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a b s t r a c t

In this paper, we develop dissipativity notions for dynamical systems with discontinuous
vector fields. Specifically, we consider dynamical systems with Lebesgue measurable
and locally essentially bounded vector fields characterized by differential inclusions
involving Filippov set-valued maps specifying a set of directions for the system velocity
and admitting Filippov solutions with absolutely continuous curves. In particular, we
introduce a generalized definition of dissipativity for discontinuous dynamical systems in
terms of set-valued supply rate maps and set-valued storage maps consisting of locally
Lebesgue integrable supply rates and Lipschitz continuous storage functions, respectively.
In addition, we introduce the notion of a set-valued available storage map and a set-
valued required supply map, and show that if these maps have closed convex images
they specialize to single-valued maps corresponding to the smallest available storage and
the largest required supply of the differential inclusion, respectively. Furthermore, we
show that all system storage functions are bounded from above by the largest required
supply and bounded from below by the smallest available storage, and hence, a dissipative
differential inclusion can deliver to its surroundings only a fraction of its generalized
stored energy and can store only a fraction of the generalized work done to it. Moreover,
extended Kalman–Yakubovich–Popov conditions, in terms of the discontinuous system
dynamics, characterizing dissipativity via generalized Clarke gradients and locally Lipschitz
continuous storage functions are derived. Finally, these results are then used to develop
feedback interconnection stability results for discontinuous systems thereby providing a
generalization of the small gain and positivity theorems to systems with discontinuous
vector fields.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Dissipativity theory is a system-theoretic concept that provides a powerful framework for the analysis and control design
of dynamical systems based on generalized system energy considerations. In particular, dissipativity theory exploits the
notion that numerous physical dynamical systems have certain input–output and state properties related to conservation,
dissipation, and transport of mass and energy. Such conservation laws are prevalent in dynamical systems, in general, and
feedback control systems, in particular. The dissipation hypothesis on dynamical systems results in a fundamental constraint
on the system dynamical behavior, wherein the stored energy of a dissipative dynamical system is at most equal to sum of
the initial energy stored in the system and the total externally supplied energy to the system. Thus, the energy that can be
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extracted from the system through its input–output ports is less than or equal to the initial energy stored in the system, and
hence, there can be no internal creation of energy; only conservation or dissipation of energy is possible.

The key foundation in developing dissipativity theory for nonlinear dynamical systems with continuously differentiable
flows was presented by Willems [1,2] in his seminal two-part paper on dissipative dynamical systems. In particular,
Willems [1] introduced the definition of dissipativity for general nonlinear dynamical systems in terms of a dissipation
inequality involving a generalized system power input, or supply rate, and a generalized energy function, or storage function.
The dissipation inequality implies that the increase in generalized system energy over a given time interval cannot exceed
the generalized energy supply delivered to the system during this time interval. The set of all possible system storage
functions is convex and every system storage function is bounded from below by the available system storage and bounded
from above by the required energy supply.

Dissipativity theory along with Lyapunov stability theory for feedback interconnections of dissipative systems has
been extensively developed for continuous dynamical systems possessing continuously differentiable flows [3]. However,
numerous engineering applications give rise to discontinuous dynamical systems. Specifically, in impact mechanics the
motion of a dynamical system is subject to velocity jumps and force discontinuities leading to nonsmooth dynamical
systems [4,5]. Inmechanical systems subject to unilateral constraints on systempositions [6], discontinuities occur naturally
through system-environment interactions. Alternatively, control of networks and control over networks with dynamic
topologies also give rise to discontinuous systems [7]. Specifically, link failures or creations in network systems result
in switchings of the communication topology leading to dynamical systems with discontinuous right-hand sides. In
addition, open-loop and feedback controllers also give rise to discontinuous dynamical systems. In particular, bang–bang
controllers discontinuously switch between maximum and minimum control input values to generate minimum-time
system trajectories [8], whereas slidingmode controllers [9,10] use discontinuous feedback control for system stabilization.
In switched systems [11,12], switching algorithms are used to select an appropriate plant (or controller) from a given
finite parameterized family of plants (or controllers) giving rise to discontinuous systems. As for dynamical systems with
continuously differentiable flows [3], dissipativity theory can play a fundamental role in addressing robustness, disturbance
rejection, stability of feedback interconnections, and optimality for discontinuous dynamical systems.

In light of the fact that energy notions involving conservation, dissipation, and transport also arise naturally for
discontinuous systems, it seems natural that dissipativity theory can play a key role in the analysis and control design
of discontinuous dynamical systems. Specifically, as in the analysis of continuous dynamical systems with continuously
differentiable flows, dissipativity theory for discontinuous dynamical systems can involve conditions on system parameters
that render an input, state, and output system dissipative. In addition, robust stability for discontinuous dynamical systems
can be analyzed by viewing a discontinuous dynamical system as an interconnection of discontinuous dissipative dynamical
subsystems. Alternatively, discontinuous dissipativity theory can be used to design discontinuous feedback controllers that
add dissipation and guarantee stability robustness allowing discontinuous stabilization to be understood in physical terms.

In [13], the authors extend the notion of dissipativity theory to impulsive and hybrid dynamical systems possessing
left-continuous flows using generalized storage functions and hybrid supply rates. The overall approach provides an
interpretation of a generalized energy balance for impulsive and hybrid dynamical systems in terms of the stored or
accumulated system generalized energy, the dissipated energy over the continuous-time dynamics, and the dissipated
energy at the resetting instants. Extensions of dissipativity theory to vector dissipativity notions using vector storage
functions and vector supply rates for analyzing large-scale interconnected systems are considered in [14]. More recently
passivity theory for switched dynamical systems described by a family of subsystems parameterized by a finite index set
are discussed in [15–18].

In this paper, we extend the results of [18] to develop dissipativity notions for dynamical systems with discontinuous
vector fields. Specifically, we consider dynamical systems with Lebesguemeasurable and locally essentially bounded vector
fields characterized by differential inclusions involving Filippov set-valuedmaps specifying a set of directions for the system
velocity and admitting Filippov solutions with absolutely continuous curves. In particular, we introduce a generalized
definition of dissipativity for discontinuous dynamical systems in terms of set-valued supply rate maps and set-valued
storage maps consisting of locally Lebesgue integrable supply rates and locally Lipschitz continuous storage functions,
respectively. The collection of storage functions and supply rates satisfy a set of dissipation inequalities reflecting the
fact that the dissipated generalized energies of a discontinuous dissipative system are nonnegative and are given by the
difference of what is supplied and what is stored.

In addition, we introduce the notion of a set-valued available storage map and a set-valued required supply map, and
show that if these set-valued maps have closed convex images they specialize to single-valued maps corresponding to the
smallest available storage and the largest required supply of the dissipative differential inclusion, respectively. Furthermore,
we show that all system storage functions are bounded from above by the largest required supply and bounded from below
by the smallest available storage, and hence, a dissipative differential inclusion can deliver to its surroundings only a fraction
of its generalized stored energy and can store only a fraction of the generalized work done to it. Moreover, we develop
analogous results for lossless differential inclusions as well as specialize our results to switched dynamical systems.

Finally, we develop extended Kalman–Yakubovich–Popov conditions in terms of the discontinuous system dynamics
for characterizing dissipativity via generalized Clarke gradients of locally Lipschitz continuous storage functions for
discontinuous systems. In addition, using the concepts of dissipativity for discontinuous dynamical systemswith appropriate
storage maps and supply rate maps, we construct nonsmooth Lyapunov functions for discontinuous feedback systems by
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appropriately combining the storage maps for the forward and feedback subsystems. General stability criteria are given
for Lyapunov, asymptotic, and exponential stability for feedback interconnections of discontinuous dynamical systems.
In the case where the supply rate map consists of supply rates involving net system power or weighted input–output
energy, these results provide extensions of the positivity and small gain theorems to discontinuous dynamical systems. The
consideration of nonsmooth Lyapunov functions for proving stability of feedback interconnections of discontinuous systems
is an important extension to classical stability theory of dissipative feedback systems since, as shown in [19], there exist
nonsmooth dynamical systems whose equilibria cannot be proved to be stable using standard continuously differentiable
Lyapunov function theory.

2. Notation and mathematical preliminaries

The notation used in this paper is fairly standard. Specifically, R denotes the set of real numbers, Rn denotes the set of
n × 1 real column vectors, Z+ denotes the set of nonnegative integers, and (·)T denotes transpose. We write ∂S, S, and |S|

to denote the boundary, the closure, and the cardinality of the subset S ⊂ Rn, respectively. Furthermore, we write ∥ · ∥ for
the Euclidean vector norm on Rn, Bε(α), α ∈ Rn, ε > 0, for the open ball centered at α with radius ε, dist(p,M) for the
distance from a point p to the set M, that is, dist(p,M) , infx∈M ∥p − x∥, and x(t) → M as t → ∞ to denote that the
trajectory x(t) approaches the set M, that is, for every ε > 0 there exists T > t0 such that dist(x(t),M) < ε for all t > T .
Finally, the notions of openness, convergence, continuity, and compactness that we use throughout the paper refer to the
topology generated on Rn by the norm ∥ · ∥.

In this paper, we consider differential inclusions G of the form1

ẋ(t) ∈ F (x(t), u(t)), x(t0) = x0, a.e. t ≥ t0, (1)
u(t) ∈ U, (2)
y(t) ∈ H(x(t), u(t)), (3)

where U is a set of admissible (control) inputs consisting of Lebesgue measurable U-valued functions on the semi-infinite
interval [t0,∞), or, in the case where U = U(x), differential inclusions G of the form

ẋ(t) ∈ F̃ (x(t)), x(t0) = x0, a.e. t ≥ t0, (4)

y(t) ∈ H̃(x(t)), (5)

where F̃ (x) , {f (x, u) : f (x, u) ∈ F (x, u), u ∈ U(x)} and H̃(x) , {h(x, u) : h(x, u) ∈ H(x, u), u ∈ U(x)}, and, for every
t ≥ t0, x(t) ∈ D ⊆ Rn, u(t) ∈ U ⊆ Rm, and y(t) ∈ Y ⊆ Rl. Here F : D × U → B(Rn) and H : D × U → B(Rl)
are Filippov set-valued maps that assign sets to points, where B(Rq) denotes the collection of all subsets of Rq. Hence, F
and H are mappings from D × U to subsets of Rn and Rl, respectively. The set F̃ (x) captures all of the directions in Rn

that can be generated at x with inputs u(·) ∈ U. The inputs u(·) can be selected as either u : [t0,∞) → U, u : D → U ,
or u : [t0,∞) × D → U . We assume that F̃ (x) is an upper semicontinuous, nonempty, convex, and compact set for all
x ∈ Rn. That is, for every x ∈ D and every ε > 0, there exists δ > 0 such that, for all z ∈ Rn satisfying ∥z − x∥ ≤ δ,
F̃ (z) ⊆ F̃ (x) + εB1(0). This assumption is mainly used to guarantee the existence of Filippov solutions to (4) [20]. An
absolutely continuous function x : [t0, τ ] → Rn is said to be a Filippov solution [20] of (4) on the interval [t0, τ ] with
initial condition x(t0) = x0, if x(t) satisfies (4) for almost all t ∈ [t0, τ ].2,3 Hence, the tangent vector to a Filippov solution,
when it exists, lies in the convex closure of the limiting values of the system vector field f (·, ·) in progressively smaller
neighborhoods around the solution point. Dynamical systems of the form given by (4) are called differential inclusions in the
literature [22] and, for every state x ∈ Rn, they specify a set of possible evolutions of G rather than a single one.

Since the Filippov set-valued map given by (4) is upper semicontinuous with nonempty, convex, and compact values,
and F̃ is also locally bounded [20, p. 85], it follows that Filippov solutions to (4) exist [20, Theorem 1, p. 77]. Recall that
the Filippov solution t → x(t) to (4) is a right maximal solution if it cannot be extended (either uniquely or nonuniquely)
forward in time. We assume that all right maximal Filippov solutions to (4) exist on [t0,∞), and hence, we assume that

1 Note that the differential inclusion (1) and (2) with measurable u(·) ∈ U subsumes the standard open system ẋ(t) = f (x(t), u(t)), where
f : D × U → Rn and u(t) ∈ U, by simply considering F̃ (x) , {f (x, u) : u ∈ U}. In particular, the Filippov–Wazewski relaxation theorem [20] implies
that, under mild hypothesis on f (·, ·), an arc x(·) satisfies (1) if and only if there exists a measurable function u(·) ∈ U such that ẋ(t) = f (x(t), u(t)) holds
for almost all t ≥ t0 .
2 For the closed system Gc given by ẋ(t) = f (x(t)) for almost all t ≥ t0 , where f : D → Rn is Lebesgue measurable and locally essentially bounded,

x : [t0, τ ) → Rn is a Filippov solution of Gc if x(t) satisfies the differential inclusion ẋ(t) ∈ F (x(t)), a.e. t ∈ [t0, τ ], where F (x) = K[f ](x) ,
δ>0


µ(S)=0 co{f (Bδ(x)) \ S}, x ∈ Rn, µ(·) denotes the Lebesgue measure in Rn , ‘‘co’’ denotes convex closure, and


µ(S) = 0 denotes the intersection

over all sets S of Lebesguemeasure zero. Equivalently, it follows from Theorem 1 of [21] that there exists a setNf ⊂ Rn ofmeasure zero such that, for every
W ⊂ Rn of measure zero, K[f ](x) = co{limi→∞ f (xi) : xi → x, xi ∉ Nf ∪ W}. (Since f is locally essentially bounded, K[f ](·) is upper semicontinuous and
has nonempty, compact, and convex values.) Thus, Filippov solutions are limits of solutions toGc with f averaged over progressively smaller neighborhoods
around the solution point, and hence, allow solutions to be defined at points where f itself is not defined.
3 Alternatively, we can consider Krasovskii solutions of (4) wherein the possible misbehavior of the derivative of the state on null measure sets is not

ignored; that is, K[f ](x) in footnote 2 is replaced with K[f ](x) =

δ>0 co{f (Bδ(x))} and where f is assumed to be locally bounded.
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(4) is forward complete. Recall that (4) is forward complete if and only if the Filippov solutions to (4) are uniformly globally
sliding time stable [23, Lemma 1, p. 182]. An equilibrium point of (4) is a point xe ∈ Rn such that 0 ∈ F̃ (xe). It is easy to see
that xe is an equilibrium point of (4) if and only if the constant function x(·) = xe is a Filippov solution of (4). We denote the
set of equilibrium points of (4) by E . Since the set-valued map F̃ (·) is upper semicontinuous, it follows that E is closed.

