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Abstract

Latent feature models are widely used to decompose data into a small number of

components. Bayesian nonparametric variants of these models, which use the Indian

buffet process (IBP) as a prior over latent features, allow the number of features to be

determined from the data. We present a generalization of the IBP, the distance depen-

dent Indian buffet process (dd-IBP), for modeling non-exchangeable data. It relies on

distances defined between data points, biasing nearby data to share more features. The

choice of distance measure allows for many kinds of dependencies, including temporal

and spatial. Further, the original IBP is a special case of the dd-IBP. We develop

the dd-IBP and theoretically characterize its feature-sharing properties. We derive a
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Markov chain Monte Carlo sampler for a linear Gaussian model with a dd-IBP prior

and study its performance on real-world non-exchangeable data.

KEYWORDS: Bayesian nonparametrics, dimensionality reduction, matrix factoriza-

tion, Indian buffet process, distance functions

1 Introduction

Many natural phenomena decompose into latent features. For example, visual scenes can be

decomposed into objects; genetic regulatory networks can be decomposed into transcription

factors; music can be decomposed into spectral components. In these examples, multiple

latent features can be simultaneously active, and each can influence the observed data.

Dimensionality reduction methods, such as principal component analysis, factor analysis, and

probabilistic matrix factorization, provide a statistical approach to inferring latent features

[3]. These methods characterize a small set of features (or dimensions) and model each data

point as a weighted combination of them. Dimensionality reduction can improve predictions

and identify hidden structures in observed data.

Dimensionality reduction methods typically require that the number of latent features be

fixed in advance. Researchers have recently proposed a more flexible approach based on

Bayesian nonparametric models, where the number of features is inferred from the data

through a posterior distribution. These models are usually based on the Indian buffet process

(IBP; [16, 17]), a prior over binary matrices with a finite number of rows (corresponding to

data points) and an infinite number of columns (corresponding to latent features). Using the

IBP as a building block, Bayesian nonparametric latent feature models have been applied to

several statistical problems (e.g., [18, 19, 21, 22]). Since the number of features is effectively
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unbounded, these models are sometimes known as “infinite” latent feature models.

The IBP assumes that data are exchangeable: permuting the order of rows leaves the prob-

ability of an allocation of latent features unchanged. This assumption may be appropriate

for some data sets, but for many others we expect dependencies between data points and,

consequently, between their latent representations. As examples, the latent features describ-

ing human motion are autocorrelated over time; the latent features describing environmental

risk factors are autocorrelated over space. In this paper, we present a generalization of the

IBP—the distance dependent IBP (dd-IBP)—that addresses this limitation. The dd-IBP

allows infinite latent feature models to capture non-exchangeable structure.

The problem of adapting nonparametric models to non-exchangeable data has been studied

extensively in the mixture-modeling literature. In particular, variants of the Dirichlet process

mixture model allow dependencies between data points (e.g., [8, 15, 6, 11, 23, 1]). These

dependencies may be spatial, temporal or more generally covariate-dependent; the effect of

such dependencies is to induce sharing of latent features between nearby data points.

Among these methods is the distance dependent Chinese restaurant process (dd-CRP; [5]).

The dd-CRP is a non-exchangeable generalization of the Chinese restaurant process (CRP),

the prior over partitions of data that emerges in Bayesian nonparametric mixture modeling [4,

13, 24]. The dd-CRP models non-exchangeability by using distances between data points—

nearby data points (e.g., in time or space) are more likely to be assigned to the same mixture

component. The dd-IBP extends these ideas to infinite latent feature models, where distances

between data points influence feature-sharing, and nearby data points are more likely to share

latent features.

We review the IBP in Section 2.1 and develop the dd-IBP in Section 2.2. Like the dd-CRP,

the dd-IBP lacks marginal invariance, which means that removing one observation changes

the distribution over the other observations. We discuss this property further in Section
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2.3. Although many Bayesian nonparametric models have this property, it is a particular

modeling choice that may be appropriate for some problems but not for others.

Several other infinite latent feature models have been developed to capture dependencies

between data in different ways, for example using phylogenetic trees [20] or latent Gaussian

processes [28]. Of particular relevance to this work is the dependent hierarchical Beta process

(dHBP; [30]), which uses a hierarchical beta process to couple data. These and other related

models are discussed further in Section 3. In Section 4, we characterize the feature-sharing

properties of the dd-IBP and compare it to those of the dHBP [30]. We find that the different

models capture qualitatively distinct dependency structures.

Exact posterior inference in the dd-IBP is intractable. We present an approximate inference

algorithm based on Markov chain Monte Carlo (MCMC; [26]) in Section 5, and we apply this

algorithm in Section 6 to infer the latent features in a linear-Gaussian model. We then use

the dd-IBP to model human brain imaging data in which age is predictive of dependencies

between data from different individuals (Section 7). We show that the the dd-IBP induces

features that are useful for a supervised classification task.

2 The distance dependent Indian buffet process

We first review the definition of the IBP and its role in defining infinite latent feature models.

We then introduce the dd-IBP.

2.1 The Indian buffet process

The IBP is a prior over binary matrices Z with an infinite number of columns [16, 17]. In

the Indian buffet metaphor, rows of Z correspond to customers and columns correspond
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Figure 1: Schematic of the IBP. An example of a latent feature matrix (Z) generated
by the IBP. Rows correspond to customers (data points) and columns correspond to dishes
(features). Gray shading indicates that a feature is active for a given data point. The last
row illustrates the assignment process for a new customer; the counts for each feature (mik)
are shown inside the circles for previously sampled features.

to dishes. In data analysis, the customers represent data points and the dishes represent

features. Let zik denote the entry of Z at row i and column k. Whether customer i has

decided to sample dish k (that is, whether zik = 1) corresponds to whether data point i

possesses feature k.

