the design of such protocol as well as other
intelligent automobile application, we need a framework on

which we can build vehicular application. In [1] we have
proposed a modular architecture that contains components that
interface and control different hardware in the vehicles and the
communication channel. The application we built can interact
with these components without interfacing with the physical
world directly or taking care of the implementation details of
other component.

The modular architecture enabled us to simplify the design
of a three party collaborative merging protocol that assists a
driver who wants to merge between two cars in an adjacent
lane. The protocol begins operation when the driver signals
his intent to merge. The automatic cruise control systems in
the cars creates a gap between two cars, lines the merge car
up with the gap, and informs the driver when it is safe to
move into the new lane. To verify that the protocol is safe, we
applied probabilistic verification [2] to the extended finite-state
machine of the protocol. We have verified that the protocol
will not cause a potential accident by informing the driver
when it isn’t safe to merge for any combination of up to
three rare events including communications failures, sensor
failures, hardware failures in the vehicles, or changes in road
conditions.

In this poster we extend the modular architecture in the
previous work and propose a multiple stack architecture. The
architecture divides the functionalities in an intelligent vehicle
into layers that reside in three different stacks which represent
multiple hardware platforms. In the layered architecture of
communications protocols, protocol complexity is reduced by
using the services provided by a lower layer. Similarly, the
multiple stack architecture aims to reduce the complexity of
application protocols that rely on the services provided by
different stacks, as opposed to communications protocols that
only need the service of a lower layer protocols. This architec-
ture can be used for many collaborative driving applications.

II. ARCHITECTURE OVERVIEW

The structure of the multiple stack architecture that we
envision for collaborative driving system as well as other
automobile applications is shown in Fig.1. There are three
layered stacks that serve as the base, upon which several
other components such as collaborative merging protocol and
intelligent cruise control operate. The layered stack structure
of the base mimics the layered architecture employed in
communications protocols, while multiple stacks are a must



to provide the application with access to various hardware
platforms of a vehicle. The complex problem of collaborative
vehicle control is thus partitioned into smaller components
that can be implemented and tested individually, and each
component could be modified separately without affecting the
overall structure of the system.

Fig. 1. Multiple stack layered architecture for collaborative driving system

The stacks have layered structure as in the communications
protocols. Through well-defined interfaces between layers, the
implementation details of each layer are abstracted out and
could be designed individually. We can design a protocol by
assuming that the lower layer functions correctly and provides
the defined services. For instance, we write a distributed
database without concern for manipulating the bits to access a
communication channel. The complexity of a protocol could
thus be reduced, and it would be easier to verify the correctness
and the safety of a protocol.

However, a collaborative merging protocol or any collab-
orative driving application operates over multiple physical
platforms. The functionalities in a system of intelligent vehicle
include vehicle control, communications, and sensors. The
single layered stack structure of communications protocols
assumes that a higher layer only needs the services provided by
a lower layer, which is not the case in automobile application.
Therefore, we need an architecture with multiple stacks that
address different types of interaction with the physical world.

1) The vehicle stack represents the kinematic aspects of a
vehicle and consists of engine, tires, brakes, accelerator,
etc. There could be a operational computers for vehicle
monitoring in the stack, but we decided to separate it
from the stack. The reason is that an application protocol
like intelligent cruise control may access the vehicle
stack either directly or through the operational computer.

2) The communications stack provides the automobile with
communication capability. It retains common layers that
we see in communications protocols. The highest layer is
the network layer that provides the components a way to
communicate with the components that reside on other

vehicle. The network layer operates over MAC layer,
which in turn operates over physical layer.

3) The sensor stack has the sensor coordination protocol as
the protocol in its highest layer. The sensor coordination
protocol exchanges the sensor readings with protocols
on other vehicles through communications stack, then
merges the sensor readings from different vehicles so as
to make sure that all participants use the same set of
information. The sensor coordination protocol relies on
the sensor readings obtained by its lower layer, which
could be any kind of sensors that are able to obtain
measurement from the physical world.

Unlike communications protocols, in which the information is
being passed between adjacent layers in a single stack. Our ar-
chitecture also allows information to be passed between stacks.
The sensor coordination protocol that uses communications is
such example.

On top of these stacks the collaborative driving application
could be defined. For instance, the intelligent cruise control
system accesses the vehicle stack and controls the mechanical
components to accelerate or apply brake, according to the
information such as speed and distance to the car in front
fed from the sensor stack. The collaborative merging protocol
also relies on more than one hardware platform. It communi-
cates with the protocols on collaborating vehicles through the
communications stack, makes decision on the unified sensor
readings, and sends orders to the intelligent cruise control
system or automatic braking system.

Under this architecture, the complicated problem of col-
laborative driving is partitioned into smaller, manageable
components. A component is analogous to subroutines in
programming instead of duplicating code, and it enables
intelligent vehicle function to be reused. These components
have well-defined interface that determine what and how the
information is passed between components. Each component
can be designed and implemented in any ways as long as it
conforms with the interface specified. The network layer in the
communications stack could be either a point-to-point reliable
retransmission protocol, or a group transmission protocol such
as M-RBP [3] with delay guarantee. Similarly, the sensors on
different vehicles can also be implemented in different ways.
A vehicle may use radar, while another may use sonar, but
both offer distance measurement. The modular structure allows
each component to be independently modified and improved
while not affecting the rest of the system.

REFERENCES

[1] B. H. J. Kim and N. F. Maxemchuk, “A safe driver assisted merge
protocol,” in Systems Conference (SysCon), 2012 IEEE International,
pp. 1 –4, Mar. 2012.

[2] N. F. Maxemchuk and K. Sabnani, “Probabilistic verification of commu-
nication protocols,” Distributed Computing, vol. 3, no. 3, pp. 118–129,
1989.

[3] T. L. Willke and N. F. Maxemchuk, “Coordinated interaction using
reliable broadcast in mobile wireless networks,” Computer Networks,
vol. 51, pp. 1052–1059, Mar. 2007.