To develop stability and dissipativity theory for discontinuous dynamical systems of the form given by (1)–(3), we
need to introduce the notion of generalized derivatives and gradients. Here we focus on Clarke generalized derivatives and
gradients [24].

Definition 2.1 ([24,25]). Let V : Rn
→ R be a locally Lipschitz continuous function. The Clarke upper generalized derivative

of V (·) at x in the direction of v ∈ Rn is defined by

V o(x, v) , lim sup
y→x,h→0+

V (y + hv)− V (y)
h

. (6)

The Clarke generalized gradient ∂V : Rn
→ B(R1×n) of V (·) at x is the set

∂V (x) , co

lim
i→∞

∇V (xi) : xi → x, xi ∉ N ∪ S


, (7)

where co denotes the convex hull, ∇ denotes the nabla operator, N is the set of measure zero of points where ∇V does not
exist, S is any subset of Rn of measure zero, and the increasing unbounded sequence {xi}i∈Z+

⊂ Rn converges to x ∈ Rn.

Note that (6) always exists. Furthermore, note that it follows from Theorem 2.5.1 of [24] that (7) is well defined and
consists of all convex combinations of all the possible limits of the gradient at neighboring points where V is differentiable.
In addition, note that since V (·) is Lipschitz continuous, it follows from Rademacher’s theorem [26, Theorem 6, p. 281] that
the gradient ∇V (·) of V (·) exists almost everywhere, and hence, ∇V (·) is bounded. Thus, since for each x ∈ Rn, ∂V (x) is
convex, closed, and bounded, it follows that ∂V (x) is compact.

In order to state themain results of this paper, we need some additional notation and definitions. Given a locally Lipschitz
continuous function V : Rn

→ R, the set-valued Lie derivative LF̃ V : Rn
→ B(R) of V with respect to F̃ at x [25,27] is

defined as

LF̃ V (x) ,

a ∈ R : there exists v ∈ F̃ (x) such that pTv = a for all pT ∈ ∂V (x)


⊆


pT∈∂V (x)

pTF̃ (x). (8)

If F̃ is convex with compact values, then LF̃ V (x), x ∈ Rn, is a closed and bounded, possibly empty, interval in R. If V (·) is
continuously differentiable at x, then LF̃ V (x) = {∇V (x) · v : v ∈ F̃ (x)}. In the case where LF̃ V (x) is nonempty, we use
the notation maxLF̃ V (x) (resp., minLF̃ V (x)) to denote the largest (resp., smallest) element of LF̃ V (x). Furthermore, we
adopt the convention max∅ = −∞. Finally, recall that a function V : Rn

→ R is regular at x ∈ Rn [24, Definition 2.3.4] if,
for all v ∈ Rn, the right directional derivative V ′

+
(x, v) , limh→0+

1
h [V (x + hv)− V (x)] exists and V ′

+
(x, v) = V o(x, v). V is

called regular on Rn if it is regular at every x ∈ Rn.

3. Dissipative differential inclusions: input–output and state properties

In this section, we extend the notion of dissipativity of dynamical systems with continuously differentiable flows
to develop the concept of dissipativity and losslessness for differential inclusions. Specifically, we extend the classical
definitions of dissipativity and losslessness [1,2] for dynamical systems with continuously differentiable flows to
discontinuous systems and develop dissipativity theory for differential inclusions in terms of integral and generalized
derivative inequalities with respect to set-valued supply rate maps. Since a special case of (1)–(3) involves switched
dynamical systems [15,16], in our definition of dissipativity and losslessness we considermultiple supply rates andmultiple
storage functions. Specifically, for switched systems each subsystem can have its individual supply rate, and hence, its own
storage function. Thus, for Filippov dynamical systems, in general, and switched dynamical systems, in particular, using the
same storage function and the same supply rate for all subsystems can be very restrictive as they may be very difficult to
find or may not exist. For further details of this fact, see [15,16].

Definition 3.1. (i) The differential inclusion G given by (1)–(3) isweakly exponentially dissipative (resp.,weakly dissipative)
with respect to the set-valued supply rate map Sr : U × Y → B(R), consisting of r locally Lebesgue integrable functions4

4 More generally, a countably infinite number of supply rates can also be considered. A similar remark also holds for the available storage, storage, and
required supply functions introduced later in the paper. This, for example, would correspond to the case where we are considering a switched dynamical
system with a countably infinite number of subsystems.
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sk : U × Y → R, k ∈ {1, . . . , r}, called supply rates, if there exist constants εk > 0 (resp., εk = 0) such that the
dissipation inequality

0 ≤

 t

t0
eεkσ sk(u(σ ), y(σ ))dσ , t0 ≤ σ ≤ t, (9)

is satisfied for at least one sk(·, ·) ∈ Sr with sk(0, 0) = 0 and u(·) ∈ U, and at least one Filippov solution x(t), t ≥ t0,
of G with x(t0) = 0.

(ii) The differential inclusionG of the form (1)–(3) is strongly exponentially dissipative (resp., strongly dissipative)with respect
to the set-valued supply rate map Sr : U × Y → B(R) if the dissipation inequality (9) is satisfied with εk > 0
(resp., εk = 0) for every Filippov solution x(t), t ≥ t0, of G with x(t0) = 0 by at least one sk(·, ·) ∈ Sr with
sk(0, 0) = 0, k ∈ {1, . . . , r}, and u(·) ∈ U.

(iii) The differential inclusion G of the form (1)–(3) is weakly lossless with respect to the set-valued supply rate map Sr :

U×Y → B(R) ifG isweakly dissipativewith respect to the set-valued supply ratemapSr and the dissipation inequality
(9) is satisfied as an equality for εk = 0, at least one sk(·, ·) ∈ Sr with sk(0, 0) = 0, k ∈ {1, . . . , r}, and u(·) ∈ U, and
with x(t0) = x(t) = 0 along at least one Filippov solution of G.

(iv) The differential inclusion G of the form (1)–(3) is strongly lossless with respect to the set-valued supply rate map Sr :

U × Y → B(R) if G is strongly dissipative with respect to the set-valued supply rate map Sr and the dissipation
inequality (9) is satisfied as an equality for εk = 0, along every Filippov solution of G by at least one sk(·, ·) ∈ Sr with
sk(0, 0) = 0, k ∈ {1, . . . , r}, and u(·) ∈ U, and with x(t0) = x(t) = 0.

Note that every strongly dissipative (resp., strongly lossless) differential inclusion is weakly dissipative (resp., weakly
lossless); however, the converse is not true. In most cases it is sufficient to consider the notion of weak dissipativity
for a given differential inclusion. In this case, a single-valued supply rate map suffices in Definition 3.1. However, when
considering a switched dynamical system as a family of parameterized systems and the dissipativity of every system is
needed, then it is necessary to use the stronger notion of strong dissipativity, which requires that the set of all Filippov
solutions of G to be epimorphic (i.e., a surjective homomorphism) to the set-valued supply rate map Sr. That is, the mapping
from the set of all Filippov solutions of G to the set of supply rates Sr that takes each Filippov solution into its own supply
rate is a surjection.

Next, define the available storage functions Vak : D → R of the differential inclusion G by

Vak(x0) , − inf
u(·),T≥t0

 T

t0
eεktsk(u(t), y(t))dt = sup

u(·), T≥t0


−

 T

t0
eεktsk(u(t), y(t))dt


, (10)

where sk(·, ·) ∈ Sr, k ∈ {1, . . . , r}, and x(t), t ≥ t0, is a Filippov solution of G with x(t0) = x0 and admissible
input u(·) ∈ U. Furthermore, define the set-valued available storage map Va : D → B(R) of the differential inclusion
G by Va(x) , {Va1(x), . . . , Var (x)}, x ∈ D . The supremum in (10) is taken over all admissible inputs u(·), all time
t ≥ t0, and all Filippov system trajectories with initial value x(t0) = x0 and terminal value left free. Note that for every
k ∈ {1, . . . , r}, Vak(x) ≥ 0 for all x ∈ D since Vak(x) is the supremum over a set of numbers containing the zero element
(T = t0).

Next, define the least available storage map of the differential inclusion G by

Vas(x0) ,


v ∈ Va(x0) : v = inf

w∈Va(x0)
w


=


v ∈ Va(x0) : v = − sup

w∈(−Va(x0))
w


. (11)

Note that if B(R) is a reflexive strictly convex space5and Va(x) has closed convex images, then it follows that the least
available storagemap is single-valued [28, p. 360].We call this map the smallest available storage of the differential inclusion
G. For the remainder of the paper we assume that B(R) is a reflexive strictly convex space. It follows from Corollary 9.3.3
of [28] that if Va : D → B(R) is a continuous set-valued map with nonempty closed convex images, then the smallest
available storage is continuous. In other words, if Va(·) is continuous and takes its values in a compact subset of a strictly
convex reflexive Banach space, then the smallest available storage Vas(x0) is continuous. In addition, it follows from (11)
that the smallest available storage of a differential inclusion G is the maximum amount of storage, or generalized stored
energy, which can be extracted from the differential inclusion G at any time T . In the definition of Vas(·), the infimum is
taken elementwise over all Vak(·) ∈ Va, k ∈ {1, . . . , r}, since sk(·, ·) ∈ Sr, k ∈ {1, . . . , r}, which implies that for different
elements of Va(·) the infimum is calculated separately. Moreover, note that Vas(x) ≥ 0 for all x ∈ D since Vas(x), x ∈ D , is
the infimum over a set of nonnegative numbers.

5 Recall that if B(Rq) is a Hilbert space, then B(Rq) is a reflexive strictly convex space; that is, for all x, y ∈ B(Rq) that are not colinear, ∥x + y∥ <
∥x∥ + ∥y∥.
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The following definitions are needed later in the paper.

Definition 3.2. A differential inclusion G is weakly (resp., strongly) completely reachable if for every x0 ∈ D ⊆ Rn there
exists a finite time ti < t0 and an admissible input u(t) defined on [ti, t0] such that at least one (resp., every) Filippov
solution x(t), t ≥ ti, of G can be driven from x(ti) = 0 to x(t0) = x0. G is weakly (resp., strongly) completely null controllable
if for every x0 ∈ D ⊆ Rn there exists a finite time tf > t0 and an admissible input u(t) defined on [t0, tf] such that at least
one (resp., every) Filippov solution x(t), t ≥ t0, of G can be driven from x(t0) = x0 to x(tf) = 0.

Definition 3.3. Consider the differential inclusion G given by (1)–(3).

(i) A set-valued map Vs : D → B(R) consisting of q nonnegative definite, locally Lipschitz continuous, and regular
functions Vi : D → R, i ∈ {1, . . . , q}, is called a weak set-valued storage map, if the dissipation inequality

eεktVi(x(t)) ≤ eεkt0Vi(x(t0))+

 t

t0
eεkσ sk(u(σ ), y(σ ))dσ , t ≥ t0, (12)

is satisfied for at least one Vi(·) ∈ Vs(x) with Vi(0) = 0, where i ∈ {1, . . . , q}, at least one sk(·, ·) ∈ Sr with
sk(0, 0) = 0, where k ∈ {1, . . . , r}, and at least one Filippov solution x(t), t ≥ t0, of G with u(·) ∈ U. The functions
Vi(·) ∈ Vs(x), i ∈ {1, . . . , q}, satisfying (12) are called the storage functions of G and are denoted as Vsi(x), x ∈ D .

(ii) A set-valued map Vs : D → B(R) is called a strong set-valued storage map, if the dissipation inequality (12) is satisfied
for every Filippov solution x(t), t ≥ t0, of G with u(·) ∈ U, by at least one Vsi(·) ∈ Vs(x) with Vsi(0) = 0, where
i = 1, . . . , q, and at least one sk(·, ·) ∈ Sr with sk(0, 0) = 0, where k = 1, . . . , r .

Note that, since for i ∈ {1, . . . , q} and k ∈ {1, . . . , r}, Vsi(0) = 0, it follows that t

t0
eεkσ sk(u(σ ), y(σ ))dσ ≥ eεktVsi(x(t)) ≥ 0, x ∈ D, Vsi(·) ∈ Vs(x),

andhence, the existence of aweak (resp., strong) set-valued storagemap impliesweak (resp., strong) dissipativity. Inequality
(12) is known as the dissipation inequality and reflects the fact that some of the supplied generalized energies to the system
G are stored, and some are dissipated. The dissipated generalized energies are nonnegative and are given by the difference
of what is supplied and what is stored. In addition, the amount of generalized stored energies are a function of the state of
the dynamical system.

In the remainder of the paper, we drop the adjectives ‘‘weak’’ and ‘‘strong’’ as well as the index k whenever a statement
holds for both the weak and strong cases. If Vsi(·) is locally Lipschitz continuous and regular, then an equivalent statement
for the dissipativeness of G involving supply rates sk(u, y) is

V̇si(x(t)) ≤ sk(u(t), y(t)), a.e. t ≥ 0, (13)

or, equivalently, V̇si(x) ≤ sk(u, y), where

V̇si(x) =
d
dt

Vsi(ψ(t, x, u))

t=0

, lim sup
h→0+

Vsi(ψ(h, x, u))− Vsi(x)
h

(14)

for every x ∈ Rn such that the limit in (14) exists, denotes the upper right directional Dini derivative of Vsi(x) along the
Filippov state trajectoriesψ(t, x, u) of (1) through x ∈ D with u(·) ∈ U at t = 0. Alternatively, an equivalent statement for
exponential dissipativeness of G involving supply rates sk(u, y) is

V̇si(x(t))+ εkVsi(x(t)) ≤ sk(u(t), y(t)), a.e. t ≥ 0. (15)

The following lemma is needed for the next and subsequent results in the paper.