The IBP is defined as a sequential process. The first customer enters the restaurant and

samples the first λ1 ∼ Poisson(α) number of dishes, where the hyperparameter α is a scalar.

In the binary matrix, this corresponds to the first row being a contiguous block of ones,

whose length is the number of dishes sampled (λ1), followed by an infinite block of zeros.

Subsequent customers i = 2, . . . , N enter, sampling each previously sampled dish according

to its popularity,

p(zik = 1 | z1:(i−1)) = mik/i, (1)

where mik =
∑

j<i zjk is the number of customers that sampled dish k prior to customer i.

(We emphasize that Eq. 1 applies only to dishes k that were previously sampled, i.e., for

which mik > 0.) Then, each customer samples λi ∼ Poisson(α/i) new dishes. Again these
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are represented as a contiguous block of ones in the columns beyond the last dish sampled

by a previous customer.

Though described sequentially, Griffiths and Ghahramani [16] showed that the IBP defines

an allocation of dishes to customers that is exchangeable. This means that the order of the

customers does not affect the probability of the resulting allocation of dishes to customers.

To state this notion formally, define lof(Z) to be the left-ordered binary matrix obtained

from Z by sorting its columns in decreasing order, interpreting each column as an integer

represented in binary with highest bit at row 1. Then define [Z] to be the set of N×∞ binary

matrices Z′ with the property that lof(Z′) = lof(Z). This is an equivalence class of binary

matrices that imply the same allocations of features to customers, differing only in how these

features are labeled. Exchangeability of the IBP’s allocation of dishes to customers means

that the distribution of the random equivalence class [Z] is the same as that of [Zπ], where

Zπ is obtained by permuting the rows of Z. In the next section, we develop a generalization

of the IBP that relaxes this assumption.

2.2 The distance dependent Indian buffet process

Like the IBP, the dd-IBP is a distribution over binary latent feature matrices with a finite

number of rows and an infinite number of columns. Each pair of customers has an associated

distance, e.g., distance in time or space, or based on a covariate. Two customers that are

close together in this distance will be more likely to share the same dishes (that is, features)

than two customers that are far apart.

The dd-IBP can be understood in terms of the following sequential construction. First,

each customer selects a Poisson-distributed number of dishes (feature columns). The dishes

selected by a customer in this phase of the construction are said to be “owned” by this
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Figure 2: Schematic of the dd-IBP. An example of a latent feature matrix generated
by the dd-IBP. Rows correspond to customers (data points) and columns correspond to
dishes (features). Customers connect to each other, as indicated by arrows. Customers
inherit a dish if the owner of that dish (c∗k, indicated by stars) is reachable by a sequence of
connections. Gray shading indicates that a feature is active for a given data point.

customer. A dish is either unowned, or is owned by exactly one customer. This step is akin

to the selection of new dishes in the IBP.

Then, for each owned dish, customers connect to one another. The probability that one

customer connects to another decreases in the distance between them. Note that customers

do not sample each dish, as in the IBP, but rather connect to other customers. Thus, each

dish is associated with a graph of connections between customers.

These per-dish graphs of customers determine dish inheritance: A customer inherits a dish

if its owner (from the first step) is reachable in the connectivity graph for that dish. This

inheritance is computed deterministically from the connections generated in the previous

step.1 The dishes that each customer samples (i.e., the active features) are those that he

inherits or owns. Thus, distance-dependent connection probabilities induce similarity of

sampled dishes between nearby customers.

An example of customer assignments sampled from the dd-IBP is shown in Figure 2. In this

example, customer 1 owns dish 1; customers 2-4 all reach customer 1 for dish 1, either directly

or through a chain, and thereby inherit the dish (indicated by gray shading). Consequently,

1If one insists upon a complete gastronomical metaphor, customer connectivity can be thought of as “I’ll
have what he’s having.”

7



feature 1 is active for customers 1-4. Dish 2 is owned by customer 2; only customer 1 reaches

customer 2 for dish 2, and hence feature 2 is active for customers 1 and 2. Dish 3 is owned

by customer 2, but no other customers reach customer 2 for dish 3, and hence feature 3 is

active only for that customer.

We now more formally describe the probabilistic generative process of the binary matrix Z.

First, we introduce some notation and terminology.

• Dishes (columns of Z) are identified with the natural numbers N = {1, 2, . . .}. The

number of dishes owned by customer i is λi, and dishes are labeled in order, so that the

set of dishes owned by this customer is Ki =
(∑

j<i λj,
∑

j≤i λi

]
. The total number

of owned dishes is K =
∑N

i=1 λi. The set of dishes owned by customers excluding i is

K−i = ∪j 6=iKj.

• Each dish is associated with a set of customer-to-customer assignments, specified by

the N × K connectivity matrix C, where cik = j indicates that customer i connects

to customer j for dish k. Given C, the customers form a set of (possibly cyclic)

directed graphs, one for each dish. The ownership vector is c∗ and has length K,

where c∗k ∈ {1, . . . , N} indicates the customer who owns dish k, so c∗k = i ⇐⇒ k ∈ Ki.

• The N × N distance matrix between customers is D, where the distance between

customers i and j is dij. A customer’s self-distance is 0: dii = 0. We call the distance

matrix sequential when dij = ∞ for j > i. In this special case, customers can only

connect to previous customers.

