
IBMon: Monitoring VMM-Bypass Capable InfiniBand Devices
using Memory Introspection

Adit Ranadive, Ada Gavrilovska, Karsten Schwan

Center for Experimental Research in Computer Systems (CERCS)
Georgia Institute of Technology

Atlanta, Georgia, 30332

{adit262, ada, schwan}@cc.gatech.edu

Abstract

Active monitoring of virtual machine (VM) behaviors and
their utilization of different resource types is critical for ef-
fective management of high end cluster machines, data cen-
ters, and cloud computing infrastructures. Unfortunately, for
reasons of performance, certain types of existing and future
devices support capabilities that provide VMs with direct ac-
cess to device resources, thereby bypassing the virtual ma-
chine monitor (VMM). This presents significant challenges
to the VMM due to its resulting inability to assess VM-
device interactions.

This paper describes a monitoring utility, IBMon, which
enables the asynchronous monitoring of virtualized Infini-
Band devices – a sample VMM-bypass device heavily used
in the HPC community. In the absence of adequate hard-
ware supported monitoring information, IBMon uses dy-
namic memory introspection techniques to infer informa-
tion regarding the VM-device interactions. Experimental re-
sults demonstrate that IBMon can asynchronously monitor
VMM-bypass operations with acceptable accuracy, and neg-
ligible overheads, including for larger number of VMs, and
for VMs with dynamic behavior patterns.

1. Introduction

Virtualization technologies like VMWare [23] and Xen [13]
have now become a de facto standard in the IT industry. A
main focus of these technologies has been to manage the
virtual machines (VMs) run by the virtual machine moni-
tor (VMM) or hypervisor, in order to ensure the appropriate

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

3rd Workshop on System-level Virtualization for High Performance Computing
(HPCVIRT’09) March 31, 2009, Nuremberg, Germany.
Copyright c© 2009 ACM 978-1-60558-120-0. . . $5.00

allocation of platform resources to each VM, as well as to
provide for isolation across multiple VMs. Such actions are
necessitated by the fact that static resource allocation poli-
cies are not typically suitable, as they imply a priori knowl-
edge about the VM’s behavior – which may be impossible
to determine in advance, and/or worst-case analysis of its re-
source requirements – which may lead to significant reduc-
tions in the attained resource utilization and platform capac-
ity.

Managing virtualized platforms relies on mechanisms that
dynamically adjust resource allocations, based on workload
characteristics and operating conditions, as well as on cur-
rent VM behavior and resource requirements [6, 20, 24].
Such techniques are particularly relevant to distributed
clouds and virtualized data centers, to more effectively uti-
lize aggregate platform resource and reduce operating costs,
including for power. The latter is also one reason why vir-
tualization is becoming important for high end systems like
those used by HPC applications.

A basic requirement for effective resource management is
the availability of runtime information regarding VMs’ uti-
lization of platform resources, including CPU, memory, and
network and disk devices. Using this information, the VMM
infers the behavior and requirements of VMs and makes ap-
propriate adjustments in their resource allocations (i.e., it
may increase or decrease the amount of resources allocated
to a VM) [6, 20], while still ensuring isolation and base-
line performance levels. Monitoring information is collected
continuously in the hypervisor and/or its management do-
main (i.e., dom0 in Xen). For instance, for scheduling CPU
resources, the VMM scheduler relies on monitoring the time
a VM has spent executing or idling in order to adjust the
corresponding scheduling priorities or credits [25], whereas
for memory it monitors the VM’s memory footprint, and if
necessary, makes appropriate adjustments, e.g., by using the
‘balloon-driver’ in the case of the Xen VMM. The same is
true for most devices, for which the VM’s device accesses
are ‘trapped’ and redirected to a centralized device manage-

ment domain, i.e., following the ‘split device driver model’
in Xen [13, 19]. All information regarding the VMs’ utiliza-
tion of a particular device therefore, is centrally gathered and
can be easily maintained and used to enforce limits and/or
orderings on device accesses. Furthermore, management ac-
tions may span multiple types of resources, such as when
monitoring information regarding the network buffer queues
is used to adjust the CPU credits for a VM, so as to elim-
inate buffer overflow and ensure timely response [6, 20].
Stated more technically, the management of the virtualized
platform relies on the ability of the virtualization layer (e.g.,
ESX server or the Xen hypervior plus dom0) to have the
ability to monitor and control the utilization of each of the
platform resources on behalf of a VM.