Lemma 3.1 ([25]). Let x : [t0, t] → Rn be a Filippov solution of the differential inclusion (1) and let V : Rn
→ R be locally

Lipschitz continuous and regular. Then d
dσ V (x(σ )) exists for almost all σ ∈ [t0, t] and d

dσ V (x(σ )) ∈ LF V (x(σ )) for almost all
σ ∈ [t0, t].

Proposition 3.1. Consider the differential inclusion G given by (1)–(3) and let V : Rn
→ R be a locally Lipschitz continuous

and regular function such that V (x) ≥ 0 for all x ∈ Rn and V (0) = 0. Assume there exist a Lebesgue measurable function
s : Rm

× Rl
→ R and a scalar ε > 0 (resp., ε = 0) such that

maxLF V (x) ≤ −εV (x)+ s(u, y), a.a. u ∈ U. (16)

Then G is strongly exponentially dissipative (resp., strongly dissipative) with respect to the set-valued supply rate map Sr =

{s(u, y)}.
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Proof. It suffices to show that if (16) holds, then (12) holds on the interval [t0, t]. To see this, let x : [t0, t] → Rn be a
Filippov solution of (4) with initial condition x(0) = x0. Now, since by Lemma 3.1 V̇ (x(σ )) ≤ maxLF V (x(σ )) for almost all
σ ∈ [t0, t], it follows from (16) that V̇ (x(σ )) ≤ −εV (x(σ ))+ s(u(σ ), y(σ )) for almost all σ ∈ [t0, t], and hence,

eεσ (V̇ (x(σ ))+ εV (x(σ ))) ≤ eεσ s(u(σ ), y(σ )), a.e. σ ∈ [t0, t]. (17)

Now, integrating (17), where the integral is a Lebesgue integral, it follows that (12) holds with ε > 0 (resp., ε = 0). �

Example 3.1. Consider the controlled discontinuous dynamical systemG representing amass sliding on a horizontal surface
subject to a Coulomb frictional force. During sliding, the Coulomb frictional model states that the magnitude of the friction
force is independent of the magnitude of the system velocity and is equal to the normal contact force times the coefficient
of kinetic friction. The application of this model to a sliding mass on a horizontal frictional surface gives

ẋ(t) = −sign(x(t))+ u(t), x(0) = x0, a.e. t ≥ 0, (18)
y(t) = x(t). (19)

Eq. (18) can be rewritten in the form of (1) with F (x, u) = K[f ](x)+ u so that

ẋ(t) ∈ K[f ](x(t))+ u(t), x(0) = x0, a.e. t ≥ 0, (20)

where the Filippov set-valued map K[f ] : R → B(R) is given by

K[f ](x) ,


−1, x > 0,
[−1, 1] , x = 0,
1, x < 0.

(21)

Let Vs1(x) = x2 and Vs = {Vs1(x)}. Since

V̇s1(x) ∈ LF Vs1(x) = ∂Vs1(x)(K[f ](x)+ u)
= 2xK[f ](x)+ 2xu
= −|x| + 2uy
≤ 2uy, (22)

it follows thatmaxLF Vs1(x) ≤ 2uy for all Filippov solutions, which, by Proposition 3.1, implies thatG is strongly dissipative
with respect to the single-valued supply rate map Sr = {2uy}.

Next, let Vs2(x) = |x| and Vs = {Vs2(x)}. Since

V̇s2(x) ∈ LF Vs2(x) =


−1 + sign(x)u, x ≠ 0,
0, x = 0,

= −1 + u sign(y), x ≠ 0, (23)

it follows that maxLF Vs2(x) ≤ u sign(y) for almost all x ∈ R and all Filippov solutions, which, by Proposition 3.1, implies
that G is strongly dissipative with respect to the single-valued supply rate map Sr = {u sign(y)}.

Alternatively, if we choose Vs = {Vs1(x), Vs2(x)} and Sr = {2uy, u sign(y)}, then it follows that G is strongly dissipative
with respect to the set-valued supply rate map Sr. �

Next, we show that all of the available storage functions of G are finite and zero at the origin if and only if G is weakly
(resp., strongly) dissipative.

Theorem 3.1. Consider the differential inclusion G given by (1)–(3) and assume that G is weakly (resp., strongly) completely
reachable. Then G is weakly (resp., strongly) dissipative with respect to the set-valued supply rate map Sr : U ×Y → B(R) if and
only if the available storage functions Vak(x0) given by (10) are finite and Vak(0) = 0 for all x0 ∈ D , some k ∈ {1, . . . , r}, and at
least one (resp., every) Filippov solution of G. Moreover, if Vak(0) = 0 and Vak(x0) are finite for all x0 ∈ D , some k ∈ {1, . . . , r},
and at least one (resp., every) Filippov solution of G, then Va : D → B(R) is a weak (resp., strong) set-valued storage map for
G. Finally, all storage functions Vsi(·) ∈ Vs(x), i ∈ {1, . . . , q}, for G satisfy

0 ≤ Vas(x) ≤ Vsi(x), x ∈ D. (24)

Proof. Suppose Vak(0) = 0 and Vak(x0), x0 ∈ D , are finite for some k ∈ {1, . . . , r}. Now, it follows from (10) (with T = t0)
that Vak(x0) ≥ 0 for all x0 ∈ D and some k ∈ {1, . . . , r}. Next, let x(t), t ≥ t0, be a Filippov solution to (1) with admissible
input u(t), t ∈ [t0, T ]. Since −Vak(x0), x0 ∈ D and k ∈ {1, . . . , r}, is given by the infimum over all admissible inputs u(·)
in (10), it follows that for all admissible inputs u(·) ∈ U, T > t0, and k ∈ {1, . . . , r},

−Vak(x(t0)) ≤

 T

t0
sk(u(t), y(t))dt =

 tf

t0
sk(u(t), y(t))dt +

 T

tf
sk(u(t), y(t))dt,
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which implies

−Vak(x(t0))−

 tf

t0
sk(u(t), y(t))dt ≤

 T

tf
sk(u(t), y(t))dt.

Hence,

Vak(x(t0))+

 tf

t0
sk(u(t), y(t))dt ≥ − inf

u(·), T≥tf

 T

tf
sk(u(t), y(t))dt = Vak(x(tf)) ≥ 0, k ∈ {1, . . . , r}, (25)

which implies that tf

t0
sk(u(t), y(t))dt ≥ −Vak(x(t0)), k ∈ {1, . . . , r}. (26)

Thus, since by assumption Vak(0) = 0 for some k ∈ {1, . . . , r}, the dissipation inequality (9) holds. Hence, it follows from
Definition 3.1 that G is weakly dissipative with respect to the set-valued supply rate map Sr : U ×Y → B(R). Furthermore,
Vak(x), x ∈ D, k ∈ {1, . . . , r}, is a storage function for G. Hence, by Definition 3.3, Va : D → B(R) is a weak set-valued
storage map for G.

Alternatively, if Vak(0) = 0 and Vak(x0), x0 ∈ D, k ∈ {1, . . . , r}, is finite for all Filippov solutions to G, then it follows
from (26) that the dissipation inequality (9) is satisfied for all Filippov solutions to G, and hence, by Definitions 3.1 and 3.3,
G is strongly dissipative with respect to the set-valued supply rate map Sr : U ×Y → B(R) and Va : D → B(R) is a strong
set-valued storage map for G.

Conversely, supposeG is weakly dissipativewith respect to the set-valued supply ratemap Sr : U×Y → B(R). SinceG is
weakly completely reachable it follows that for every x0 ∈ D such that x(t0) = x0, there exist t̂ ≤ t < t0 and an admissible
input u(·) ∈ U defined on [t̂, t0] such that x(t̂) = 0 and x(t0) = x0. Now, since G is weakly dissipative with respect to the
set-valued supply rate map Sr : U × Y → B(R) and x(t̂) = 0, it follows that for some sk(u, y) ∈ Sr, k ∈ {1, . . . , r}, and at
least one Filippov solution of G, T

t̂
sk(u(t), y(t))dt ≥ 0, T > t̂,

or, equivalently, T

t0
sk(u(t), y(t))dt ≥ −

 t0

t̂
sk(u(t), y(t))dt, T > t0,

which implies that there exist functionsWk : D → R such that T

t0
sk(u(t), y(t))dt ≥ Wk(x0) > −∞, T > t0, k ∈ {1, . . . , r}. (27)

Now, it follows from (27) that for all x ∈ D and some k ∈ {1, . . . , r},

Vak(x) = − inf
u(·), T≥t0

 T

t0
sk(u(t), y(t))dt ≤ −Wk(x),

and hence, the available storage function Vak(x) < ∞ for all x ∈ D and some k ∈ {1, . . . , r}. Furthermore, with x(t0) = 0,
it follows that for all admissible inputs u(t), t ≥ t0, and some k ∈ {1, . . . , r}, T

t0
sk(u(t), y(t))dt ≥ 0, T ≥ t0,

which implies that

sup
u(·), T≥t0


−

 T

t0
sk(u(t), y(t))dt


≤ 0,

or, equivalently, Vak(x(t0)) = Vak(0) ≤ 0 for some k ∈ {1, . . . , r}. However, since Vak(x) ≥ 0, x ∈ D and k ∈ {1, . . . , r}, it
follows that Vak(0) = 0, k ∈ {1, . . . , r}. Moreover, it follows from (25) that Vak(x), x ∈ D and k ∈ {1, . . . , r}, is a storage
function for G. Thus, Va : D → B(R) is a weak set-valued storage map for G.

Alternatively, if G is strongly completely reachable and strongly dissipative with respect to the set-valued supply rate
map Sr : U × Y → B(R), then the above analysis holds for all Filippov solutions to G. Hence, Va : D → B(R) is a strong
set-valued storage map for G.
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Finally, let Vsi(x) for all x ∈ D and some i ∈ {1, . . . , q} be a storage function for G. Then it follows from (12) that, for all
T > t0 and x0 ∈ D , some sk(·, ·) ∈ Sr, k ∈ {1, . . . , r}, i ∈ {1, . . . , q}, and at least one Filippov solution of G,

Vsi(x0) ≥ Vsi(x(T ))−

 T

t0
sk(u(t), y(t))dt ≥ −

 T

t0
sk(u(t), y(t))dt,

which implies

Vsi(x0) ≥ sup
u(·), T≥t0


−

 T

t0
sk(u(t), y(t))dt


= Vak(x0) ≥ Vas(x0), (28)

yielding (24). �

The following theorem provides sufficient conditions for guaranteeing that all of the storage functions of a given
dissipative differential inclusion are positive definite. For this result we require the following definition.

Definition 3.4. A differential inclusion G is weakly (resp., strongly) zero-state observable if u(t) ≡ 0 and y(t) ≡ 0 implies
x(t) ≡ 0 for at least one (resp., every) Filippov solution of G.

Theorem 3.2. Consider the differential inclusion G given by (1)–(3), and assume that G is weakly (resp., strongly) completely
reachable and weakly (resp., strongly) zero-state observable. Furthermore, assume that G is weakly (resp., strongly) dissipative
with respect to the set-valued supply rate map Sr : U × Y → B(R) and there exist functions κk : Y → U, k ∈ {1, . . . , r}, such
that κk(0) = 0 and sk(κk(y), y) < 0, y ≠ 0, k ∈ {1, . . . , r}. Then the storage functions Vsi(x), x ∈ D, i ∈ {1, . . . , q}, are
positive definite, that is, Vsi(0) = 0 and Vsi(x) > 0, x ∈ D, x ≠ 0, i ∈ {1, . . . , q}.

Proof. Suppose G is weakly dissipative with respect to the set-valued supply rate map Sr : U × Y → B(R). Then it follows
from Theorem 3.1 that the available storage functions Vak(x) for all x ∈ D and some k ∈ {1, . . . , r} are storage functions of
G. Next, suppose there exists x̂ ∈ D, x̂ ≠ 0, such that Vak(x̂) = 0 for some k ∈ {1, . . . , r}. Since, by assumption, there exist
functions κk : Y → U such that κk(0) = 0 and sk(κk(y), y) < 0, y ≠ 0, it follows that for some k ∈ {1, . . . , r},

0 = sup
u(·),T≥t0


−

 T

t0
sk(u(t), y(t))dt


≥ sup

T≥t0


−

 T

t0
sk(κk(y(t)), y(t))dt


≥ 0, a.e. t ≥ t0,

and hence,

sk(κk(y(t)), y(t)) = 0, a.e. t ≥ t0, k ∈ {1, . . . , r}.

Since κk(0) = 0 and sk(κk(y), y) < 0, y ≠ 0, k ∈ {1, . . . , r}, it follows that y(t) = 0 almost everywhere t ≥ t0. Now, since
G is weakly zero-state observable it follows that x̂ = 0, and hence, Vak(x) = 0, k ∈ {1, . . . , r}, if and only if x = 0. The result
now follows from (28).

Alternatively, if G is strongly zero-state observable and strongly dissipative with respect to the set-valued supply rate
map Sr : U × Y → B(R), then the above analysis holds for all Filippov solutions to G. Hence, it follows from (24) that all
Vsi(·) ∈ Vs(x), i ∈ {1, . . . , q}, are positive definite. �

Next, we consider a special case of the differential inclusions (1)–(3) involving switched dynamical systems. Specifically,
consider the nonlinear dynamical systems given by

ẋ(t) = fp(x(t))+ Gp(x(t))up(t), x(t0) = x0, t ≥ t0, (29)

yp(t) = hp(x(t)), (30)

where, for every t ≥ t0, x(t) ∈ D ⊆ Rn, fp : Rn
→ Rn,Gp : Rn

→ Rn×m, and hp : Rn
→ Rl are locally Lipschitz continuous

functions, and p ∈ P = {1, . . . , d} is a finite index set. The family of nonlinear dynamical systems (29) and (30) can be
rewritten as the switched dynamical system Gσ [15,17,18] given by

ẋ(t) = fσ(t)(x(t))+ Gσ(t)(x(t))uσ(t)(t), σ (·) ∈ Σ, x(t0) = x0, t ≥ t0, (31)

yσ(t)(t) = hσ(t)(x(t)), (32)

where x(t) ∈ D ⊆ Rn, t ≥ t0, fσ : Rn
→ Rn, Gσ : Rn

→ Rn×m, hσ : Rn
→ Rl, σ : [t0,∞) → P is a piecewise constant

switching signal, and Σ denotes the set of switching signals. The switching signal σ effectively switches the right-hand
side of (31) and (32) by selecting different subsystems from the parameterized family {fp(x)+ Gp(x)up and hp(x) : p ∈ P }.
We denote by ti, i = 1, 2, . . . , the consecutive discontinuities of σ which we call the switching times of (31) and (32). Our
convention here is that σ(·) is left-continuous, that is, σ(t−) = σ(t), where σ(t−) , limh→0−(t + h).