• The decay function f : R 7→ [0, 1] maps distance to a quantity, which we call proximity,

that controls the probabilities of customer links. We require that f(0) = 1 and f(∞) =

0. We obtain the normalized proximity matrix A by applying the decay function to
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each customer pair and normalizing by customer. That is, aij = f(dij)/hi, where

hi =
∑N

j=1 f(dij).

Using this notation, we generate the feature indicator matrix Z as follows:

1. Assign dish ownership. For each customer i, let λi ∼ Poisson(α/hi), and set Ki =

(
∑

j<i λj,
∑

j≤i λi], thus allocating λi dishes to this customer. For each k ∈ Ki, set the

ownership c∗k = i.

2. Assign customer connections. For each customer i and dish k ∈ {1, . . . , K}, draw

a customer assignment according to P (cik = j|D, f) = aij, j = 1, . . . , N . Note that

customers can connect to themselves. In this case, they do not inherit a dish unless

they own it (see the next step).

3. Compute dish inheritance. We say that customer j inherits dish k if there exists a

path along the directed graph for dish k from customer j to the dish’s owner c∗k (i.e.,

if c∗k is reachable from j), where the directed graph is defined by column k of C. The

owner of a dish automatically inherits it.2 We encode reachability with L. If customer

j is reachable from customer i for dish k then Lijk = 1. Otherwise Lijk = 0.

4. Compute the feature indicator matrix. For each customer i and dish k ≤ K we

set zik = 1 if i inherits k, otherwise zik = 0. For k > K we set zik = 0.

The generative process of the dd-IBP defines the following joint distribution of the ownership

vector and connectivity matrix,

P (C, c∗ |D, α, f) = P (c∗ |α)P (C | c∗,D, f). (2)

2Although customer i can link to other customers for dish k even if k ∈ Ki, these connections are ignored
in determining dish inheritance when k ∈ Ki.
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Consider the first term. The probability of the ownership vector is

P (c∗ |α) =
N∏
i=1

P (λi |α), (3)

where c∗ is a deterministic function of λ1, . . . , λN .

Consider the second term. The conditional distribution of the connectivity matrix C depends

on the total number of owned dishes K and the normalized proximity matrix A (derived

from the distances and decay function),

P (C|c∗,D, f) =
N∏
i=1

K∏
k=1

aicik . (4)

The dependence on c∗ comes from K, which is determined by the ownership vector c∗.

Random feature models (and the traditional IBP) operate with a random binary matrix Z,

and the feature allocation that it induces. In the dd-IBP, Z is a (deterministic) many-to-

one function of the random variables C and c∗, which we denote by φ. We compute the

probability of a binary matrix by marginalizing out the appropriate configurations of these

variables

P (Z|D, α, f) =
∑

(c∗,C):φ(c∗,C)=Z

P (c∗,C|D, α, f). (5)

The dd-IBP reduces to the standard IBP in the special case when f(d) = 1 for all d <∞ and

the distance matrix is sequential. (Recall: D is sequential if dij =∞ for j > i.) To see this,

consider the probability that the kth dish is sampled by the ith customer (that is, zik = 1),

conditioned the dish having been sampled by a previous customer (which occurs iff c∗k < i

when D is sequential). This probability is the proportion of previous customers that already

reach c∗k because the probability of connecting to each customer is proportional to one. This

probability is mki/i, which is the same as in the IBP. This is akin to the relationship between

10



Figure 3: Decay functions. Each panel presents a different latent feature matrix, sampled
from the dd-IBP with sequential distances. Decay functions are shown in the insets.

the dd-CRP and the traditional CRP under the same condition [5].

Many different decay functions are possible within this framework. Figure 3 shows samples of

Z using four decay functions and a sequential distance defined by absolute temporal distance

(dij = i− j for i ≥ j and dij =∞ for j > i).

• The constant, f(d) = 1 if d <∞ and f(∞) = 0. This is the standard IBP.

• The exponential, f(d) = exp(−βd).

• The logistic, f(d) = 1/(1 + exp(βd− ν)).

• The window, f(d) = 1[d < ν].

Each decay function encourages the sharing of features across nearby rows in a different way.

When combined with an observation model, which specifies how the latent features give rise

to observed data, the dd-IBP functions as a prior over latent feature representations of a

11



data set. In section 6, we consider a specific example of how the dd-IBP can be used to

analyze data.

2.3 Marginal invariance and exchangeability

We now examine some of the theoretical differences between the dd-IBP and the IBP. Unlike

the traditional IBP, the dd-IBP is not (in general) marginally invariant, the property that

removing a customer leaves the distribution over latent features for the remaining customers

unchanged. (The dd-IBP builds on the dd-CRP, which is not marginally invariant either.) In

some circumstances, marginal invariance is desirable for computational reasons. For example,

the conditional distributions over missing data for models lacking marginal invariance require

computing ratios of normalization constants. In contrast, marginally invariant models, due to

their factorized structure, require less computation for conditional distributions over missing

data. In other circumstances, such as exploratory analysis of fully observed datasets, this

computational concern is less important.

Beyond computational considerations, in some situations marginal invariance is an inap-

propriate assumption. For example, imagine you are studying the spread of disease. You

believe that there are latent features which play a causal role in disease transmission, such

as certain genes in the case of genetically transmitted diseases. In this case, observations

correspond to individuals, and distance is naturally defined over a family tree. Removing

an individual from a family tree can dramatically alter the distribution over genes for other

individuals in the same family tree. This is an example where marginal invariance is an

incorrect assumption. In contrast, the distance-dependent effect of genes on individuals can

be captured by an appropriate distance function using the dd-IBP.