Unfortunately, some IO devices do not follow the ‘split
driver’ model, and cannot be easily monitored via the
same approach as above. Some such devices exhibit ‘self-
virtualization’ capabilities [15], i.e., the management logic
that controls which VM will be serviced by the device is
offloaded onto the device itself. When used in the high per-
formance domain, in order to meet the high bandwidth/low
latency messaging requirements of HPC applications, these
devices also use their RDMA capabilities to read/write data
directly from/to guest VMs’ address spaces. Specifically, the
control path invoked during a VM’s setup and device initial-
ization is still routed through a management domain such
as dom0, but subsequent device accesses are performed di-
rectly, thereby ‘bypassing’ the VMM. Devices virtualized in
this manner include InfiniBand HCAs [4, 8], and they will
also include next generation high performance NICs such as
those used for high end virtualized IO [15, 16] and as facil-
itated by next generation device and board interconnection
technology [18, 21].

The challenge addressed by our research is the acquisition of
monitoring information for devices that use VMM bypass.
The outcome is a novel monitoring utility for InfiniBand
adapters, termedIBMon. IBMon’s software-based monitor-
ing methods can provide the information they collect to the
management methods that require it. An example is the pro-
vision of information about communication patterns that is
then used to adjust a VM’s CPU or memory resources, or
to trigger VM migration. IBMon can also supplement an IB
device’s monitoring logic, or it can compensate for issues
that arise if device-level monitoring is not performed at the
levels of granularity required by management. Most impor-
tantly, by using VM introspection techniques [3, 12], IBMon
can acquire monitoring information for bypass IB devices, at
small overheads and with minimal perturbation. Specifically,
for such devices, IBMon can detect ongoing VM-device in-
teractions and their properties (i.e., data sent/received, band-
width used, or other properties of data transfers). Such de-
termination of the VM’s usage of its share of IB resources is
critical to proper online VM management. Using introspec-
tion, of course, also implies that IBMon’s implementation

uses knowledge about internals of the IB stack and buffer
layout in the VM’s address space. Stated differently, due to
the absence of hardware-supported device monitoring infor-
mation, IBMon uses gray-box monitoring approaches to as-
sess the VM-device interactions and their properties.

In the remainder of the paper, we first describe IBMon and
evaluate its utility and costs. In the following sections, we
then provide brief summaries of the techniques on which
IBMon depends and next present its design and implementa-
tion. Section 3.3 describes the bandwidth estimation mech-
anism currently used in IBMon. We next show experimen-
tal results to show that with IBMon, we can asynchronously
monitor VMM-bypass operations with acceptable accuracy
and negligible overheads, including as we increase the num-
ber of VMs.

The current implementation of IBMon enable asynchronous
monitoring of the VM’s bandwidth utilization, however, as
noted earlier, the same approach can be used to monitor
other aspects of VMs’ usage of IB resources. While IBMon
is implemented for InfiniBand devices virtualized with the
Xen hypervisor, its basic concepts and methods generalize
to other devices and virtualization infrastructures. Of partic-
ular importance are the novel ways in which the virtualiza-
tion layer asynchronously monitors VM-device interactions
that bypass the VMM (i.e., for high performance), and the
insights provided regarding requirements for hardware sup-
ported monitoring functionality.

2. Background

The design of the IBMon tool for the Xen hypervisor is spe-
cific to (1) the manner in which IB devices export their in-
terfaces to applications (and VMs) and the memory man-
agement mechanisms they support, (2) the manner in which
these devices are virtualized in Xen environments, and (3)
the memory introspection techniques being used. This sec-
tion briefly describes the aspects of (1)-(3) relevant to IB-
Mon’s design and implementation.

InfiniBand Memory Management. The communication
model used in IB is based on the concept of queue pairs
(Send and Receive Queues). A request to send/receive data is
formatted into a Work Request (WR) which is posted to the
queues. There are also Completion Queues (CQs) in which
Completion Queue Entries (CQEs) containing information
for completed requests are stored. Whenever a descriptor is
posted to the queue pair (QP), certain bits called ‘Doorbells’
are set in User Access Region (UARs) buffers. The UARs
are 4KB I/O pages mapped into the process’ address space.
When a request is issued, the doorbell is “rung” in the pro-
cess’ UAR. The HCA will then pick up these requests and
process them.