The pair (x, σ ) : [t0,∞)×Σ → Rn is a solution to the switched dynamical system (31) if x(·) is absolutely continuous and
satisfies (31) for almost all t ≥ t0. Here, we assume that if there are infinitely many switching times, then there exists τ > 0
such that for every T ≥ t0 there exists a positive integer l such that tl+1 − τ ≥ tl ≥ T . When t ∈ [tl, tl+1) , σ (t) = il, that
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is, the ilth subsystem is active. Hence, the trajectory x(t) of the switched dynamical system (31) is defined as the trajectory
xil(t) of the ilth subsystem when t ∈ [tl, tl+1).

Note that the notion of strong dissipativity for differential inclusions subsumes the notion of dissipativity for switched
dynamical systems with cross-supply rates introduced in [15]. This is due to the fact that if the switched dynamical system
is strongly dissipative, then all of its subsystems are dissipative for all time t ≥ t0 whether or not they are active.

Proposition 3.2. Consider the switched dynamical system Gσ given by (31) and (32)with switching times {t1, . . . , tc−1}, where
tc = T and c < ∞. Then all storage functions Vsi(·) ∈ Vs(x), i ∈ {1, . . . , q}, for Gσ satisfy

c−1
l=0

Vas(x(tl))[tl,tl+1) ≤ inf
Vsi (·)∈Vs


c−1
l=0

Vsi(x(tl))


, (33)

where

Vas(x(tl))[tl,tl+1) , inf
k∈{1,...,r}


− inf

u(·),tl+1≥tl

 tl+1

tl
sk(u(t), y(t))dt


.

Proof. Since (28) holds for all storage functions Vsi(·) ∈ Vs(x), i = 1, . . . , q, it follows that over every time interval [tl, tl+1)
with l ∈ {0, . . . , c − 1},

Vsi(x(tl)) ≥ sup
u(·),tl+1≥tl


−

 tl+1

tl
sk(u(t), y(t))dt


= Vak(x(tl))[tl,tl+1) ≥ Vas(x(tl))[tl,tl+1). (34)

Now, summing both sides of inequality (34) over the switching times and the initial time t0, it follows that for every element
Vsi(·) ∈ Vs(x) and i ∈ {1, . . . , q},

c−1
l=0

Vas(x(tl))[tl,tl+1) ≤

c−1
l=0

Vsi(x(tl)),

which implies that

c−1
l=0

Vas(x(tl))[tl,tl+1) ≤ inf
Vsi (·)∈Vs


c−1
l=0

Vsi(x(tl))


,

yielding (33). �

Next, we introduce the concepts of a set-valued required supply map and required supply functions for the differential
inclusion G. Specifically, define the required supply functions Vrk : D → R of the differential inclusion G by

Vrk(x0) , inf
u(·), T≥t0

 t0

−T
eεktsk(u(t), y(t))dt, (35)

where sk(·, ·) ∈ Sr, k ∈ {1, . . . , r}, and x(t), t ≥ −T , is a Filippov solution ofGwith x(−T ) = 0 and x(t0) = x0. Furthermore,
define the set-valued required supplymapVr : D → B(R) of the differential inclusionG byVr(x) = {Vr1(x), . . . , Vrr (x)}, x ∈

D . The infimum in (35) is taken over all Filippov system trajectories starting from x(−T ) = 0 at time t = −T and ending
at x(t0) = x0 at time t = t0, and all times t ≥ t0 or, equivalently, over all admissible inputs u(·) ∈ U which drive the
differential inclusion G from the origin to x0 over the time interval [−T , t0]. If the system is not reachable from the origin,
then we define Vrk(x0) = ∞, k = 1, . . . , r .

Next, define the greatest required supply map of the differential inclusion G by

Vrs(x0) ,


v ∈ Vr(x0) : v = sup

Vrk (x0)∈Vr(x0)
Vrk(x0)


. (36)

Recall that if B(R) is a reflexive strictly convex space and Vr(x) has closed convex images, then it follows that the greatest
required supply map is single-valued. We call this map the largest required supply of the differential inclusion G. It follows
from (36) that the largest required supply of a differential inclusion is the minimum amount of generalized energy that has
to be delivered to the system in order to transfer it froman initial state x(−T ) = 0 to a given state x(t0) = x0. In the definition
of Vrs(·), the supremum is taken elementwise over all Vrk(·) ∈ Vr(x), k ∈ {1, . . . , r}, since sk(·, ·) ∈ Sr, k ∈ {1, . . . , r},
which implies that for different elements of Vr(x) the infimum is calculated separately. Note that since, with x(t0) = 0, the
infimum in (35) is zero, it follows that Vrs(0) = 0.

Next, we show that all of the required supply functions of G are finite and nonnegative if and only if the differential
inclusion G is weakly (resp., strongly) dissipative. Moreover, we prove that all storage functions are bounded from above by
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the largest required supply and bounded from below by the smallest available storage, and hence, a dissipative differential
inclusion can deliver to its surroundings only a fraction of its generalized stored energy and can store only a fraction of the
generalized work done to it.

Theorem 3.3. Consider the differential inclusion G given by (1)–(3) and assume that G is weakly (resp., strongly) completely
reachable. Then G is weakly (resp., strongly) dissipative with respect to the set-valued supply rate map Sr : U ×Y → B(R) if and
only if 0 ≤ Vrk(x) < ∞ for all x0 ∈ D , some k ∈ {1, . . . , r}, and at least one (resp., every) Filippov solution of G. Moreover, if
the required supply functions Vrk(x) are finite and nonnegative for all x ∈ D , some k ∈ {1, . . . , r}, and at least one (resp., every)
Filippov solution of G, then Vr : D → B(R) is a weak (resp., strong) set-valued storage map for G. Finally, all storage functions
Vsi(·) ∈ Vs(x), i ∈ {1, . . . , q}, for G satisfy

0 ≤ Vas(x) ≤ Vsi(x) ≤ Vrs(x) < ∞, x ∈ D. (37)

Proof. Suppose 0 ≤ Vrk(x) < ∞ for all x ∈ D and some k ∈ {1, . . . , r}. Next, let x(t), t ∈ R, be a Filippov solution to
(1)–(3) with admissible inputs u(t), t ∈ R, and x(t0) = x0. Since Vrk(x), x ∈ D and k ∈ {1, . . . , r}, is given by the infimum
over all admissible inputs u(·) ∈ U and T > t0 in (35), it follows that for all admissible inputs u(·),−T ≤ t ≤ t0, and
k ∈ {1, . . . , r},

Vrk(x0) ≤

 t0

−T
sk(u(t), y(t))dt =

 t

−T
sk(u(σ ), y(σ ))dσ +

 t0

t
sk(u(σ ), y(σ ))dσ ,

and hence, for k ∈ {1, . . . , r},

Vrk(x0) ≤ inf
u(·), T≥t

 t

−T
sk(u(σ ), y(σ ))dσ +

 t0

t
sk(u(σ ), y(σ ))dσ

= Vrk(x(t))+

 t0

t
sk(u(σ ), y(σ ))dσ . (38)

This inequality together with the fact that Vrk(0) = 0, k ∈ {1, . . . , r}, shows that Vrk(x), x ∈ D and k ∈ {1, . . . , r}, is a
storage function for G. Hence, G is weakly dissipative with respect to the set-valued supply rate map Sr : U × Y → B(R).
Furthermore, since Vrk(x), x ∈ D and k ∈ {1, . . . , r}, is a storage function for G, Vr : D → B(R) is a weak set-valued
storage map for G.

Alternatively, if 0 ≤ Vrk(x) < ∞, x ∈ D , for all Filippov solutions to G, then Vrk(x), x ∈ D, k ∈ {1, . . . , r},
satisfy the dissipation inequality (12). Hence, G is strongly dissipative with respect to the set-valued supply rate map
Sr : U × Y → B(R) and Vr : D → B(R) is a strong set-valued storage map for G.

Conversely, suppose G is weakly dissipative with respect to the set-valued supply rate map Sr : U × Y → B(R) and let
x0 ∈ D . SinceG is weakly completely reachable it follows that there exist T > t0 and u(t), t ∈ [−T , t0], such that x(−T ) = 0
and x(t0) = x0. Hence, since G is weakly dissipative with respect to the set-valued supply rate map Sr : U × Y → B(R), it
follows that for at least one sk(u, y) ∈ Sr, k ∈ {1, . . . , r}, at least one Filippov solution x(t), and for all T ≥ t0,

0 ≤

 t0

−T
sk(u(t), y(t))dt,

and hence,

0 ≤ inf
u(·), T≥t0

 t0

−T
sk(u(t), y(t))dt


,

which implies that

0 ≤ Vrk(x0) < ∞, x0 ∈ D, k ∈ {1, . . . , r}.

Furthermore, it follows from (38) that Vrk(x), x ∈ D, k ∈ {1, . . . , r}, is a storage function for G. Thus, Va : D → B(R) is a
weak set-valued storage map for G.

Alternatively, if G is strongly completely reachable and strongly dissipative with respect to the set-valued supply rate
map Sr : U × Y → B(R), then the above analysis holds for all Filippov solutions to G. Hence, 0 ≤ Vrk(x) < ∞ for all
x ∈ D, k ∈ {1, . . . , r}. Moreover, Vr : D → B(R) is a strong set-valued storage map for G.

Finally, let Vsi(x), x ∈ D , and some i ∈ {1, . . . , q} be a storage function for G. Then it follows from Theorem 3.2 that

0 ≤ Vas(x) ≤ Vsi(x), x ∈ D, i ∈ {1, . . . , q}.

Furthermore, for all T ≥ t0 such that x(−T ) = 0 and i ∈ {1, . . . , q}, it follows that

Vsi(x0) ≤ Vsi(0)+

 t0

−T
sk(u(t), y(t))dt,
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for some sk(·, ·) ∈ Sr, k ∈ {1, . . . , r}, and hence,

Vsi(x0) ≤ inf
u(·), T≥t0

 t0

−T
sk(u(t), y(t))dt = Vrk(x0) ≤ Vrs(x0) < ∞, (39)

which implies (37). �

Next, we consider the switched dynamical system given by (31) and (32).

Proposition 3.3. Consider the switched dynamical system Gσ given by (31) and (32)with switching times {t1, . . . , tc−1}, where
tc = t0 and c < ∞. Then all storage functions Vsi(·) ∈ Vs(x), i ∈ {1, . . . , q}, for Gσ satisfy

sup
Vsi (·)∈Vs


c

l=1

Vsi(x(tl))


≤

c
l=1

Vrs(x(tl))[tl−1,tl), (40)

where

Vrs(x(tl))[tl−1,tl) , sup
k∈{1,...,r}


inf

u(·),tl−1≤tl

 tl

tl−1

sk(u(t), y(t))dt


.

Proof. Since (39) holds for all storage functions Vsi(·) ∈ Vs(x), i ∈ {1, . . . , q}, it follows that over every time interval
[tl−1, tl)with l ∈ {1, . . . , c − 1},

Vsi(x(tl)) ≤ inf
u(·),tl−1≤tl

 tl

tl−1

sk(u(t), y(t))dt = Vrk(x(tl)) ≤ Vrs(x(tl)) < ∞. (41)

Now, summing both sides of inequality (41) over the switching times and noting tc = t0, it follows that for every element
Vsi(·) ∈ Vs(x) and i ∈ {1, . . . , q},

c
l=1

Vrs(x(tl))[tl−1,tl) ≥

c
l=1

Vsi(x(tl)),

which implies

c
l=1

Vrs(x(tl))[tl−1,tl) ≥ sup
Vsi (·)∈Vs


c

l=1

Vsi(x(tl))


,

yielding (40). �

In light of Theorems 3.1 and 3.3 we have the following result on lossless differential inclusions.

Theorem 3.4. Consider the differential inclusion G given by (1)–(3) and assume that G is weakly (resp., strongly) completely
reachable to and from the origin. Then G is weakly (resp., strongly) lossless with respect to the set-valued supply rate map
Sr : U×Y → B(R) if and only if the dissipation inequality (12) is satisfied as an equality for some Vsi(·) ∈ Vs(x), i ∈ {1, . . . , q},
and at least one (resp., every) Filippov solution of G. Furthermore, if G is weakly (resp., strongly) lossless with respect to the set-
valued supply rate map Sr : U × Y → B(R), then Vak(x) = Vrk(x) for all x ∈ D , some k ∈ K ⊆ {1, . . . , r}, and at least one
(resp., every) Filippov solution of G, and hence, the storage functions Vsi(x), x ∈ D and i ∈ I ⊆ {1, . . . , q}, are given by

Vsi(x0) = −

 T+

t0
sk(u(t), y(t))dt =

 t0

−T−
sk(u(t), y(t))dt, (42)

where i ∈ I, k ∈ K, |I| = |K|, and x(t), t ≥ t0, is a Filippov solution to (1)–(3) with admissible u(·) ∈ U and
x(t0) = x0, x0 ∈ D , for every T−, T+ > |t0| such that x(−T−) = 0 and x(T+) = 0.