Also unlike the traditional IBP, the dd-IBP’s feature allocations are not exchangeable in
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general (except in some special cases). To state this formally, let Z be drawn from the

dd-IBP with distance matrix D, mass parameter α and decay function f . Then, let π be a

permutation of the integers {1, . . . , N}, and let Zπ be the matrix created by permuting the

rows of Z according to π. Then, except in certain special cases (such as when D recovers

the traditional IBP),

P ([Z] = [Z′] |D, α, f) 6= P ([Zπ] = [Z′] |D, α, f),

where Z′ is a (non-random) N × ∞ binary matrix. Permuting the data changes its dis-

tribution, and so the dd-IBP’s feature allocations are not exchangeable in general. This

property stems from the distance function, which induces sequential dependencies between

data points.

Although the dd-IBP does not induce an exchangeable distribution over equivalence classes

[Z], it does have a related symmetry. Let Dπ be the N × N matrix D with both its rows

and its columns permuted according to π. (We retain the same values for α and f). Then,

in general,

P ([Zπ] = [Z′]|D, α, f) = P ([Z] = [Z′]|Dπ, α, f)

Thus, if we permute both the data and the distance matrix, probabilities remain unchanged.

Permuting both the data and the distance matrix is like first relabeling the data, and then

explicitly altering the probability distribution to account for this relabeling. If the dd-

IBP’s feature allocations were exchangeable, one would not need to alter the probability

distribution to account for relabeling.
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3 Related work

In this section we describe related work on infinite latent feature models that capture external

dependence between the data. We focus on the most closely related model, which is the

dependent hierarchical beta process (dHBP; [30]). As a prelude to describing the dHBP, we

review the connection between the IBP and the beta process.

3.1 The beta process

Recall that the IBP induces an exchangeable distribution over feature allocations. Thibaux

and Jordan [27] showed that the de Finetti mixing distribution underlying the IBP is the

beta process (BP), parameterized by a positive concentration parameter c and a base measure

B0 on Ω. A draw B ∼ BP(c, B0) is defined by a countably infinite collection of weighted

atoms,

B =
∞∑
k=1

pkδωk
, (6)

where δω is a probability distribution that places a single atom at ω ∈ Ω, and the pk ∈

[0, 1] are independent random variables whose distribution is described as follows. If B0 is

continuous, then the atoms and their weights are drawn from a nonhomogeneous Poisson

process defined on the space Ω× [0, 1] with rate measure

ν(dω, dp) = cp−1(1− p)c−1dpB0(dω). (7)

If B0 is discrete and of the form B0 =
∑∞

k=1 qkδωk
, qk ∈ [0, 1], then B has atoms at the

same locations as B0, with pk ∼ Beta(cqk, c(1 − qk)). Following Thibaux and Jordan [27],

we define the mass parameter as γ = B0(Ω). Note that B0 is not necessarily a probability
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measure, and hence γ can take on non-negative values different from 1.

Conditional on a draw from the beta process, the feature representation Xi of data point

i is generated by drawing from the Bernoulli process (BeP) with base measure B: Xi|B ∼

BeP(B). If B is discrete, then Xi =
∑∞

k=1 zikδωk
, where zik ∼ Bernoulli(pk). In other words,

feature k is activated with probability pk independently for all data points. Sampling Z

from the compound beta-Bernoulli process is equivalent (in the sense of providing the same

distribution over equivalence classes [Z]) to sampling Z directly from the IBP when c = 1

and γ = α [27].

3.2 Dependent hierarchical beta processes

The dHBP [30] builds external dependence between data points using the above BP construc-

tion. The dependencies are induced by mixing independent BP random measures, weighted

by their proximities A.

The dHBP is based on the following generative process,

Xi|B∗gi ∼ BeP(B∗gi), gi ∼ Multinomial(ai),

B∗j |B ∼ BP(c1, B), B ∼ BP(c0, B0). (8)

This is equivalent to drawing Xi from a Bernoulli process whose base measure is a linear

combination of BP random measures,

Xi|Bi ∼ BeP(Bi), Bi =
N∑
j=1

aijB
∗
j . (9)

Dependencies between data points are captured in the dHBP by the proximity matrix A,
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as in the dd-IBP.3 This allows proximal data points (e.g., in time or space) to share more

latent features than distant ones.

In Section 4, we compare the feature-sharing properties of the dHBP and dd-IBP. Using

an asymptotic analysis, we show that the dd-IBP offers more flexibility in modeling the

proportion of features shared between data points, but less flexibility in modeling uncertainty

about these proportions.

3.3 Other non-exchangeable variants

Several other non-exchangeable priors for infinite latent feature models have been proposed

(see [14] for a comprehensive review). Williamson, Orbanz and Ghahramani [28] used a

hierarchical Gaussian process to couple the latent features of data in a covariate-dependent

manner. They named this model the dependent Indian buffet process (dIBP). Their frame-

work is flexible: It can couple columns of Z in addition to rows, while the dd-IBP cannot.

However, this flexibility comes at a computational cost during inference: Their algorithm

requires sampling an extra layer of variables.

Miller, Griffiths and Jordan [20] proposed a “phylogenetic IBP” that encodes tree-structured

dependencies between data. Doshi-Velez and Ghahramani [10] proposed a “correlated IBP”

that couples data points and features through a set of latent clusters. Both of these models

relax exchangeability, but they do not allow dependencies to be specified directly in terms

of distances between data. Furthermore, inference for these models requires more intensive

computation than does the standard IBP. The MCMC algorithm presented by Miller et al.