The HCA maintains a table called the Translation and Pro-
tection Table (TPT). This table contains the mappings from

bypass
channel

IB buffer queues

virtual HCA IF

guestVM

IB app

VMM (Xen)

control domain
(dom0)

IBMon

Monitoring
channels mapped

VM memory
other events from
hardware, VMM…

InfiniBand HCA

To Management
Utilities

per VM
state

Figure 1. IBMon Utility

physical to virtual addresses of the buffers and queues de-
scribed above. For InfiniBand, the buffers need to be regis-
tered with the HCA, and these registry entries are stored in
the TPT. Also, these buffers must be kept pinned in the mem-
ory during data transfer so that the HCA can DMA the data
directly in and out of host memory. Each entry in the TPT is
indexed with a key that is generated during the registration
process.

Virtualized InfiniBand Driver Model. When virtualized in
Xen, the device driver model is based on the ‘split device
driver’ model as described in [13]. It consists of a Backend
and Frontend Driver. The frontend driver resides in the guest
OS kernel while the backend driver resides in the dom0
kernel. In the case of regular devices, all requests to access
the device from the guest VM must travel from the frontend
driver to the backend driver. Therefore, both the data and
control path instructions are sent to Dom0.

For InfiniBand, the split-driver model is used slight dif-
ferently. The control path operations from the guest VM,
like memory registration and queue pair creation, must all
go through the backend driver. Fast path operations like
polling the CQ and QP accesses are optimized using VMM-
bypass [8]. The data path is highly optimized since the HCA
can write DMA data directly to the target buffer. As a result,
IB platforms can be virtualized with negligible impact on the
attainable latency and bandwidth.

Virtual Memory Introspection. With the Xen VMM, pages
of one VM can be read by another VM simply by mapping
the page into the target VM memory. This concept was first
introduced by Garfinkel and Rosenblum [3]. Xen contains
the XenControl library that allows accessing another VM’s
memory. Using the functionxc map foreign range, the tar-
get memory is mapped into the current application’s virtual
memory. We use this mechanism to map the physical pages
which correspond to the IB buffers into the monitoring util-
ity.

3. IBMon Design and Implementation

Next we describe in greater detail the components of the
IBMon utility and its mechanisms.

3.1 Design

Figure 1 illustrates the design of the IBMon utility. It is de-
ployed in the VMM’s control domain, i.e., dom0 in Xen, and
its goal is to asynchronously monitor the per VM utilization
of the resources of the InfiniBand fabric, i.e., bandwidth uti-
lization in our current realization.

As described above, the IB HCA does have the capability
to export virtual interfaces, i.e., queue pairs and completion
queues, directly to guest VMs. However, the hardware only
exports counters about the aggregate usage of the communi-
cation resources used by all VMs, which is not adequate for
the per-VM management decisions we would like to sup-
port with IBMon. Therefore, we rely on knowledge about
the layout of the memory region used by each VM for its vir-
tual HCA interface to map and monitor the queues residing
across those memory pages. We then apply memory intro-
spection techniques to detect changes in the page contents,
and based on that make conclusions regarding the VMs use
of IB bandwidth.

The monitoring process is triggered periodically, with a dy-
namically configurable frequency. The exact details of how
the current implementation uses the accessed data to perform
bandwidth estimations is described later in Section 3.3. Dy-
namic changes in monitoring frequency are necessary to ad-
just the sampling rate to the frequency at which events being
monitored are actually occuring, so as to avoid degradation
in the quality of the monitoring information.

Note that the in the case of IB, the HCAs do not maintain
per work queue bandwidth or timing information in hard-
ware. This, coupled with the asynchronous nature of both
the monitoring operations as well as the VM’s IO operations
themselves, requires that we adopt the dynamic approach de-
scribed above. The presence of such hardware supported in-
formation in next generation IB or other multi-queue, VMM-
bypass capable devices will simplify the processing required
by IBMon or similar monitoring utilities, but it will not elim-
inate the need for such information to be asynchronously ac-
cessed and then integrated with the platform level manage-
ment mechanisms.

In addition, while the presence of adequate hardware support
may obviate the need for the bandwidth estimation mecha-
nisms integrated in IBMon, there will be other types of infor-
mation regarding the VMs’ device accesses which will still
require that we integrate memory introspection mechanisms
with the monitoring tool. Examples of such information in-
clude certain patterns in communication behavior, identifi-
cation of the peers with which the VM communicates with
(e.g., to determine that it should be migrated to a particular

node), IO operations involving certain memory region (e.g.,
to indicate anomalous behavior or security issues), etc.