Proof. Suppose G is weakly lossless with respect to the set-valued supply rate map Sr : U × Y → B(R). Since G is
weakly completely reachable to and from the origin it follows that, for every x0 ∈ D , there exist T−, T+ > |t0|, and
u(t) ∈ U, t ∈ [−T−, T+], such that x(−T−) = 0, x(T+) = 0, and x(t0) = x0. Now, it follows that for at least one
sk(u, y) ∈ Sr, k ∈ {1, . . . , r}, and at least one Filippov solution of G,

0 =

 T+

−T−
sk(u(t), y(t))dt

=

 t0

−T−
sk(u(t), y(t))dt +

 T+

t0
sk(u(t), y(t))dt
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≥ inf
u(·), T≥t0

 t0

−T
sk(u(t), y(t))dt + inf

u(·), T≥t0

 T

t0
sk(u(t), y(t))dt

= Vrk(x0)− Vak(x0), (43)

which implies that Vrk(x0) ≤ Vak(x0) for all x0 ∈ D and some k ∈ {1, . . . , r}. However, since, by definition, G is weakly
dissipative with respect to the set-valued supply rate map Sr : U × Y → B(R), it follows from (28) and (39) that
Vak(x0) ≤ Vsi(x0) ≤ Vrk(x0) for all x0 ∈ D and some k ∈ {1, . . . , r} and i ∈ {1, . . . , q}. Hence, the storage functions
Vsi(x0), x0 ∈ D and i ∈ {1, . . . , q}, satisfyVak(x0) = Vsi(x0) = Vrk(x0), x0 ∈ D, k ∈ K ⊆ {1, . . . , r} and i ∈ I ⊆ {1, . . . , q}.
Furthermore, it follows that the inequality in (43) is indeed an equality, which implies (42) and |I| = |K|.

Next, let t̂, t, T ≥ t0 be such that t̂ < t < T , x(T ) = 0. Hence, for at least one sk(u, y) ∈ Sr, k ∈ {1, . . . , r}, corresponding
Vsi(·) ∈ Vs, i ∈ {1, . . . , q}, and at least one Filippov solution of G, it follows from (42) that

0 = Vsi(x(t̂))+

 T

t̂
sk(u(σ ), y(σ ))dσ

= Vsi(x(t̂))+

 t

t̂
sk(u(σ ), y(σ ))dσ +

 T

t
sk(u(σ ), y(σ ))dσ

= Vsi(x(t̂))+

 t

t̂
sk(u(σ ), y(σ ))dσ − Vsi(x(t)),

which implies that (12) is satisfied as an equality.
Alternatively, if G is strongly completely reachable to and from the origin and strongly lossless with respect to the set-

valued supply rate map Sr : U × Y → B(R), then the above analysis holds for all Filippov solutions of G with some
Vak(·) ∈ Va(x), Vrk(·) ∈ Vr(x), and Vsi(·) ∈ Vs(x), x ∈ D, k ∈ {1, . . . , r}, and i ∈ {1, . . . , q}.

Conversely, if (12) is satisfied as an equality for some storage function Vsi(·) ∈ Vs(x), i ∈ {1, . . . , q}, and at least one
Filippov solution of G, then it follows from Definition 3.3 that G is weakly dissipative with respect to the set-valued supply
rate map Sr : U × Y → B(R). Furthermore, for every u(·) ∈ U, t ≥ t0, and x(t0) = x(t) = 0, it follows from (12) (with an
equality) that for at least one sk(u, y) ∈ Sr, k ∈ {1, . . . , r}, and at least one Filippov solution of G, t

t0
sk(u(σ ), y(σ ))dσ = 0, (44)

which implies that G is weakly lossless with respect to the set-valued supply rate map Sr : U × Y → B(R).
Alternatively, if (12) is satisfied as an equality for some storage functions Vsi(·) ∈ Vs(x), i ∈ {1, . . . , r}, and all Filippov

solutions of G, then (44) holds for some sk(u, y) ∈ Sr, k ∈ {1, . . . , r}, and hence, G is strongly lossless with respect to the
set-valued supply rate map Sr : U × Y → B(R). �

4. Extended Kalman–Yakubovich–Popov conditions

In this section, we show that dissipativeness, exponential dissipativeness, and losslessness of discontinuous nonlinear
affine dynamical systems G of the form

ẋ(t) = f (x(t))+ G(x(t))u(t), x(t0) = x0, a.e. t ≥ t0, (45)
y(t) = h(x(t))+ J(x(t))u(t), (46)

where x(t) ∈ D ⊆ Rn,D is an open set with 0 ∈ D , u(t) ∈ U ⊆ Rm, y(t) ∈ Y ⊆ Rl, f : D → Rn,G : D →

Rn×m, h : D → Y , and J : D → Rl×m, can be characterized in terms of the system functions f (·),G(·), h(·), and J(·).
We assume that f (·),G(·), h(·), and J(·) are Lebesguemeasurable and locally essentially bounded. Since the nonlinear maps
characterizing the system dynamics (45) and (46) are assumed to be locally essentially bounded, it follows from the classical
existence theorem for differential inclusions [22, p. 97] that a Filippov solution to (45) exists, and hence, (45) and (46) can
be represented as (1)–(3).

Note that (45) and (46) include piecewise continuous dynamical systems as well as switched dynamical systems as
special cases. For example, if f (·),G(·), h(·), and J(·) are piecewise continuous, then (45) and (46) can be represented as a
differential inclusion involving Filippov set-valued maps of piecewise-continuous vector fields given by F (x) = K[f ](x) =

co{limi→∞ f (xi) : xi → x, xi ∉ Sf }, where Sf has measure zero and denotes the set of points where f is discontinuous [21],
and similarly for G(·), h(·), and J(·). Here, we assume that F has at least one equilibrium point so that, without loss of
generality, 0 ∈ F (0).

For the next set of results, we concentrate onweakly dissipative (resp., lossless) systems so that single-valued supply rate
and storage function maps suffice. In addition, we consider the special case of dissipative systems with supply rate maps
consisting of quadratic supply rates [2,3]. Specifically, set D = Rn,U = Rm, Y = Rl, let Q ∈ Sl, R ∈ Sm, and S ∈ Rl×m be
given, and assume {s(u, y)} = {yTQy + 2yTSu + uTRu}, where Sq denotes the set of q × q symmetric matrices. Furthermore,
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we assume that there exists a function κ : Rl
→ Rm such that κ(0) = 0 and s(κ(y), y) < 0, y ≠ 0. Next, define

LGVs(x) , {q ∈ R1×m
: there exists v ∈ G(x) such that pTv = q for all pT ∈ ∂Vs(x)},

where G(x) ,

δ>0


µ(S)=0 co{G(Bδ(x)) \ S}, x ∈ Rn, and


µ(S)=0 denotes the intersection over all sets S of Lebesgue

measure zero. For notational convenience, in the remainder of the paper we write Lf Vs(x) and LGVs(x) for the sets
LF Vs(x) andLGVs(x), respectively. Furthermore, we assume that the smallest available storagemap of G is locally Lipschitz
continuous and regular. Finally, for the results of this section, we assume that the set LGVs(x) is single-valued6 for almost
all x ∈ Rn modulo LGVs(x) ≠ ∅.

Theorem 4.1. Let Q ∈ Sl, S ∈ Rl×m, R ∈ Sm, and let G be weakly zero-state observable and weakly completely reachable. If
there exist functions Vs : Rn

→ R, ℓ : Rn
→ Rp, and W : Rn

→ Rp×m and a scalar ε > 0 (resp., ε = 0) such that Vs(·) is
locally Lipschitz continuous, regular, and positive definite, Vs(0) = 0, and, for almost all x ∈ Rn,

0 = minLf Vs(x)+ εVs(x)− hT(x)Qh(x)+ ℓT(x)ℓ(x), (47)

0 =
1
2

LGVs(x)− hT(x)(QJ(x)+ S)+ ℓT(x)W(x), (48)

0 = R + STJ(x)+ JT(x)S + JT(x)QJ(x)− WT(x)W(x), (49)

[ℓ(x)+ W(x)u]T[ℓ(x)+ W(x)u] ≥ maxLf Vs(x)− minLf Vs(x), u ∈ Rm, (50)

then G is weakly exponentially dissipative (resp., weakly dissipative) with respect to the supply rate map {s(u, y)} = {yTQy +

2yTSu+uTRu}. Conversely, if G is weakly exponentially dissipative (resp., weakly dissipative) with respect to the supply rate map
{s(u, y)}, then there exist functions Vs : Rn

→ R, ℓ : Rn
→ Rp, and W : Rn

→ Rp×m and a scalar ε > 0 (resp., ε = 0) such
that Vs(·) is locally Lipschitz continuous, regular, and positive definite, Vs(0) = 0, and, for almost all x ∈ Rn, (47)–(49) hold.

Proof. First, suppose that there exist functions Vs : Rn
→ R, ℓ : Rn

→ Rp, and W : Rn
→ Rp×m and a scalar ε > 0 such

that Vs(·) is locally Lipschitz continuous, regular, and positive definite, and (47)–(50) are satisfied. Then, for every admissible
input u(t) ∈ Rm, t ≥ 0, it follows from (47)–(50) that t2

t1
eεts(u(t), y(t))dt =

 t2

t1
eεt


yT(t)Qy(t)+ 2yT(t)Su(t)+ uT(t)Ru(t)


dt

=

 t2

t1
eεt


hT(x(t))Qh(x(t))+ 2hT(x(t))(S + QJ(x(t)))u(t)

+ uT(t)(JT(x(t))QJ(x(t))+ STJ(x(t))+ JT(x(t))S + R)u(t)

dt

=

 t2

t1
eεt


minLf Vs(x(t))+ εVs(x(t))+ LGVs(x(t))u(t)+ ℓT(x(t))ℓ(x(t))

+ 2ℓT(x(t))W(x(t))u(t)+ uT(t)WT(x(t))W(x(t))u(t)

dt

=

 t2

t1
eεt


minLf Vs(x(t))+ LGVs(x(t))u(t)+ εVs(x(t))

+ [ℓ(x(t))+ W(x(t))u(t)]T[ℓ(x(t))+ W(x(t))u(t)]

dt

≥

 t2

t1
eεt


maxLf Vs(x(t))+ LGVs(x(t))u(t)+ εVs(x(t))


dt, (51)

where x(t), t ≥ 0, satisfies (45).
Next, using the sum rule for computing the generalized gradient of a locally Lipschitz continuous function [21] it follows

that

Lf+GuVs(x) ⊆ Lf Vs(x)+ LGuVs(x)

6 The assumption that LGVs(x) is single-valued is necessary for obtaining Kalman–Yakubovich–Popov conditions for (45) and (46) with Lebesgue
measurable and locally essentially bounded system functions f (·), G(·), h(·), and J(·), and with locally Lipschitz continuous storage functions Vs(·).
Specifically, as will be seen in the proof of Theorem 4.1, the requirement that there exists z ∈ LGVs(x) (resp., z ∈ LGVs(x)) such that, for all
u ∈ Rm, max[LGVs(x)u] = zu (resp., min[LGVs(x)u] = zu) used in the proof of Theorem 4.1 holds if and only if LGVs(x) is a singleton. To see this,
let q, r ∈ LGVs(x), with q ≠ r , and assume, ad absurdum, the required z exists. Then, either q − z ≠ 0 or r − z ≠ 0. Assume q − z ≠ 0 and let uT

= q − z.
Then, qu − zu = (q − z)u = (q − z)(q − z)T = ∥q − z∥2

2 > 0. Hence, qu > zu, which leads to a contradiction. A similar construction shows the result for
z ∈ LGVs(x).
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for almost all x ∈ Rn. Now, it follows from Lemma 3.1 that d
dt Vs(x(t)) ∈ Lf+GuVs(x(t)) ⊆ Lf Vs(x(t)) + LGuVs(x(t)) for

almost all t ≥ 0. Hence,

d
dt

Vs(x(t)) ≤ maxLf+GuVs(x(t))

≤ max

Lf Vs(x(t))+ LGVs(x(t))u(t)


= maxLf Vs(x(t))+ LGVs(x(t))u(t), a.e. t ≥ 0, u(·) ∈ U. (52)

Next, note that

eεtVs(x(t)) = eεt0Vs(x(t0))+

 t

t0

d
dσ
(eεσVs(x(σ )))dσ , (53)

where the integral in (53) is the Lebesgue integral.
Using (52) and (53), it follows from (51) that t2

t1
eεts(u(t), y(t))dt ≥

 t2

t1
eεt


d
dt

Vs(x(t))+ εVs(x(t))

dt

=

 t2

t1

d
dt
(eεtVs(x(t)))dt

= eεt2Vs(x(t2))− eεt1Vs(x(t1)), a.e. t ≥ 0, u(·) ∈ U.

The assertion now follows from Definition 3.3.
Conversely, suppose that G is weakly exponentially dissipative with respect to the supply rate map {s(u, y)}. Now, it

follows from Theorem 3.1 that the smallest available storage map Vas(x) of G is finite for all x ∈ Rn, Vas(0) = 0, and

eεt2Vas(x(t2)) ≤ eεt1Vas(x(t1))+

 t2

t1
eεts(u(t), y(t))dt (54)

for almost all t2 ≥ t1 and u(·) ∈ U. Dividing (54) by t2 − t1 and letting t2 → t1 it follows that

d
dt

Vas(x(t))+ εVas(x(t)) ≤ s(u(t), y(t)), a.e. t ≥ 0, (55)

where x(t), t ≥ 0, is a solution satisfying (45) and d
dt Vas(x(t)) = lim suph→0+ [Vas(x(t +h))−Vas(x(t))]/h. Now, with t = 0,

it follows from (55) that

d
dt

Vas(x0)+ εVas(x0) ≤ s(u, y(0)), u ∈ Rm.