[20] for the phylogenetic IBP involves both dynamic programming and auxiliary variable

sampling. Similarly, the MCMC algorithm for the correlated IBP involves sampling latent

3Zhou et al. [30] formalize dependencies in an equivalent manner using a normalized kernel function
defined over pairs of covariates associated with the data points.
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clusters in addition to latent features. Our model also incurs extra computational cost rela-

tive to the traditional IBP due to the computation of reachability (quadratic in the number of

observations); however, it permits a richer specification of the dependency structure between

observations than either the phylogenetic or the correlated IBP.

Recently, Ren et al. [25] presented a novel way of introducing dependency into latent feature

models based on the beta process. Instead of defining distances between customers, each

dish is associated with a latent covariate vector, and distances are defined between each

customer’s (observed) covariates and the dish-specific covariates. Customers then choose

dishes with probability proportional to the customer-dish proximity. This construction comes

with a significant computational advantage for data sets where the time complexity is tied

predominantly to the number of observations. The downside of this construction is that the

MCMC algorithm used for inference must sample a separate covariate vector for each dish,

which may scale poorly if the covariate dimensionality is high.

4 Characterizing feature-sharing

In this section, we compare the feature-sharing properties of the dHBP and dd-IBP. Two

data points share a feature if that feature is active for both (i.e., zik = zjk = 1 for i 6= j and a

given feature k). This analysis is useful for understanding the types of dependencies induced

by the different models, and can help guide the choice of model and hyperparameter settings

for particular data analysis problems. We consider an asymptotic regime in which the mass

parameter is large (α for the dd-IBP and γ for the dHBP), which simplifies feature-sharing

properties. Proofs of all propositions in this section may be found in the Supplementary

Materials.
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4.1 Feature-sharing in the dd-IBP

We first characterize the limiting distributional properties of feature-sharing in the dd-IBP

as α → ∞. We drop the feature index k in the reachability indicator Lijk, writing it Lij.

We do this because columns of the connectivity matrix C are identically distributed under

the dd-IBP and, consequently, the distribution of the random vector (Lijk : i, j = 1, . . . , n)

is invariant across k.

Let Ri =
∑∞

k=1 zik denote the number of features held by data point i, and let Rij =∑∞
k=1 zikzjk denote the number of features shared by data points i and j, where i 6= j.

Proposition 1. Under the dd-IBP,

Ri ∼ Poisson

(
α

N∑
n=1

h−1n P (Lin = 1)

)
, (10)

Rij ∼ Poisson

(
α

N∑
n=1

h−1n P (Lin = 1,Ljn = 1)

)
. (11)

The probabilities P (Lin = 1) and P (Lin = 1,Ljn = 1) depend strongly on the distribution

of the connectivity matrix C, but do not depend on the ownership vector c∗, since L is

independent of dish ownership.

We then use this result to derive the limiting properties of Ri and Rij from properties of the

Poisson distribution. In this and following results,
P−→ indicates convergence in probability.

Proposition 2. Let i 6= j. Ri and Rij converge in probability under the dd-IBP to the
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following constants as α→∞:

Ri

α

P−→
N∑
n=1

h−1n P (Lin = 1), (12)

Rij

α

P−→
N∑
n=1

h−1n P (Lin = 1,Ljn = 1), (13)

Rij

Ri

P−→
∑N

n=1 h
−1
n P (Lin = 1,Ljn = 1)∑N
n=1 h

−1
n P (Lin = 1)

. (14)

This proposition shows that the limiting fraction of shared features Rij/Ri in the dd-IBP

is a constant that may be different for each pair of data points i and j. In contrast, we

show below that the same limiting fraction under the dHBP is random, and takes one of two

values. These two values are fixed, and do not depend upon the data points i and j.

4.2 Feature-sharing in the dHBP

Here we characterize the limiting distributional properties of feature sharing in the dHBP

as B0 becomes infinitely concentrated (i.e., γ → ∞, analogous to α → ∞). In this limit,

feature-sharing is primarily attributable to dependency induced by the proximity matrix A.

Proposition 3. If B0 is continuous, then under the dHBP,

Ri|g1:N ∼ Poisson (γ) , (15)

Rij|g1:N ∼

 Poisson
(
γ c0+c1+1
(c0+1)(c1+1)

)
if gi = gj,

Poisson
(
γ 1
c0+1

)
if gi 6= gj.

(16)

We derive the limiting properties of Ri and Rij from properties of the Poisson distribution.

Proposition 4. Let i 6= j and assume B0 is continuous. Conditional on g1:N , Ri and Rij
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converge in probability under the dHBP to the following constants as γ →∞:

Ri

γ

P−→ 1, (17)

Rij

γ

P−→


c0+c1+1

(c0+1)(c1+1)
if gi = gj,

1
c0+1

if gi 6= gj,
(18)

Rij

Ri

P−→


c0+c1+1

(c0+1)(c1+1)
if gi = gj,

1
c0+1

if gi 6= gj.
(19)

Thus, the expected fraction of object i’s features shared with object j, Rij/Ri, is a factor of

c0+c1+1
c1+1

bigger when gi = gj. As c0 → ∞, this fraction goes to ∞. As c0 → 0, it goes to 1.

We can obtain the unconditional fraction by marginalizing over gi and gj:

Corollary 1. Let i 6= j and assume B0 is continuous. Rij/Ri converges in probability under

the dHBP as γ →∞ to a random variable Mij defined by

Mij =


c0+c1+1

(c0+1)(c1+1)
with probability P (gi = gj),

1
c0+1

with probability P (gi 6= gj),

(20)

where P (gi = gj) =
∑N

n=1 ainajn.