Finally, the figure illustrates that IBMon can interface with
other management or monitoring components in the system.
This feature is part of our future work, and the intent is
to leverage the tool to support better resource allocation
(i.e., scheduling) policies in the VMM (e.g., by using the
IBMon output to make adjustments in the credits allocated
to VMs by the VMM scheduler), or to couple the monitoring
information with large-scale ‘cloud’ management utilities.

3.2 Implementation

IBMon is implemented as a monitoring application which
runs inside dom0 in Xen. It uses the XenControl library
(libxc) to map the part of the VMs’ address space used
by the IB buffers. In the InfiniBand driver model, upon
the front-end driver’s request, the back-end driver allocates
the buffers and then registers them with the HCA with the
help of the dom0 HCA driver. IBMon augments the back-
end operations to establish a mapping between the physical
memory addresses and the types of buffers they are used for
(CQ, QP, etc.), for each VM. The table is indexed by the
VM’s identifier and is accessed through the ‘/proc’ interface
provided by the back-end.

The IBMon utility reads the entries of the table when the
guest VM starts running an IB application. It detects any new
entries in the backend driver table. For each of the entries,
the utility uses the xcmap foreign range function of libxc
to map that IB buffer page to its address space. Once the
page is mapped, the VM’s usage of the IB device can be
monitored. Note that these pages are mapped as read-only to
IBMon’s address space.

3.3 Estimating VMs’ Bandwidth Utilization with
IBMon

InfiniBand uses an asynchronous (polling-based) model to
infer completion of communication. Hence, any IB-based
application must poll the CQ to check whether a request
has completed or not. These CQ buffers are also mapped
to IBMon’s memory space, which itself can then check and
determine whether any work requests on behalf of a specific
VM have completed. The CQ buffer contains several fields
which can be used for bandwidth estimation. First is the
number of completion entries (CQE) which indicates how
many completion events have occurred. Second is the byte
length (bytelen) field which indicates how many bytes were
transferred for each of the completion event. These entries
are written to directly by the HCA.

IBMon periodically inspects the newly posted CQEs, gath-
ers the amounts of bytes transmitted during the latest time
interval, and uses that to estimate the bandwidth. There are
several challenges in this approach. First, the CQEs do not

contain any timing information. Therefore, if IBMon is con-
figured with a short monitoring interval, IBMon detects CQE
which indicates that a work request for a read of a large
buffer just completed, using a simple Bytes/time formula it
will compute bandwidths which far exceed the fabric limits.
Since we do not know when that read operation was initiated,
we cannot just adopt a model where we compute the band-
width by averaging across multiple monitoring intervals. We
could extend the implementation of IBMon to require mon-
itoring of the VM’s original read request (by forcing traps
whenever the read call memory page is accessed), or we can
monitor and timestamp all work requests, and then match the
CQE with the corresponding WQE to get a better estimate of
the bandwidth. However, both of these alternatives still in-
clude asynchronous monitoring, and hence would not guar-
antee accuracy, and furthermore are computationally signif-
icantly more complex, or, in the case of the first one, even
require inserting significant fast path overheads.

Therefore IBMon uses an approach that dynamically tunes
the monitoring interval to the buffer size used by the VM.
The interval is reduced in the event of small buffer sizes and
increased when the VM reads/writes large buffers. Deter-
mining that the interval should be increased whenever IB-
Mon determines bandwidth values above the IB limits is in-
tuitive, however it is significantly more challenging to deter-
mine the adequate rate at which is should be modified, and
when it should be decreased again. Assigning significantly
large monitoring intervals, at the data rates supported by IB,
will result in significant margins of error of the monitoring
process, and will generate excessive amount of CQ entries
to be processed in each monitoring iteration. Therefore we
rely on the buffer size value, i.e., themonitoring granular-
ity, to determine how to adjust the monitoring interval. For
very small monitoring intervals the extra memory access can
be avoided by using the fabric bandwidth limit as an indica-
tion that the interval should be increased. While the current
bandwidth estimation mechanism used by IBMon uses this
approach, we will further evaluate and compare other alter-
natives.