Next, let d : Rn
× Rm

→ R be such that

d(x, u) , −
d
dt

Vas(x)− εVas(x)+ s(u, y). (56)

Now, it follows from (55) that d(x, u) ≥ 0, x ∈ Rn, u ∈ Rm. Since d
dt Vas(x) ∈ Lf Vas(x)+ LGuVas(x) for almost all x ∈ Rn, it

follows that

d
dt

Vas(x) ≥ minLf Vas(x)+ LGVas(x)u, a.e. x ∈ Rn, u ∈ Rm, (57)

and hence, it follows from (56) and (57) that

− [minLf Vas(x)+ LGVas(x)u + εVas(x)] + s(u, h(x)+ J(x)u) ≥ d(x, u) ≥ 0, a.e. x ∈ Rn, u ∈ Rm. (58)

Since the left-hand side of (58) is quadratic in u, there exist functions ℓ : Rn
→ Rp and W : Rn

→ Rp×m such that

[ℓ(x)+ W(x)u]T[ℓ(x)+ W(x)u] = −[minLf Vas(x)+ LGVas(x)u + εVas(x)] + s(u, h(x)+ J(x)u)

= −[minLf Vas(x)+ LGVas(x)u + εVas(x)] + [h(x)+ J(x)u]T

×Q [h(x)+ J(x)u] + 2[h(x)+ J(x)u]TSu + uTRu.

Now, equating coefficients of equal powers yields (47)–(49) with Vs(x) = Vas(x) and with the positive definiteness of
Vs(x), x ∈ Rn, following from Theorem 3.2.

Finally, the proof for the weakly dissipative case follows by using an identical construction with ε = 0. �
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Remark 4.1. Note that if WT(x)W(x) is invertible for all x ∈ Rn, then inequality (50) can be equivalently written as

[ℓ(x)− W(x)(WT(x)W(x))−1WT(x)ℓ(x)]T[ℓ(x)− W(x)(WT(x)W(x))−1WT(x)ℓ(x)]

≥ maxLf Vs(x)− minLf Vs(x), x ∈ Rn, (59)

which is free of u ∈ Rm. This follows from the fact that (50) holds if and only if

min
u

[ℓ(x)+ W(x)u]T[ℓ(x)+ W(x)u] ≥ maxLf Vs(x)− minLf Vs(x), x ∈ Rn, (60)

holds. A similar expression to (59) involving generalized inverses also holds in the case where WT(x)W(x) is singular for
some x ∈ Rn.

The following result gives sufficient conditions for weak dissipativity and weak exponential dissipativity of G based on
maxLf Vs(·).

Theorem 4.2. Let Q ∈ Sl, S ∈ Rl×m, R ∈ Sm, and let G be weakly zero-state observable and weakly completely reachable. If
there exist functions Vs : Rn

→ R, ℓ : Rn
→ Rp, and W : Rn

→ Rp×m and a scalar ε > 0 (resp., ε = 0) such that Vs(·) is
locally Lipschitz continuous, regular, and positive definite, Vs(0) = 0, and, for almost all x ∈ Rn,

0 = maxLf Vs(x)+ εVs(x)− hT(x)Qh(x)+ ℓT(x)ℓ(x), (61)

0 =
1
2

LGVs(x)− hT(x)(QJ(x)+ S)+ ℓT(x)W(x), (62)

0 = R + STJ(x)+ JT(x)S + JT(x)QJ(x)− WT(x)W(x), (63)

then G is weakly exponentially dissipative (resp., weakly dissipative) with respect to the supply rate map {s(u, y)} = {yTQy +

2yTSu + uTRu}.

Proof. Suppose that there exist functions Vs : Rn
→ R, ℓ : Rn

→ Rp, and W : Rn
→ Rp×m and a scalar ε > 0 such that

Vs(·) is locally Lipschitz continuous, regular, and positive definite, and (61)–(63) are satisfied. Then, for every admissible
input u(·) ∈ U, it follows from (61)–(63) and (52) that t2

t1
eεts(u(t), y(t))dt =

 t2

t1
eεt


yT(t)Qy(t)+ 2yT(t)Su(t)+ uT(t)Ru(t)


dt

=

 t2

t1
eεt


hT(x(t))Qh(x(t))+ 2hT(x(t))(S + QJ(x(t)))u(t)

+ uT(t)(JT(x(t))QJ(x(t))+ STJ(x(t))+ JT(x(t))S + R)u(t)

dt

=

 t2

t1
eεt


maxLf Vs(x(t))+ LGVs(x(t))u(t)+ εVs(x(t))

+ [ℓ(x(t))+ W(x(t))u(t)]T[ℓ(x(t))+ W(x(t))u(t)]

dt

≥

 t2

t1
eεt


maxLf Vs(x(t))+ LGVs(x(t))u(t)+ εVs(x(t))


dt

≥

 t2

t1
eεt


d
dt

Vs(x(t))+ εVs(x(t))

dt

= eεt2Vs(x(t2))− eεt1Vs(x(t1)), a.e. t ≥ 0,

where x(t), t ≥ t0, is a solution satisfying (45). The result is now immediate from Definition 3.3. The proof for the weak
dissipative case follows an identical construction by setting ε = 0. �

Finally, we provide necessary and sufficient conditions for the case where G given by (45) and (46) is weakly lossless
with respect to the supply rate map {s(u, y)} = {yTQy + 2yTSu + uTRu}.

Theorem 4.3. Let Q ∈ Sl, S ∈ Rl×m, R ∈ Sm, and let G be weakly zero-state observable and weakly completely reachable. If
there exists a function Vs : Rn

→ R such that Vs(·) is locally Lipschitz continuous, regular and positive definite, Vs(0) = 0, and,
for almost all x ∈ Rn,

0 = minLf Vs(x)− hT(x)Qh(x), (64)

0 =
1
2

LGVs(x)− hT(x)(QJ(x)+ S), (65)
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0 = R + STJ(x)+ JT(x)S + JT(x)QJ(x), (66)
maxLf Vs(x) = minLf Vs(x), (67)

then G is weakly lossless with respect to the supply rate map {s(u, y)} = {yTQy + 2yTSu + uTRu}. Conversely, if G is weakly
lossless with respect to the supply rate map {s(u, y)}, then there exists function Vs : Rn

→ R such that Vs(·) is locally Lipschitz
continuous, regular, and positive definite, Vs(0) = 0, and, for almost all x ∈ Rn, (64)–(66) hold.

Proof. The proof is analogous to the proof of Theorem 4.1 and, hence, is omitted. �

Next,weprovide several definitions of nonlinear discontinuous dynamical systemswhich are dissipative or exponentially
dissipative with respect to supply rate maps of a specific form.

Definition 4.1. Adifferential inclusionG of the form (1)–(3)withm = l isweakly (resp., strongly) passive ifG is weakly (resp.,
strongly) dissipative with respect to the set-valued supply rate map Sr consisting of supply rates of the form s(u, y) = 2uTy.

Definition 4.2. A differential inclusion G of the form (1)–(3) is weakly (resp., strongly) nonexpansive if G is weakly (resp.,
strongly) dissipative with respect to the set-valued supply rate map Sr consisting of supply rates of the form s(u, y) =

γ 2uTu − yTy, where γ > 0 is given.

Definition 4.3. A differential inclusion G of the form (1)–(3) withm = l isweakly (resp., strongly) exponentially passive if G
is weakly (resp., strongly) exponentially dissipative with respect to the set-valued supply rate map Sr consisting of supply
rates of the form s(u, y) = 2uTy.

Definition 4.4. A differential inclusion G of the form (1)–(3) is weakly (resp., strongly) exponentially nonexpansive if G is
weakly (resp., strongly) exponentially dissipative with respect to the set-valued supply rate map Sr consisting of supply
rates of the form s(u, y) = γ 2uTu − yTy, where γ > 0 is given.

The following results present the nonlinear versions of the Kalman–Yakubovich–Popov strict positive real lemma (resp.,
positive real lemma) and strict bounded real lemma (resp., bounded real lemma) forweakly exponentially passive (resp., weakly
passive) and weakly exponentially nonexpansive (resp., weakly nonexpansive) discontinuous systems, respectively.

Corollary 4.1. Let G be weakly zero-state observable and weakly completely reachable. If there exist functions Vs : Rn
→ R,

ℓ : Rn
→ Rp, and W : Rn

→ Rp×m and a scalar ε > 0 (resp., ε = 0) such that Vs(·) is locally Lipschitz continuous, regular, and
positive definite, Vs(0) = 0, and, for almost all x ∈ Rn,

0 = minLf Vs(x)+ εVs(x)+ ℓT(x)ℓ(x), (68)

0 =
1
2

LGVs(x)− hT(x)+ ℓT(x)W(x), (69)

0 = J(x)+ JT(x)− WT(x)W(x), (70)

[ℓ(x)+ W(x)u]T[ℓ(x)+ W(x)u] ≥ maxLf Vs(x)− minLf Vs(x), u ∈ Rm, (71)

then G is weakly exponentially passive (resp., weakly passive). Conversely, if G is weakly exponentially passive (resp., weakly
passive), then there exist functions Vs : Rn

→ R, ℓ : Rn
→ Rp, and W : Rn

→ Rp×m and a scalar ε > 0 (resp., ε = 0) such
that Vs(·) is locally Lipschitz continuous, regular, and positive definite, Vs(0) = 0, and, for almost all x ∈ Rn, (68)–(70) hold.

Proof. The result is a direct consequence of Theorem4.1with l = m,Q = 0, S = Im, and R = 0. Specifically, with κ(y) = −y
it follows that s(κ(y), y) = −2yTy < 0, y ≠ 0, so that all the assumptions of Theorem 4.1 are satisfied. �

Example 4.1. Consider the harmonic oscillator G with Coulomb friction given by [19]

mẍ(t)+ b sign(ẋ(t))+ kx(t) = u(t), x(0) = x0, ẋ(0) = ẋ0, a.e. t ≥ 0, (72)

y(t) =
1
2
ẋ(t), (73)

or, equivalently,
ẋ1(t)
ẋ2(t)


=

 x2(t)

−
k
m

x1(t)−
b
m

sign(x2(t))

 +

 0
1
m

 u(t),

x1(0)
x2(0)


=


x10
x20


, a.e. t ≥ 0, (74)

y(t) =
1
2
x2(t), (75)
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where m, b, k > 0. Next, consider the continuously differentiable storage function Vs(x) =
1
2kx

2
1 +

1
2mx22 and note that, for

almost all x ∈ R2,Lf Vs(x) = {−b|x2|} and LGVs(x) = {x2}, which implies that minLf Vs(x) = maxLf Vs(x) = −b|x2|.
Now, with ℓ(x) = ±

√
b|x2| and W(x) = 0, (68)–(71) are satisfied. Hence, it follows from Corollary 4.1 that G is weakly

passive. �

Example 4.2. Consider a controlled smooth oscillator with nonsmooth friction and uncertain coefficients given in [25]
represented by the differential inclusion G given by

ẋ(t) ∈ K[f ](x(t))+ Gu(t), x(0) = x0, a.e. t ≥ 0, (76)

y(t) =
1
2
x2(t), (77)

where G = [0, 1]T and K[f ] : R2
→ B(R2) is given by

K[f ](x) ,


[−2x2 − 1,−x2 − 1] × {x1}, (x1, x2) ∈ R2

: x1 > 0, x2 > 0,
{−x2 − sign(x1)} × {x1}, (x1, x2) ∈ R2

\ {(0, x2) : x2 ∈ R} ∪ {(x1, x2) : x1 > 0, x2 > 0},
[−2x2 − 1,−x2 + 1] × {0}, (x1, x2) ∈ R2

: x2 > 0, x1 = 0,
[−x2 − 1,−x2 + 1] × {0}, (x1, x2) ∈ R2

: x2 < 0, x1 = 0,
[−1, 1] × {0}, (x1, x2) = (0, 0).

Next, consider the continuously differentiable storage function Vs(x) =
1
2 (x

2
1 + x22) and note that for almost all x ∈ R2,

Lf Vs(x) =


{[−1, 0]x1x2 − x1}, (x1, x2) ∈ R2

: x1 > 0, x2 > 0,
{−|x1|}, (x1, x2) ∈ R2

\ {(0, x2) : x2 ∈ R} ∪ {(x1, x2) : x1 > 0, x2 > 0},
{0}, (x1, x2) ∈ R2

: x2 ≠ 0, x1 = 0,
{0}, (x1, x2) = (0, 0),

LGVs(x) = {x2},

which implies that maxLf Vs(x) = 0 and minLf Vs(x) = −|x1| for almost all x ∈ R2. Now, it follows from (68)–(71) that

0 = −|x1| + ℓ2(x), (78)

0 =
1
2
x2 −

1
2
x2 + ℓ(x)W(x), (79)

0 = W2(x), (80)

|x1| ≤ [ℓ(x)+ W(x)u]2 , u ∈ R. (81)

Hence, with ℓ(x) = ±
√

|x1| and W(x) = 0, it follows from Corollary 4.1 that G is weakly passive. �

Example 4.3. Consider a controlled nonsmooth harmonic oscillator with nonsmooth friction and nonsmooth output given
by [25]

ẋ(t) = f (x(t))+ Gu(t), x(0) = x0, a.e. t ≥ 0, (82)

y(t) =
1
2
sign(x2(t)), (83)

where f (x) = [− sign(x2) −
1
2 sign(x1), sign(x1)]T and G = [0, 1]T. Next, consider the locally Lipschitz continuous storage

function Vs(x) = |x1| + |x2| and note that

∂Vs(x1, x2) =


{ sign(x1)} × { sign(x2)}, (x1, x2) ∈ R2

: x1 ≠ 0, x2 ≠ 0,
{ sign(x1)} × [−1, 1], (x1, x2) ∈ R2

: x1 ≠ 0, x2 = 0,
[−1, 1] × { sign(x2)}, (x1, x2) ∈ R2

: x2 ≠ 0, x1 = 0,
co{(1, 1), (−1, 1), (−1,−1), (1,−1)}, (x1, x2) = (0, 0).