This corollary shows that as γ grows large, the fraction of shared features becomes one of two

values (determined by c0 and c1), with a mixing probability determined by the dependency

structure. Thus, the dHBP affords substantial flexibility in specifying the mixing probability

(via A), but is constrained to two possible values of the limiting fraction.
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4.3 Feature-sharing in the IBP

For comparison, we briefly describe the feature-sharing properties under the traditional IBP.

Under the traditional IBP, by exchangeability of equivalence classes of Z and the fact that Ri

andRij are the same for all Z in the same equivalence class, Ri andRij together have the same

joint distribution as R1 and R12. The first customer draws a Poisson(α) number of dishes.

The second customer then chooses whether to sample each of these dishes independently

and with probability 1/2. Thus, the number of dishes sampled by both the first and second

customers is R12 ∼ Poisson(α/2).

This shows (using argument similar to those used to show Propositions 2 and 4) that, under

the traditional IBP, as α→∞ with i 6= j,

Ri

α

P−→ 1,
Rij

α

P−→ 1

2
,

Rij

Ri

P−→ 1

2
. (21)

4.4 Discussion

Using an asymptotic analysis, the preceding theoretical results show that the dd-IBP and

dHBP provide different forms of flexibility in specifying the way in which features are shared

between data points. This asymptotic analysis takes the limit as the mass parameters α

and γ become large. This limit is taken for theoretical tractability, and removes much of the

uncertainty that is otherwise present in these models. While such limiting dd-IBP and dHBP

models are not intended for practical use, their simplicity provides insight into behavior in

non-asymptotic regimes.

Under the dd-IBP, Proposition 2 shows that the modeler is allowed a great deal of flexibility

in specifying the proportions of features shared by data points. Given a matrix specifying
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Figure 4: Feature-sharing in the dHBP and dd-IBP, limiting case. Along the hor-
izontal axis, we show 4 independent draws from the dHBP (Top) and dd-IBP (Bottom).
Within each subfigure, the shade of a cell (i, j) shows the fraction Rij/Ri, where Ri is the
number of features held by data point i, and Rij is the number held by both i and j. Diag-
onals Rii/Ri = 1 have been set to 0 for clarity. Here, α = γ = 1000. Limiting results from
Section 4 explain the behavior for such large α and γ: for the dHBP the feature-sharing pro-
portion Rij/Ri is random and equal to one of two constants; for the dd-IBP the proportion
is non-random and takes a range of values. The dd-IBP models feature-sharing proportions
that differ across data points, but does not model uncertainty about these proportions when
mass parameters are large.

the proportion of features that are believed to be shared by pairs of data points, one can

(if this matrix is sufficiently well-behaved) design a distance matrix that causes the dd-IBP

to concentrate on the desired proportions. While the dd-IBP cannot model an arbitrary

modeler-specified matrix of proportions, the set of matrices that can be modeled is large.

In contrast, under the dHBP, Corollary 1 shows that the modeler has less flexibility in

specifying the proportions of features shared. Under the dHBP, the modeler chooses two

values, (c0 + c1 + 1)/(c0 + 1)(c1 + 1) and 1/(c0 + 1), and the proportion of features shared

by any pair of data points in the asymptotic regime must be one of these two values.

Section 4.3 shows that the traditional IBP has the least flexibility. In the asymptotic regime,

the proportion of features shared by each pair of data points is a constant.
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While the dd-IBP has more flexibility in specifying values of the feature-sharing-proportions

than the dHBP, it has less flexibility (at least in this asymptotic regime) in modeling un-

certainty about these feature-sharing proportions. Under the dd-IBP, the proportion of

features shared by a pair of data points in the asymptotic regime is a deterministic quan-

tity. Under the dHBP, the proportion of features shared is a random quantity, even in the

asymptotic regime. One could extend the dd-IBP to allow uncertainty about the feature-

sharing-proportions by specifying a hyperprior over distance matrices, but we do not consider

this extension further.

Figure 4 illustrates the difference in asymptotic feature-sharing behavior between the dHBP

and dd-IBP. Here we use the exponential decay function with β = 1 and dij = (i − j)2.

Subfigures in the upper row are draws from the dHBP, and subfigures in the bottom row are

draws from the dd-IBP. Within a single subfigure, the shade in the cell (i, j) is the fraction

Rij/Ri. (The diagonals Rii/Ri = 1 have been set to 0 to bring out other aspects of the

matrix.) Each of the four columns represents a pair of independent draws. To approximate

the asymptotic regime considered by the theory, the mass parameters for the two models are

set to large values of γ = α = 1000. The figure shows that, in draws from the dHBP, off-

diagonal cells have one of two shades, corresponding to the two possible limiting values for

Rij/Ri. In the different columns, corresponding to different independent draws, the patterns

are different, showing that Rij/Ri remains random under the dHBP, even in the asymptotic

regime. In contrast, in draws from the dd-IBP, off-diagonal cells take a variety of different

values, but remain unchanged across independent draws.

Figure 5 illustrates non-asymptotic feature-sharing behavior in a simple setting with only

two data points. The figure shows the feature-sharing behavior of the dHBP (top) and dd-

IBP (bottom) at two values for the mass parameter: α = γ = 15 (top row) and α = γ = 30

(bottom row). Each subfigure shows the probability mass function P (Rij) as a function of
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Figure 5: Feature-sharing in the dHBP and dd-IBP. Heatmaps of the probability mass
function over the number of shared features Rij (y-axis) as a function of proximity aij (x-
axis) in a data set consisting of two data points. Black indicates a probability mass of 0,
with lighter shades indicating larger values. For the dHBP, we set c0 = 10 and c1 = 1. Note
that E[Ri] is the same for both the dHBP and dd-IBP in these examples (when α = γ).

the proximity aij, where aij = 1/dij for the dd-IBP. Because there are only two data points,

with aii = 1 and aij = aji, specifying aij is sufficient for specifying the full proximity matrix

A. For the dHBP, we set c0 = 10 and c1 = 1. Also facilitating comparison, E[Ri] is the same

between both models (when α = γ).