4. Experimental Results

Next we present the results from the experimental evaluation
of IBMon, aimed at justifying the suitability of the design
to asynchronously monitor VM’s usage of VMM-bypass
capable devices such as IB HCAs and the feasibility to attain
estimates of such usage with reasonable accuracy.

Testbed. The measurements are gathered on a testbed con-
sisting of 2 Dell 1950 PowerEdge servers, each with 2 Quad-
core 64-bit Xeon processors at 1.86 GHz. The servers have
Mellanox MT25208 HCAs, operating in the 23208 Tavor
compatibility mode, connected through a Xsigo VP780 I/O
Director switch. Each server is running the RHEL 4 Update

1

10

100

1000

10000

1 10 50 100 500 1000

B
an

d
w

id
th

 (
M

B
p

s)

Interval (microsecs)

BW v/s Interval for 64KB Buffer

Test - Avg BW

IBMon - Avg BW

1

10

100

1000

10000

100000

1 10 50 100 500 1000

B
an

d
w

id
th

 (
M

B
p

s)

Interval (microsec)

BW v/s Interval for 128KB Buffer

Test - Avg BW IBMon - Avg BW

Figure 2. Buffer size vs Frequency

5 OS (paravirtualized 2.6.18 kernel) in dom0 with the Xen
3.1 hypervisor.

The guest kernels are paravirtualized running the RHEL 4
Update 5 OS. Each guest is allocated 256 MB of RAM. For
running InfiniBand applications within the guests, OFED
(Open Fabrics Enterprise Distribution) 1.1 [11] is modified
to be able to use the virtualized IB driver. Both Xen and
the OFED drivers have already been modified by us, so
as to be able to efficiently support multiple VMs on IB
platforms [17]. The workloads are derived from existing
RDMA benchmarks part of the OFED distribution.

Monitoring frequency. The first set of measurements il-
lustrates the relationship between the buffer sizes used by the
VM’s operation and the monitoring interval for two different
buffer sizes. The measurements are gathered by monitoring a
single VM and show the bandwidth reported by IBMon and
the bandwidth reported by RDMARead benchmark execut-
ing in the VM. The benchmark performs20000 iterations
of an RDMA read operation for a given buffer size. We vary
the monitoring interval from 1 to 1000µs – larger monitoring
intervals resulted in excessive amounts of CQ entries.

As seen in the graphs in Figure 2, for very small intervals rel-
ative to the buffer size, and therefore the byte count used by
IBMon to compute the bandwidth estimate, IBMon reports
the maximum bandwidth supported by the IB fabric. This
is also used by IBMon to trigger an increase in the moni-
toring interval. For monitoring intervals which are too large
relative to the fabric bandwidth and therefore the buffer size
transmitted with each read request, IBMon significantly un-
der performs – at each iteration multiple CQEs are associate
with the same, much later timestamp used to then estimate
the bandwidth for the total number of bytes, resulting in up
to an order of magnitude lower estimates for the largest time
interval shown in Figure 2. More importantly, however, the
graphs show that in both cases there are interval values for
which IBMon performs very well, and only slightly underes-
timates the actual bandwidth usage by the VM. Using similar

data for other buffer size we can either experimentally deter-
mine the adequate interval for a range of buffer sizes, which
can then be used by IBMon, or compute its bounds based on
the fabric bandwidth limits.

Feasibility. Next, for different monitoring granularities,
i.e., different buffer sizes and the corresponding interval val-
ues, we evaluate the accuracy with which IBMon is able to
estimate the VM’s utilization of the device resources. The
graph in Figure 3 indicates that at fine granularity, IBMon
does face some challenges, and its accuracy is only within
27% of the actual value. However for larger buffer sizes
(which is often the case for HPC applications), and therefore
longer monitoring time intervals, IBMon is able to estimate
the bandwidth quite accurately, within up to 5% for some of
the data points in the graph.

Overheads. For each of the monitoring granularities used
above, we next measure the overheads of using IBMon. IB-
Mon is deployed as part of dom0, and as such it is execut-
ing on a core separate from the guest VM. First, it is likely
that in virtualized manycore environments such management
functionality will typically be deployed on designated cores.
Second, a lot of the processing overhead associated with the
current implementation of IBMon is due to the fact that it
does have to perform additional computation to estimate the
bandwidth, whereas with appropriate hardware support that
overhead will be significantly reduced. One overhead which
will remain is the fact that IBMon does rely on frequent
memory accesses for the monitoring operations, and as such
it will impact the application performance due to memory
contention. Since the pages are mapped as read-only into
IBMon’s address space the issue of data consistency will not
arise.