Hence,

Lf Vs(x1, x2) =




−

1
2


, (x1, x2) ∈ R2

: x1 ≠ 0, x2 ≠ 0,

∅, (x1, x2) ∈ R2
: x1 ≠ 0, x2 = 0,

∅, (x1, x2) ∈ R2
: x2 ≠ 0, x1 = 0,

{0}, (x1, x2) = (0, 0),
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LGVs(x1, x2) =


{ sign(x2)}, (x1, x2) ∈ R2

: x1 ≠ 0, x2 ≠ 0,
∅, (x1, x2) ∈ R2

: x1 ≠ 0, x2 = 0,
{ sign(x2)}, (x1, x2) ∈ R2

: x2 ≠ 0, x1 = 0,
{0}, (x1, x2) = (0, 0),

which implies that maxLf Vs(x) = 0,minLf Vs(x) = −
1
2 , and LGVs(x) = { sign(x2)} for almost all x ∈ R2. Now, it follows

from (68)–(71) that

0 = −
1
2

+ ℓ2(x), (84)

0 =
1
2
sign(x2)−

1
2
sign(x2)+ ℓ(x)W(x), (85)

0 = W2(x), (86)
1
2

≤ [ℓ(x)+ W(x)u]2 , u ∈ R. (87)

Hence, with ℓ(x) = ±


1
2 and W(x) = 0, it follows from Corollary 4.1 that G is weakly passive. �

Corollary 4.2. Let Q ∈ Sl, S ∈ Rl×m, R ∈ Sm, and let G be weakly zero-state observable and weakly completely reachable. If
there exist functions Vs : Rn

→ R, ℓ : Rn
→ Rp, and W : Rn

→ Rp×m and a scalar ε > 0 (resp., ε = 0) such that Vs(·) is
locally Lipschitz continuous, regular, and positive definite, Vs(0) = 0, and, for almost all x ∈ Rn,

0 = minLf Vs(x)+ εVs(x)+ hT(x)h(x)+ ℓT(x)ℓ(x), (88)

0 =
1
2

LGVs(x)+ hT(x)J(x)+ ℓT(x)W(x), (89)

0 = γ 2Im − JT(x)J(x)− WT(x)W(x), (90)

[ℓ(x)+ W(x)u]T[ℓ(x)+ W(x)u] ≥ maxLf Vs(x)− minLf Vs(x), u ∈ Rm, (91)

where γ > 0, thenG is weakly exponentially nonexpansive (resp., weakly nonexpansive). Conversely, if G is weakly exponentially
nonexpansive (resp., weakly nonexpansive), then there exist functions Vs : Rn

→ R, ℓ : Rn
→ Rp, and W : Rn

→ Rp×m and
a scalar ε > 0 (resp., ε = 0) such that Vs(·) is locally Lipschitz continuous, regular, and positive definite, Vs(0) = 0, and, for
almost all x ∈ Rn, (88)–(90) hold.

Proof. The result is a direct consequence of Theorem4.1withQ = −Il, S = 0, and R = γ 2Im. Specifically, with κ(y) = −
1
2γ y

it follows that s(κ(y), y) = −
3
4y

Ty < 0, y ≠ 0, so that all the assumptions of Theorem 4.1 are satisfied. �

Example 4.4. Consider the controlled dynamical system G given by

ẋ(t) = f (x(t))+ G(x(t))u(t), x(0) = x0, a.e. t ≥ 0, (92)

y(t) = x(t), (93)

where x(t) = [x1(t), x2(t)]T, u(t) = [u1(t), u2(t)]T,

f (x) =


|x1|(−x1 + |x2|)
x2(−x1 − |x2|)


, G(x) =


|x1| 0
0 x2


.

Next, consider the locally Lipschitz continuous storage function Vs(x) = 2|x1| + 2|x2| and note that

∂Vs(x1, x2) =


{2 sign(x1)} × {2 sign(x2)}, (x1, x2) ∈ R2

: x1 ≠ 0, x2 ≠ 0,
{2 sign(x1)} × [−2, 2], (x1, x2) ∈ R2

: x1 ≠ 0, x2 = 0,
[−2, 2] × {2 sign(x2)}, (x1, x2) ∈ R2

: x2 ≠ 0, x1 = 0,
co{(1, 1), (−1, 1), (−1,−1), (1,−1)}, (x1, x2) = (0, 0).

Hence,

Lf Vs(x1, x2) =


{−2x21 − 2x22}, (x1, x2) ∈ R2

: x1 ≠ 0, x2 ≠ 0,
{−2x21}, (x1, x2) ∈ R2

: x1 ≠ 0, x2 = 0,
{−2x22}, (x1, x2) ∈ R2

: x2 ≠ 0, x1 = 0,
{0}, (x1, x2) = (0, 0),
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LGVs(x1, x2) =


{[2x1, 2|x2|]}, (x1, x2) ∈ R2

: x1 ≠ 0, x2 ≠ 0,
{[2x1, 0]}, (x1, x2) ∈ R2

: x1 ≠ 0, x2 = 0,
{[0, 2|x2|]}, (x1, x2) ∈ R2

: x2 ≠ 0, x1 = 0,
{[0, 0]}, (x1, x2) = (0, 0),

which implies that minLf Vs(x) = maxLf Vs(x) = −2x21 − 2x22 and LGVs(x) = {[2x1, 2|x2|]} for almost all x ∈ R2. Now, it
follows from (88)–(91) that

0 = −2x21 − 2x22 + x21 + x22 + ℓT(x)ℓ(x), (94)

0 =
1
2
[2x1, 2|x2|] + ℓT(x)W(x), (95)

0 = γ 2I2 − WT(x)W(x), (96)

0 ≤ [ℓ(x)+ W(x)u]T [ℓ(x)+ W(x)u] , u ∈ R2. (97)

Hence, with γ = 1, ℓ(x) = −[x1, |x2|]T, and W(x) = I2, it follows from Corollary 4.2 that G is weakly nonexpansive. �

The following stability theorems are needed for the next result and the results of the next section. In addressing the
stability properties of a Filippov solution of a discontinuous dynamical system the usual stability definitions are valid
[3,29,30]. Here, we state the stability theorems for only the local case; the global stability theorems are similar except for the
additional assumption of properness on the Lyapunov function and nonrestricting the domain of analysis. For the remainder
of the paper, the adjective ‘‘weak’’ is used in reference to a stability property when the stability property is satisfied by at
least one Filippov solution starting from every initial condition in D , whereas ‘‘strong’’ is used when the stability property
is satisfied by all Filippov solutions starting from every initial condition in D .

Theorem 4.4 ([25,30]). Consider the differential inclusion G given by (4). Let xe be an equilibrium point of G and let D ⊆ Rn be
an open and connected set with xe ∈ D . If V : D → R is a positive definite, locally Lipschitz continuous, and regular function
such that maxLf V (x) ≤ 0 (resp., maxLf V (x) < 0, x ≠ xe) for almost all x ∈ D such that Lf V (x) ≠ ∅, then xe is strongly
Lyapunov (resp., strongly asymptotically) stable. If, in addition, maxLf V (x) ≤ −ε < 0 for almost all x ∈ D, x ≠ xe, such that
Lf V (x) ≠ ∅, then xe is strongly finite-time stable. Finally, if there exist scalars α, β, γ > 0 and p ≥ 1, such that V : D → R
satisfiesα∥x−xe∥p

≤ V (x) ≤ β∥x−xe∥p andmaxLf V (x) ≤ −γ ∥x−xe∥p for almost all x ∈ D, x ≠ xe, such that Lf V (x) ≠ ∅,
then xe is strongly exponentially stable.

The following definitions are needed for the statement of the next result. We say a set M is weakly positively invariant
(resp., strongly positively invariant) with respect to (4) if, for every x0 ∈ M,M contains a right maximal solution (resp., all
right maximal solutions) of (4) [25].

Theorem 4.5 ([25,30]). Consider the differential inclusion G given by (4). Let xe be an equilibrium point of G, let D ⊆ Rn be an
open strongly positively invariant set with respect to (4) such that xe ∈ D , and let V : D → R be locally Lipschitz continuous and
regular on D . Assume that, for every x ∈ D and every Filippov solution ψ(·) satisfying ψ(t0) = x, there exists a compact subset
Dc of D containing ψ(t) for all t ≥ 0. Furthermore, assume that maxLf V (x) ≤ 0 for almost all x ∈ D such that Lf V (x) ≠ ∅.
Finally, define R , {x ∈ D : 0 ∈ Lf V (x)} and let M be the largest weakly positively invariant subset of R ∩ D . If x(t0) ∈ Dc,
then x(t) → M as t → ∞. If, alternatively, R contains no invariant set other than {xe}, then the solution x(t) ≡ xe of G is
strongly asymptotically stable for all x0 ∈ Dc.

In light of the above definitions and theorems the following result is immediate.

Proposition 4.1. Consider the differential inclusion G given by (1)–(3). Then the following statements hold:

(i) If G is strongly passive with a locally Lipschitz continuous, regular, and positive definite storage function Vs(·), then the zero
solution x(t) ≡ 0 of the undisturbed (u(t) ≡ 0) system G is strongly Lyapunov stable.

(ii) If G is strongly exponentially passive with a locally Lipschitz continuous, regular, and positive definite storage function Vs(·),
then the zero solution x(t) ≡ 0 of the undisturbed (u(t) ≡ 0) system G is strongly asymptotically stable.

(iii) If G is strongly zero-state observable and strongly nonexpansive with locally Lipschitz continuous, regular, and positive
definite storage function Vs(·), then the zero solution x(t) ≡ 0 of the undisturbed (u(t) ≡ 0) system G is strongly
asymptotically stable.

(iv) If G is strongly exponentially nonexpansive with a locally Lipschitz continuous, regular, and positive definite storage function
Vs(·), then the zero solution x(t) ≡ 0 of the undisturbed (u(t) ≡ 0) system G is strongly asymptotically stable.

Proof. Statements (i)–(iv) are immediate and follow from (13)–(15) using Lyapunov and invariant set stability arguments
given by Theorems 4.4 and 4.5, respectively. �
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Fig. 1. Feedback interconnection of G and Gc .

5. Stability of feedback interconnections of dissipative discontinuous dynamical systems

In this section, we consider feedback interconnections of dissipative discontinuous dynamical systems. Specifically, using
the notions of dissipativity and exponential dissipativity for discontinuous dynamical systems, with appropriate set valued
storagemaps and set-valued supply ratemaps,we construct (not necessarily smooth) Lyapunov functions for interconnected
discontinuous dynamical systems by appropriately combining the set-valued storage maps for each subsystem.

We begin by considering the nonlinear discontinuous dynamical system G given by

ẋ(t) = f (x(t))+ G(x(t))u(t), x(0) = x0, a.e. t ≥ 0, (98)
y(t) = h(x(t))+ J(x(t))u(t), (99)

where x ∈ Rn, u ∈ Rm, y ∈ Rl, f : Rn
→ Rn, G : Rn

→ Rn×m, h : Rn
→ Rl, and J : Rn

→ Rl×m, with the nonlinear
feedback discontinuous system Gc given by

ẋc(t) = fc(xc(t))+ Gc(uc(t), xc(t))uc(t), xc(0) = xc0, a.e. t ≥ 0, (100)
yc(t) = hc(uc(t), xc(t))+ Jc(uc(t), xc(t))uc(t), (101)

where xc ∈ Rnc , uc ∈ Rl, yc ∈ Rm, fc : Rnc → Rnc , Gc : Rl
× Rnc → Rnc×l, hc : Rl

× Rnc → Rm, and Jc : Rl
× Rnc → Rm×l.

We assume that f (·),G(·), h(·), J(·), fc(·), Gc(·), hc(·, ·), and Jc(·, ·) are Lebesguemeasurable and locally essentially bounded,
(100) and (101) has at least one equilibrium point, and the required properties for the existence of solutions of the feedback
interconnection of G and Gc are satisfied. Note that with the negative feedback interconnection given by Fig. 1, uc = y and
yc = −u. We assume that the negative feedback interconnection of G and Gc is well posed, that is, det[Im + Jc(y, xc)J(x)] ≠ 0
for all y, x, and xc.

The following results give sufficient conditions for Lyapunov, asymptotic, and exponential stability of the feedback
interconnection given by Fig. 1. For the remainder of the paper, we assume that the forward path G and the feedback path
Gc in Fig. 1 are strongly dissipative systems that admit single-valued supply rate maps and storage maps. This assumption
holdswhen the closed-loop system (98)–(101) admits a unique solution and is onlymade for notational convenience. Similar
stability results hold for the more general case wherein G and Gc admit set-valued storage and set-valued supply rate maps.
Finally, we also note that the obtained stability results also hold for the case where G and Gc are weakly dissipative. In this
case, however, the set-valued Lie derivative operator should be replaced with the upper right Dini directional derivative in
the proofs of the stability theorems.

Theorem 5.1. Consider the closed-loop system consisting of the nonlinear discontinuous dynamical systems G and Gc with
input–output pairs (u, y) and (uc, yc), respectively, and with uc = y and yc = −u. Assume G and Gc are strongly zero-state
observable, strongly completely reachable, and strongly dissipative with respect to the supply rate maps {s(u, y)} and {sc(uc, yc)}
and with locally Lipschitz continuous, regular, and radially unbounded storage functions Vs(·) and Vsc(·), respectively, such that
Vs(0) = 0 and Vsc(0) = 0. Furthermore, assume there exists a scalar σ > 0 such that s(u, y) + σ sc(uc, yc) ≤ 0, for all
u ∈ Rm, y ∈ Rl, uc ∈ Rl, yc ∈ Rm such that uc = y and yc = −u. Then the following statements hold:

(i) The negative feedback interconnection of G and Gc is strongly Lyapunov stable.
(ii) If Gc is strongly exponentially dissipative with respect to supply rate map {sc(uc, yc)} and rank [Gc(uc, 0)] = m, uc ∈ Rl,

then the negative feedback interconnection of G and Gc is globally strongly asymptotically stable.
(iii) If G and Gc are strongly exponentially dissipative with respect to supply rate maps {s(u, y)} and {sc(uc, yc)}, respectively,

and Vs(·) and Vsc(·) are such that there exist constants α, αc, β , and βc > 0 such that

α∥x∥2
≤ Vs(x) ≤ β∥x∥2, x ∈ Rn, (102)

αc∥xc∥2
≤ Vsc(xc) ≤ βc∥xc∥2, xc ∈ Rnc , (103)

then the negative feedback interconnection of G and Gc is globally strongly exponentially stable.