Figure 5 shows that as the proximity aij increases to 1, the number of shared features Rij

tends to increase under both models. More precisely, P (Rij) concentrates on larger values

of Rij as aij increases. However, the way in which the probability mass functions change

with aij differs between the two models. In the dd-IBP, the most likely value of Rij increases

smoothly, while under the dHBP it remains roughly constant and then jumps. As one varies

aij across its full range, the set of most likely values for Rij under the dd-IBP spans its

full range from 0 to 20, while under the dHBP the most likely value for Rij takes only a

few values. Instead, varying aij under the dHBP allows a variety of bimodal distributions
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centered near the values from the asymptotic analysis.

This difference in non-asymptotic behaviors mirrors the difference between the two models in

the asymptotic regime, where the dd-IBP allows feature-sharing-proportions to be specified

almost arbitrarily but allows little flexibility in modeling uncertainty about them, and the

dHBP limits the number of possible values for the feature-sharing proportions, but allows

uncertainty over these values. This difference may have consequences for data analysis. For

example, latent features underlying preferences for movies or music may be shared in highly

predictable but diverse ways across a set of individuals, in which case the dd-IBP would be

a more suitable model. In contrast, latent features underlying disease may be shared in a

smaller number of ways but be highly unpredictable (e.g., two individuals either share or

don’t share a particular stochastically occurring gene mutation), in which case the dHBP

would be more suitable.

5 Inference using Markov chain Monte Carlo sampling

Given a dataset X = {xi}Ni=1 and a latent feature model P (X|Z, θ) with parameter θ, the

goal of inference is to compute the joint posterior over the customer assignment matrix C,

the dd-IBP hyperparameter α, and likelihood parameter θ, as given by Bayes’ rule:

P (C, c∗, θ, α|X,D, f) ∝ P (X|C, c∗, θ)P (θ)P (C|D, f)P (c∗|α)P (α), (22)

where the first term is the likelihood (recall that Z is a deterministic function of C and c∗),

the second term is the prior over parameters, the third term is the dd-IBP prior over the

connectivity matrix C, the fourth term is the prior over the ownership vector c∗, and the

last term is the prior over α.
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Exact inference in this model is computationally intractable. We therefore use MCMC

sampling [26] to approximate the posterior with L samples. Details of this algorithm can be

found in the Supplementary Materials. The algorithm can be adapted to different datasets

by choosing an appropriate likelihood function. In the next section, we present a simple

linear-Gaussian model.4

6 A linear-Gaussian model

As an example of how the dd-IBP can be used in data analysis, we incorporate it into a

linear-Gaussian latent feature model (Figure 6). This model was originally studied for the

IBP by Griffiths and Ghahramani [16, 17]. The observed data X ∈ RN×M consist of N

objects, each of which is a M -dimensional vector of real-valued object properties. We model

X as a linear combination of binary latent features corrupted by Gaussian noise:

X = ZW + ε, (23)

where W is a K×M matrix of real-valued weights, and ε is a N×M matrix of independent,

zero-mean Gaussian noise terms with standard deviation σx. We place a zero-mean Gaussian

prior on W with covariance σ2
wI. Intuitively, the weights capture how the latent features

interact to produce the observed data. For example, if each latent feature corresponds to a

person in an image, then the weight wkm captures the contribution of person k to pixel m.

Algorithmic details for performing inference in this model are provided in the Supplementary

Materials.

4Matlab software implementing this algorithm is available at the first author’s homepage: web.mit.edu/
sjgershm/www.
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Figure 6: Linear-Gaussian model. Matrix multiplication view of how latent features (Z)
combine with a weight matrix (W) and white noise (ε) to produce observed data (X).

7 Empirical study

In this section we report experimental investigations of the dd-IBP and comparisons with

alternative models. We show how the dd-IBP can be used as a dimensionality reduction

pre-processing technique for classification tasks when the data points are non-exchangeable.

In the Supplementary Materials, we present an example of a situation in which a non-

exchangeable model might be expected to help, but does not.

The performance of supervised learning algorithms is often enhanced by pre-processing the

data to reduce its dimensionality [3]. Classical techniques for dimensionality reduction, such

as principal components analysis and factor analysis, assume exchangeability, as does the

infinite latent feature model based on the IBP [16]. For this reason, these techniques may

not work as well for pre-processing non-exchangeable data, and this may adversely affect

their performance on supervised learning tasks.

We investigated this hypothesis using a magnetic resonance imaging (MRI) data set collected

from 27 patients with Alzheimer’s disease and 35 healthy controls [7].5 The observed features

consist of 4 structural summary statistics measured in 56 brain regions of interest: (1) surface

area; (2) shape index; (3) curvedness; (4) fractal dimension. The classification task is to sort

individuals into Alzheimer’s or control classes based on their observed features.