In order to evaluate this impact we compare the execution of
the same benchmark with and without IBMon. The results
shown in Figure 4 indicate any increase in the VMs execu-
tion time is virtually negligible, and that therefore IBMon’s
overheads are acceptable.

0

200

400

600

800

1000

1200

1400

16384 32768 65536 131072

B
an

d
w

id
th

 (
M

B
p

s)

Buffer Size (Bytes)

Average BW Measured

Avg BW - Test Avg BW - IBMon

Figure 3. Accuracy of IBMon for different monitoring
granularities

0

2

4

6

8

10

12

14

16

18

16384 32768 65536 131072

Ti
m

e
 (

se
cs

)

Buffer Size (Bytes)

Benchmark Runtime (1VM)

No IBMon With IBMon

Figure 4. IBMon overheads for different monitoring
granularities

Figure 5. Ability to respond to dynamic changes in the
VM behavior

Figure 6. Ability to monitor multiple VMs with differ-
ent behaviors

Ability to respond to changes in VM behavior.By dynam-
ically monitoring the frequency of the completion events and
the buffer sizes used in the RDMA operations, IBMon at-
tempts to determine the monitoring granularity and to adjust
the rate at which it samples the VMs’ buffer queues. In order
to evaluate the feasibility of the approach we modified the
RDMA benchmark to throttle the rate at which it issues the
read requests and thereby lowered its bandwidth utilization.
The graphs in Figure 5 compare the bandwidth measured by
the benchmark vs by IBMon and we observe that IBMon is
able to detect the changes in the VM behavior reasonably
quickly.

Scalability with multiple VMs. The above measurements
focused on evaluating IBMon’s ability to monitor a single
VM. Next we conduct several experiments involving mul-
tiple VMs in order to assess the feasibility of concurrently
monitoring multiple buffer queues and to track monitoring
information corresponding to multiple VMs.

First, the graphs in Figure 7 show IBMon’s accuracy in
concurrently monitoring multiple VMs. We observe that
although IBMon now is responsible for tracking multiple
queues and maintaining information for multiple VMs, it is
still capable of estimating the behavior of each of the VMs
with acceptable accuracy levels. The current estimates are

within 15% of the actual value, we do believe that there
are significant opportunities in this initial implementation of
IBMon to further improve these values.

Next, the measurements in Figure 6 show that in the multi-
VM case IBMon is able to respond to dynamic changes in
individual VMs. For these measurements we use the modi-
fied RDMA Read benchmark and for VMs 2 and 3 we throt-
tle the request rate to a lower value. The measurements do
show that IBMon does not respond to the behavior changes
very rapidly, but we believe that evaluating methods to more
aggressively tune the frequency interval (e.g., such as those
used in AIMD in TCP) will result in additional improve-
ments in its responsiveness.

Finally, the results presented in Figure 8 demonstrate the ac-
ceptable overheads of IBMon as it concurrently monitors
multiple VMs, again by comparing the benchmarks execu-
tion time with and without IBMon. While, as expected, the
overheads do increase as we increase the number of VMs,
and queues IBMon has to monitor, their impact on the VMs
execution is still on average within 5% of the original per-
formance levels.

0

100

200

300

400

500

600

700

800

900

1000

1 2

B
an

d
w

id
th

 (
M

B
p

s)

VM Number

Avg BW Measure (2VMs)

Avg BW From Test Avg BW From IBMon

0

100

200

300

400

500

600

700

800

900

1000

1 2 3

B
an

d
w

id
th

 (
M

B
p

s)

VM Number

Avg BW Measure (3VMs)

Avg BW From Test Avg BW From IBMon

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4

B
an

d
w

id
th

 (
M

B
p

s)

VM Number

Avg BW Measure (4VMs)

Avg BW From Test Avg BW From IBMon

Figure 7. Accuracy of IBMon when monitoring multiple VMs

0

2

4

6

8

10

12

14

16

18

1 2

Ti
m

e
 (

Se
cs

)

VM Number

Benchmark Runtime (2VMs)

Runtime w/ IBMon

Runtime w/o IBMon

0

2

4

6

8

10

12

14

16

18

1 2 3

Ti
m

e
 (

se
cs

)