Proof. (i) Note that the closed-loop dynamics of the feedback interconnection of G and Gc is given by
ẋ(t)
ẋc(t)


=


f1(x(t), xc(t))
f2(x(t), xc(t))


, f̃ (x(t), xc(t)),


x(t0)
xc(t0)


=


x0
xc0


, a.e. t ≥ t0. (104)
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Now, consider the Lyapunov function candidate V (x, xc) = Vs(x)+ σVsc(xc). Since Lf̃ V (x, xc) ⊆ Lf̃ Vs(x)+ σLf̃ Vsc(xc) for
almost all (x, xc) ∈ Rn

× Rnc , it follows that

maxLf̃ V (x, xc) ≤ max{Lf1Vs(x)+ σLf2Vsc(xc)}

≤ maxLf1Vs(x)+ σ maxLf2Vsc(xc).

Next, since s(u, y) + σ sc(uc, yc) ≤ 0, for all u ∈ Rm, y ∈ Rl, uc ∈ Rl, yc ∈ Rm, d
dt Vs(x(t)) ∈ Lf1Vs(x(t)), a.e. t ≥ 0, and

d
dt Vsc(xc(t)) ∈ Lf2Vsc(xc(t)), a.e. t ≥ 0, there exist u′, y′, u′

c and y′
c such that

maxLf̃ V (x, xc) ≤ maxLf1Vs(x)+ σ maxLf2Vsc(xc) ≤ s(u′, y′)+ σ sc(u′

c, y
′

c) ≤ 0

for almost all x ∈ Rn and xc ∈ Rnc . Now, it follows from Theorem 4.4 that the negative feedback interconnection of G and
Gc is strongly Lyapunov stable.

(ii) If Gc is strongly exponentially dissipative it follows that there exist u′, y′, u′
c and y′

c and a scalar εc > 0 such that

d
dt

V (x, xc) ≤ maxLf̃ V (x, xc)

≤ maxLf1Vs(x)+ σ maxLf2Vsc(xc)
≤ −σεcVsc(xc)+ s(u′, y′)+ σ sc(u′

c, y
′

c)

≤ −σεcVsc(xc), a.e. (x, xc) ∈ Rn
× Rnc .

Now, let R , {(x, xc) ∈ Rn
× Rnc :

d
dt V (x, xc) = 0 ∈ Lf̃ V (x, xc)} and, since Vsc(xc) is positive definite, note that

d
dt V (x, xc) = 0 if and only if xc = 0. Now, since rank[Gc(uc, 0)] = m, uc ∈ Rl, it follows that on every invariant set M
contained in R, uc(t) = y(t) ≡ 0, and hence, by (101), u(t) ≡ 0 so that ẋ(t) = f (x(t)). Now, since G is strongly zero-state
observable it follows that M = {(0, 0)} is the largest strongly positively invariant set contained in R. Hence, it follows from
Theorem 4.5 that dist(ψ(t),M) → 0 as t → ∞ for all Filippov solutions ψ(·) of (104). Now, global strong asymptotic
stability of the negative feedback interconnection of G and Gc follows from the fact that Vs(·) and Vsc(·) are, by assumption,
radially unbounded.

(iii) Finally, if G and Gc are strongly exponentially dissipative it follows that there exist u′, y′, u′
c and y′

c, and scalars ε > 0
and εc > 0 such that

maxLf̃ V (x, xc) ≤ maxLf1Vs(x)+ σ maxLf2Vsc(xc)

≤ −εVs(x)− σεcVsc(xc)+ s(u′, y′)+ σ sc(u′

c, y
′

c)

≤ −min{ε, εc}V (x, xc), (x, xc) ∈ Rn
× Rnc .

Hence, it follows from Theorem 4.4 that the negative feedback interconnection ofG andGc is globally strongly exponentially
stable. �

The next result presents Lyapunov, asymptotic, and exponential stability of dissipative discontinuous feedback systems
with supply rate maps consisting of quadratic supply rates.

Theorem 5.2. Let Q ∈ Sl, S ∈ Rl×m, R ∈ Sm, Qc ∈ Sm, Sc ∈ Rm×l, and Sc ∈ Sl. Consider the closed-loop system consisting
of the nonlinear discontinuous dynamical systems G given by (98) and (99) and Gc given by (100) and (101), and assume G
and Gc are strongly zero-state observable. Furthermore, assume G is strongly dissipative with respect to the supply rate map
{s(u, y)} = {yTQy + 2yTSu + uTRu} and has a locally Lipschitz continuous, regular, and radially unbounded storage function
Vs(·), and Gc is strongly dissipative with respect to the supply rate map {sc(uc, yc)} = {yTcQcyc + 2yTcScuc + uT

cRcuc} and has a
locally Lipschitz continuous, regular, and radially unbounded storage function Vsc(·). Finally, assume there exists σ > 0 such that

Q̂ ,


Q + σRc −S + σ STc

−ST + σ Sc R + σQc


≤ 0. (105)

Then the following statements hold:

(i) The negative feedback interconnection of G and Gc is strongly Lyapunov stable.
(ii) If Gc is strongly exponentially dissipative with respect to supply rate map {sc(uc, yc)} and rank[Gc(uc, 0)] = m, uc ∈ Rl,

then the negative feedback interconnection of G and Gc is globally strongly asymptotically stable.
(iii) If G and Gc are strongly exponentially dissipative with respect to supply rate maps {s(u, y)} and {sc(uc, yc)} and there exist

constants α, β, αc, and βc > 0 such that (102) and (103) hold, then the negative feedback interconnection of G and Gc is
globally strongly exponentially stable.

(iv) If Q̂ < 0, then the negative feedback interconnection of G and Gc is globally strongly asymptotically stable.
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Proof. Statements (i)–(iii) are a direct consequence of Theorem 5.1 by noting that

s(u, y)+ σ sc(uc, yc) =


y
yc

T

Q̂

y
yc


,

and hence, s(u, y)+ σ sc(uc, yc) ≤ 0.
To show (iv) consider the Lyapunov function candidate V (x, xc) = Vs(x) + σVsc(xc). Now, since G and Gc are strongly

dissipative it follows that there exist u′, y′, u′
c and y′

c with u′
c = y′ and y′

c = −u′ such that

d
dt

V (x, xc) ≤ maxLf̃ V (x, xc)

≤ maxLf1Vs(x)+ σ maxLf2Vsc(xc)
≤ s(u, y)+ σ sc(uc, yc)
= yTQy + 2yTSu + uTRu + σ(yTcQcyc + 2yTcScuc + uT

cRcuc)

=


y
yc

T

Q̂

y
yc


≤ 0, a.e. (x, xc) ∈ Rn

× Rnc ,

which implies that the negative feedback interconnection of G and Gc is strongly Lyapunov stable. Next, let R , {(x, xc) ∈

Rn
× Rnc :

d
dt V (x, xc) = 0 ∈ Lf̃ V (x, xc)} and note that d

dt V (x, xc) = 0 if and only if (y, yc) = (0, 0). Now, since G and Gc are
strongly zero-state observable it follows that M = {(0, 0)} is the largest strongly positively invariant set contained in R.
Hence, it follows from Theorem 4.5 that dist(ψ(t),M) → 0 as t → ∞ for all Filippov solutionsψ(·) of (104). Finally, global
strong asymptotic stability follows from the fact that Vs(·) and Vsc(·) are, by assumption, radially unbounded, and hence,
V (x, xc) → ∞ as ∥(x, xc)∥ → ∞. �

The following corollary is a direct consequence of Theorem 5.2. Note that if a nonlinear discontinuous dynamical system
G is strongly dissipative with respect to a supply rate map {s(u, y)} = {uTy − εuTu − ε̂yTy}, where ε, ε̂ ≥ 0, then with
κ(y) = ky, where k ∈ R is such that k(1 − εk) < ε̂, s(u, y) = [k(1 − εk) − ε̂]yTy < 0, y ≠ 0. Hence, if G is strongly
zero-state observable it follows from Theorem 3.2 that all storage functions of G are positive definite.

Corollary 5.1. Consider the closed-loop system consisting of the nonlinear discontinuous dynamical systems G given by (98) and
(99) and Gc given by (100) and (101), and assume G and Gc are strongly zero-state observable. Then the following statements
hold:

(i) If G is strongly passive, Gc is strongly exponentially passive, and rank[Gc(uc, 0)] = m, uc ∈ Rl, then the negative feedback
interconnection of G and Gc is strongly asymptotically stable.

(ii) If G and Gc are strongly exponentially passive with storage functions Vs(·) and Vsc(·), respectively, such that (102) and
(103) hold, then the negative feedback interconnection of G and Gc is strongly exponentially stable.

(iii) If G is strongly nonexpansive with gain γ > 0, Gc is strongly exponentially nonexpansive with gain γc > 0, rank[Gc(uc, 0)]
= m, uc ∈ Rl, and γ γc ≤ 1, then the negative feedback interconnection of G and Gc is strongly asymptotically stable.

(iv) If G andGc are strongly exponentially nonexpansive with storage functions Vs(·) and Vsc(·), respectively, such that (102) and
(103) hold, and with gains γ > 0 and γc > 0, respectively, such that γ γc ≤ 1, then the negative feedback interconnection
of G and Gc is strongly exponentially stable.

Proof. The proof is a direct consequence of Theorem 5.2. Specifically, (i) and (ii) follow from Theorem 5.2 with Q = Qc =

0, S = Sc = Im, and R = Rc = 0, whereas (iii) and (iv) follow from Theorem 5.2 with Q = −Il, S = 0, R = γ 2Im, Qc =

−Ilc , Sc = 0, and Rc = γ 2
c Imc . �

Example 5.1. Consider the nonlinear mechanical system G with a discontinuous spring force given by

ẍ(t)+ sign(x(t)) = u(t), x(0) = x0, ẋ(0) = ẋ0, a.e. t ≥ 0, (106)

y(t) =
1
2
ẋ(t), (107)

or, equivalently,

ẋ1(t) = x2(t), x1(0) = x10, a.e. t ≥ 0, (108)
ẋ2(t) = − sign(x1(t))+ u(t), x2(0) = x20, (109)

y(t) =
1
2
x2(t), (110)
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Fig. 2. Phase portrait of the nonsmooth harmonic oscillator.

Fig. 3. State trajectories of the closed-loop system versus time for the full-order controller.

and the continuous nonlinear second-order dynamic controller Gc given by

ẋc1(t) = −
1
2
xc1(t)− xc2(t), xc1(0) = xc10, t ≥ 0, (111)

ẋc2(t) = −10x3c1(t)− 10xc2(t)+ 5uc(t), xc2(0) = xc20, (112)

yc(t) = 10xc2(t). (113)

Furthermore, consider the feedback interconnection of (108)–(113) given by u = −yc and uc = y. Next, letVs(x) = |x1|+ 1
2x

2
2

and note that, for almost all x ∈ R2,

∂Vs(x1, x2) =


{ sign(x1)} × {x2}, (x1, x2) ∈ R2

: x1 ≠ 0,
[−1, 1] × {x2}, (x1, x2) ∈ R2

: x1 = 0.

Hence, Lf Vs(x1, x2) = {0} and LGVs(x1, x2) = {x2}, which implies that minLf Vs(x) = maxLf Vs(x) = 0 for almost all
x ∈ R2. Now, with Q = 0, S = 1, and R = 0, (64)–(67) are satisfied. Hence, it follows from Theorem 4.3 that G is weakly
lossless with respect to the supply rate map {2yu}.

Next, note that with Vsc(xc) = 10x4c1 + 2x2c2, ε ∈ (0, 2], ℓ(xc) = ±


10x4c1(2 − ε)+ 2x2c2(20 − ε), and W(xc) ≡ 0, it

follows from Corollary 4.1 that Gc is exponentially passive. Furthermore, rank[Gc(uc, 0)] = 1, uc ∈ R. Now, it follows from
(ii) of Theorem 5.2 that the negative feedback interconnection of G and Gc is globally asymptotically stable. Fig. 2 shows the
phase portrait of the open-loop (u(t) ≡ 0) nonsmooth harmonic oscillator, whereas Fig. 3 shows the state trajectories of
the closed-loop system versus time for x(0) = [2,−2]T and xc(0) = 0.
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Fig. 4. State trajectories of the closed-loop system versus time for the reduced-order controller.

Alternatively we consider the reduced-order dynamic controller Gc given by

ẋc(t) = −10xc(t)+ 20uc(t), xc(0) = xc0, t ≥ 0, (114)
yc(t) = 12xc(t). (115)

Note that with Vsc(xc) =
3
5x

2
c , ε = 20, ℓ(xc) ≡ 0, and W(xc) ≡ 0, it follows from Corollary 4.1 that Gc is exponentially

passive. Moreover, rank[Gc(uc, 0)] = 1, uc ∈ R. Hence, it follows from (ii) of Theorem 5.2 that the negative feedback
interconnection of G and Gc is globally asymptotically stable. Fig. 4 shows the state trajectories of the closed-loop system
versus time for x(0) = [2,−2]T and xc(0) = 0. �

6. Conclusion

In this paper, we extended the notion of dissipativity theory for continuous dynamical systems with continuously
differentiable flows to discontinuous dynamical systems characterized by Filippov set-valued maps. Specifically, using
set-valued supply rate maps and set-valued storage maps, dissipativity properties for discontinuous dynamical systems
were developed. Furthermore, extended Kalman–Yakubovich–Popov conditions in terms of the discontinuous system
dynamics for characterizing dissipativity via generalized Clarke gradients of locally Lipschitz continuous storage functions
for discontinuous systems were developed. In addition, using the concepts of dissipativity for discontinuous dynamical
systems with appropriate set-valued storage maps and set-valued supply rate maps, general stability criteria for
feedback interconnections of discontinuous dynamical systems were given. Future extensions will focus on using these
results to develop control design protocols for dynamical networks with switching topologies involving state-dependent
communication links for addressing information link failures and communication dropouts.
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