5Available at: http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_July2009_ID_NI.
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Age-related changes in brain structure produce natural declines in cognitive function that

make diagnosis of Alzheimer’s disease difficult [12]. Thus, it is important to take age into

account when designing predictive models. For the dd-IBP and dHBP, age is naturally

incorporated as a covariate over which we constructed a distance matrix. Specifically, we

defined dij as the absolute age difference between subjects i and j, with dij = ∞ for j > i

(i.e., the distance matrix is sequential). This induces a prior belief that individuals with

similar ages tend to share more latent features. In the MRI data set, ages ranged from 60

to 90 (median: 76.5).
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Figure 7: Trace plots. Representative traces of the log joint probability of the Alzheimer’s
data and latent variables for the dd-IBP (top) and dHBP (bottom). Each iteration corre-
sponds to a sweep over all the latent variables.

In detail, we ran 1500 iterations of MCMC sampling on the entire data set using the linear-

Gaussian observation model, and then selected the latent features of the maximum a poste-

riori sample as input to a supervised learning algorithm (L2-regularized logistic regression,

with the regularization constant set to 10−6). Training was performed on half of the data,

and testing on the other half.6 The noise hyperparameters of the dd-IBP and dHBP (σx and

σy) were updated using Metropolis-Hastings proposals.

We monitored the log of the joint distribution logP (X, α,C, c∗). Visual inspection of the log

6A few randomly chosen individuals were removed from the test set to make it balanced.
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Figure 8: Inferred latent features for the Alzheimer’s data set. Hinton diagram show-
ing the posterior expected latent feature matrix. Rows correspond to data points (ordered
according to increasing age), columns correspond to latent features. The size of the square
indicates the magnitude of the corresponding entry.

joint probability traces suggested that the sampler reaches a local maximum within 400-500

iterations (Figure 7). This process was repeated for a range of decay parameter (β) values,

using the exponential decay function. The same proximity matrix, A, was used for both the

dd-IBP and dHBP. We performed 10 random restarts of the sampler (initialized to draws

from the prior) and recomputed the classification measure for each restart, averaging the

resulting measures to reduce sampling variability. For comparison, we also made predictions

using the standard IBP, the dIBP [28], and the raw observed features (i.e., no pre-processing).

The dIBP was fit using the MCMC algorithm described in Williamson et al. [28], which

adaptively samples the parameters controlling dependencies between observations (thus the

results do not depend on β).

The inferred latent features are shown in Figure 8, illustrating how the distribution of features

shifts across values of the covariate. In this case, the data from younger Alzheimer’s patients
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are explained by a set of latent features that are largely distinct from the latent features

used to explain the data from older patients.
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Figure 9: Classification results for the Alzheimer’s data set. Area under the curve
(AUC) for binary classification (Alzheimer’s vs. normal control) using L2-regularized logistic
regression and features learned from a linear-Gaussian latent feature model. Each curve
represents a different choice of predictor variables (latent features) for logistic regression.
The x-axis corresponds to different settings of the exponential decay function parameter, β.
“Raw” refers to the original data features (see text for details); the IBP, dd-IBP, dIBP and
dHBP results were based on using the latent features of the maximum a posteriori sample
following 1500 iterations of MCMC sampling. Error bars represent standard error of the
mean.

Classification results are shown in Figure 9 (left), where performance is measured as the

area under the receiver operating characteristic curve (AUC). Chance performance corre-

sponds to an AUC of 0.5, perfect performance to an AUC of 1. Using features from the

non-exchangeable models (dd-IBP, dHBP, dIBP) leads to better performance than the raw

and IBP features. For a range of β values, the dd-IBP produces superior classification per-

formance to the alternative models, with the exception of the dIBP (which outperformed

the dd-IBP for some settings).

We also ran the dd-IBP sampler with β = 0 (in which case the dd-IBP and IBP are equiv-

alent) and found no significant difference between it and the standard IBP sampler with

respect to performance on the Alzheimer’s classification.
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8 Conclusions

By relaxing the exchangeability assumption for infinite latent feature models, the dd-IBP

extends their applicability to a richer class of data. We have shown empirically that this

innovation fares better than the standard IBP on non-exchangeable data (e.g., timeseries).

We note that the dd-IBP is not a standard Bayesian nonparametric distribution, in the sense

of arising from a de Finetti mixing distribution. For the standard IBP, the de Finetti mixing

distribution is the beta process [27], but this result does not generalize to the dd-IBP due

to its non-exchangeability. Nonetheless, this does not detract from our model’s ability to

let the data infer the number of latent features, a property that it shares with other infinite

latent feature models.

We can consider a number of possible future directions. First, we may exploit distance

dependence to derive more efficient samplers. In particular, Doshi-Velez and Ghahramani

[9] have shown that partitioning the data into subsets enables faster Gibbs sampling for

the traditional IBP; the window decay function imposes a natural partition of the data into

conditionally independent subsets.

Second, we can apply the dd-IBP to other likelihood functions. For example, it could be

applied to relational data [19, 21] or text data [27]. As pointed out by Miller et al. [21],

covariates like age or location often play an important role in link prediction. Whereas Miller

et al. [21] incorporated covariates into the likelihood function, one could instead incorporate

them into the prior by defining covariate-based distances between data points (e.g., the age

difference between two people). A distinction of the latter approach is that it would allow

one to model dependencies in terms of latent features. For instance, two people close in

age or geographic location may be more likely to share latent interests, a pattern naturally

captured by the dd-IBP.
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Third, modeling shared dependency structure across groups is important for several applica-

tions. In brain imaging studies, for example, similar spatial and temporal dependencies are

frequently observed across subjects. Modeling shared structure without sacrificing intersub-

ject variability has been addressed with hierarchical models [2, 29]. One way to extend the

dd-IBP hierarchically would be to allow the parameters of the decay function to vary across

individuals while being coupled together by higher-level variables.
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