VM Number

Benchmark Runtime (3VMs)

Runtime w/ IBMon

Runtime w/o IBMon

0

2

4

6

8

10

12

14

16

18

1 2 3 4

Ti
m

e
 (

se
cs

)

VM Number

Benchmark Runtime (4VMs)

Runtime w/ IBMon

Runtime w/o IBMon

Figure 8. Overheads of IBMon when monitoring multiple VMs

5. Related Work

Several research efforts by our own group as well as others
focus on dynamic monitoring and analysis on the behavior
of applications deployed on a single system or across dis-
tributed nodes [1, 2, 6, 10, 20], in order to better support
management functionalities such as node-level power man-
agement, CPU scheduling and memory allocation [6, 10] or
VM deployment and migration in cluster settings [2, 7, 24].
A key distinction in IBMon is that it enables monitoring of
devices and VM interactions with such devices which oc-
cur ‘outside’ of the virtualization layer. To the best of our
knowledge, there hasn’t been prior work focusing on dy-
namic monitoring of the VMs or applications’ use of devices
such as the IB HCAs, when accessed in a manner which by-
passes the operating system or the hypervisor layer.

Our own prior work presented in [6] does rely on moni-
toring of InfiniBand communication channels in virtualized
environments, however in this setting the monitoring infor-
mation is provided externally, by a fabric-level monitor re-
siding in the fabric routing component. IBMon differs from
this in two ways. First, by not requiring interactions with
external entities, and by not requiring external entities to
maintain fine-grain information regarding the InfiniBand re-
source utilization of every one of the VMs, our approach
is more suitable for building scalable monitoring infrastruc-
tures, and for supporting low-latency, responsive manage-
ment solutions. Second, an external monitor will typically

be more statically configured, to monitor only certain types
of events and gather only certain types of statistics. As a soft-
ware entity part of the individual nodes’ virtualization layer,
IBMon can more easily be extended to support a broad range
of application-specific management policies. Finally, an ex-
ternal entity cannot extract any information about the VM
which is not part of the actual data exchange. IBMon inte-
grates VM introspection mechanisms, which can be used to
make various observations regarding a VM’s behavior.

There has been much research in memory introspection for
VMs in virtualized environments. VMSafe [22] is a secu-
rity framework provided by VMWare for their industry-
standard hypervisor, ESX Server, which includes sets of
APIs to perform introspection of different resources of the
system. [3] discusses a technique called Virtual Machine In-
trospection (VMI) used to construct an Intrusion Detection
System (IDS). VMI monitors resources like CPU, memory,
and network used by the virtual machine, and the IDS de-
tects any attacks originating from the VM. Similarly, Payne
et al. [12] develop a framework for virtual memory intro-
spection and virtual disk monitoring for the Xen hypervisor.
Other approaches to memory introspection include the use
of additional hardware. For instance, in [5] a specialized co-
processor is used to monitor the memory of running kernels
for any malicious changes. Finally, our work targets Infini-
Band devices, as a sample device with VMM-bypass capa-
bilities. Devices with similar capabilities have been exten-
sively used in other high performance interconnect technolo-

gies [9, 14], with more recent developments targeted at com-
modity networks [18]. Furthermore, recent research on virtu-
alization solutions for high performance networking and IO,
further advocate similar solution [16], and future hardware
platforms and device interconnection technologies will of-
fer capabilities to enable direct VM-device interactions for
an even broader range of devices. As virtualized platforms
will continue to require even more sophisticated manage-
ment methods, the importance to asynchronously monitor all
of these types of devices will continue to grow.

6. Conclusion

The challenge addressed by our research is the acquisition
of monitoring information for devices that use VMM by-
pass. The outcome is a novel monitoring utility for Infini-
Band adapters, termed IBMon, which enables asynchronous
monitoring of virtualized InfiniBand devices – an example of
VMM-bypass devices heavily used in the HPC community.
In the absence of adequate hardware-supported monitoring
information, IBMon relies on VM introspection techniques
to detect ongoing VM-device interactions and their prop-
erties (i.e., data sent/received, bandwidth utilized, or other
properties of the data transfers). Such information can then
be used for platform management tasks, such as to adjust
a VM’s CPU or memory resources, or to trigger VM mi-
grations. Experimental results demonstrate that IBMon can
asynchronously monitor VMM-bypass operations with ac-
ceptable accuracy, and negligible overheads, including for
larger number of VMs, and for VMs with dynamic behavior
patterns.

While IBMon is implemented for InfiniBand devices virtual-
ized with the Xen hypervisor, its basic concepts and methods
generalize to other devices and virtualization infrastructures.
Of particular importance are the novel ways in which the vir-
tualization layer asynchronously monitors VM-device inter-
actions that bypass the VMM (i.e., for high performance),
and the insights provided regarding requirements for hard-
ware supported monitoring functionality.

References

[1] S. Agarwala and K. Schwan. SysProf: Online Distributed
Behavior Diagnosis through Fine-grain System Monitoring.
In ICDCS, 2006.

[2] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and
A. Fox. Capturing, indexing, clustering and retrieving system
history. InSOSP, 2005.

[3] T. Garfinkel and M. Rosenblum. A virtual machine
introspection based architecture for intrusion detection. In
Proceedings of the 2003 Network and Distributed System
Symposium, 2003.

[4] W. Huang, J. Liu, and D. Panda. A Case for High
Performance Computing with Virtual Machines. InICS,

2006.

[5] N. L. P. Jr., T. Fraser, J. Molina, and W. A. Arbaugh. Copilot
-a coprocessor-based kernel runtime integrity monitor. 2004.

[6] M. Kesavan, A. Ranadive, A. Gavrilovska, and K. Schwan.
Active CoordinaTion (ACT) - Towards Effectively Managing
Virtualized Multicore Clouds. InCluster 2008, 2008.

[7] S. Kumar, V. Talwar, P. Ranganathan, R. Nathuji, and
K. Schwan. M-Channels and M-Brokers: Coordinated
Management in Virtualized Systems. InWorkshop on
Managed Multi-Core Systems, in conjunction with HPDC’08,
2008.

[8] J. Liu, W. Huang, B. Abali, and D. K. Panda. High
Performance VMM-Bypass I/O in Virtual Machines. In
ATC, 2006.

[9] Myricom, Inc. Myrinet. www.myri.com.

[10] R. Nathuji and K. Schwan. VirtualPower: Coordinated Power
Management in Virtualized Enterprise Systems. InSOSP,
2007.

[11] OpenFabrics Software Stack - OFED 1.1. www.openfabrics.org/.

[12] B. D. Payne, M. D. P. de Carbone, and W. Lee. Secure
and Flexible Monitoring of Virtual Machines. InComputer
Security Applications Conference, 2007.

[13] I. Pratt, K. Fraser, S. Hand, C. Limpach, A. Warfield,
D. Magenheimer, J. Nakajima, and A. Mallick. Xen 3.0
and the Art of Virtualization. InOttawa Linux Symposium,
2005.

[14] Quadrics, Ltd. QsNet. www.quadrics.com.

[15] H. Raj and K. Schwan. High Performance and Scalable I/O
Virtualization via Self-Virtualized Devices. InHPDC, 2007.

[16] K. K. Ram, J. R. Santos, Y. Turner, A. L. Cox, and S. Rixner.
Achieving 10Gbps using safe and transparent network
interface virtualization. InVEE, 2009.

[17] A. Ranadive, M. Kesavan, A. Gavrilovska, and K. Schwan.
Performance Implications of Virtualizing Multicore Cluster
Machines. InWorkshop on HPC System Virtualization, in
conjunction with Eurosys’08, 2008.

[18] RDMA-enabled NIC. www.rdmaconsortium.org.

[19] J. Sugerman, G. Venkitachalam, and B. H. Lim. Virtualizing
I/O Devices on VMware Workstation’s Hosted Virtual
Machine Monitor. InUSENIX, 2001.

[20] B. Urgaonkar and P. Shenoy. Sharc: Managing CPU and
Network Bandwidth in Shared Clusters. InIPDPS, 2004.

[21] Virtual Machine Device Queues. www.intel.com/network-
/connectivity/vtcvmdq.html.

[22] VMSafe. www.vmware.com/technology/security/vmsafe.html.

[23] The VMWare ESX Server. http://www.vmware.com/products/esx/.

[24] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif. Black-
box and Gray-box Strategies for Virtual Machine Migration.
In NSDI, 2007.

[25] Xen Credit Scheduler. wiki.xensource.com/xenwiki/CreditScheduler.

