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Abstract

Acoustic event detection (AED) aims to identify both timestamps
and types of multiple events and has been found to be very challeng-
ing. The cues for these events often times exist in both audioand
vision, but not necessarily in a synchronized fashion. We study im-
proving the detection and classification of the events usingcues from
both modalities. We propose optical flow based spatial pyramid his-
tograms as a generalizable visual representation that doesnot require
training on labeled video data. Hidden Markov models (HMMs)are
used for audio-only modeling, and multi-stream HMMs or coupled
HMMs (CHMM) are used for audio-visual joint modeling. To allow
the flexibility of audio-visual state asynchrony, we explore effective
CHMM training via HMM state-space mapping, parameter tyingand
different initialization schemes. The proposed methods successfully
improve acoustic event classification and detection on a multimedia
meeting room dataset containing eleven types of general non-speech
events without using extra data resource other than the video stream
accompanying the audio observations. Our systems perform favor-
ably compared to previously reported systems leveraging ad-hoc vi-
sual cue detectors and localization information obtained from multi-
ple microphones.
Index Terms: acoustic event detection, optical flow, hidden Markov
models, multi-stream HMM, coupled hidden Markov models

1. Introduction
Acoustic events help describe human and social activities that oc-
cur in many environments. For example, the sound of foot steps or
door slamming can be used to detect human activities for surveillance
[2] and yawn or chair moving noise reveals audience feedbackin a
seminar. Detection of nonspeech sounds also helps improve speech
recognition performance [3].

Acoustic event detection (AED) aims to identify both timestamps
and types of multiple events and has been found to be very challeng-
ing. The CLEAR 2007 AED Evaluation and follow-up work [4, 5]
highlighted research efforts and challenges in the detection of general
acoustic events, in contrast to highlight/key events, suchas explosion.
In particular, the acoustic footprints of the events are very fuzzy and
subject to noise.

Recently, incorporating both audio and visual informationfor
AED has been demonstrated as an effective approach to improve the
performance and robustness over the audio-only systems [1,6, 7].
However, these works either leverage on specific visual object de-
tectors, usually requiring hand-labeled training data, orexpect domi-
nance or strong prior of the visual cues in the recorded video, some-
times impossible for real applications.

Leveraging additional visual cues for audio signal analysis has
been explored in other applications, such as speech recognition [8]
and person identification [9]. In particular, the multi-stream HMM
and the couple HMM (CHMM) are two effective models for audio-
visual fusion. While audio-visual event detection shares alot of chal-
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lenges with audio-visual speech recognition, they differ in multiple
ways: First, the visual cues for general acoustic event detection can
be much less constrained: there is no consistent visual region, such as
the mouth in audio-visual speech processing, in which all the event
information is embedded. Second, the synchrony and asynchrony
between the two modalities is not governed by a well constrained
mechanism, such as human speech articulation. For example,key jin-
gling presents mostly simultaneous audio and visual footprints, but
we can observe a person move before or after s/he makes the foot-
step sound, or a door start moving before making a slamming sound,
the asynchrony being more arbitrary than what is observed inaudio-
visual speech. It is not yet studied whether the audio-visual models
in speech processing can be effectively applied in audio-visual event
modeling to improve acoustic event detection.

In this work, we study using a generalizable visual representation
to improve acoustic event detection, via different audio-visual syn-
chrony and asynchrony modeling. In particular, a combination of op-
tical flow and overlapping spatial pyramid histograms characterizes
the visual cues, which can be non-dominant in the recorded video.
Compared with more task-specific alternatives [1], the proposed vi-
sual features have the merit of requiring minimum labeling efforts:
no extra labels required other than the event onset/offset timestamps
used for audio-only modeling. We propose applying multi-stream
HMMs for synchronized audio-visual event modeling and coupled
hidden Markov models [8] for more flexible modeling allowingasyn-
chrony.

Acoustic event detection and classification experiments are per-
formed on meeting room data with eleven general non-speech acous-
tic events. With the proposed visual representation and multi-modal
modeling, the visual cues, often local and subtle in the images, are
shown to consistently improve both classification and detection ac-
curacy of the concerned events. All the experiments use the video
associated with the audio as the only extra data resource, requiring
no additional labeling.

The organization of this paper is as follows. Section 2 presents
the generalizable visual features adopted in this work, in particular
the overlapping spatial pyramid histograms based on optical flow.
Section 3 discusses the audio-visual modeling methods, in particular
the multi-stream HMM and the coupled HMM. Section 4 presents
the experimental results on audio-visual event classification and de-
tection. We conclude the paper in Section 5.

2. Generalizable Visual Features for AED
Previous literatures [1] reported using ad-hoc visual detectors to gen-
erate visual features for the purpose of improving event detection.
However, training these detectors requires expensive labeling efforts,
usually at least bounding boxes of the concerned objects. Moreover,
these detectors are task-specific. Alternatively, we explore using vi-
sual features that do not require such training and data labeling, and
are not task-specific, i.e. generalizable.

In this work, we propose using a combination of optical flow
and overlapping spatial pyramid histograms to characterize the visual
cues in the acoustic events.



Figure 1: (Left) The image sequence for the event ’foot step’in the
overhead camera; (Right) the corresponding optical flow fields for
each image, where the flow field is visualized using hue to indicate
the direction and intensity for the magnitude.

Figure 2: Optical flow based overlapping spatial pyramid histograms
for a footstep event: (first row) Spatial pyramid arrangement and op-
tical flow magnitude visualization; (second row) Optical flow magni-
tude histogram in each corresponding block.

The visual cues of the non-speech audio-visual events are mostly
related to motion. We propose using visual features based onoptical
flow between consecutive frames to capture the movement informa-
tion. We utilize a highly efficient algorithm on variationalmethods
utilizing a GPU [10] to calculate the optical flow, i.e. the horizontal
and vertical movement for each pixel. Fig. 1 illustrates theextracted
optical flow for a “foot step” event.

The visual cues of the acoustic events have their spatial corre-
lates: the spatial distribution sometimes, but not always,differs be-
tween the different events and the background. Therefore, we define
eight overlapping blocks from the whole image, including both the
complete image and seven spatially local regions. The histograms
of motion vector magnitude within all the blocks are employed as
the video features [11]. We refer to this representation as the over-
lapping spatial pyramid histograms. Similar representation was
successfully used for kernel estimation in general image scene cat-
egorization [12], which shares the property that the visualcues are
highly variant and sometimes localized.

An example of the proposed visual representation for a ’footstep’
event is illustrated in Fig. 2.

3. Multi-Modality Fusion for AED
We propose using multi-stream HMMs for synchronized audio-visual
event modeling, and coupled hidden Markov models [8] for more
flexible modeling allowing asynchrony.

Different fusion methods have been explored for the audio and
visual modalities. First, feature fusion techniques include plain fea-
ture concatenation [13], feature weighting [14] and a data-to-data
mapping of either one modality into the space of another or both
modalities into a new common space [15]. Second, decision fusion
provides a mechanism for capturing reliabilities of each modality by

Figure 3: A two stream hidden Markov model encoded as a dynamic
Bayesian network

classifier combination. Third, intermediate fusion performs multi-
modal integration at a level between decision fusion and feature fu-
sion. Intermediate integration strategies have been shownto outper-
form the early and late integration strategies in various applications
[16].

Multi-stream HMMs and coupled HMMs are used as two inter-
mediate fusion methods . The synchrony and asynchrony between
the modalities are modeled by the hidden state transitions.Though
such models have been successfully applied in audio-visualspeech
recognition [8], they have not been applied in improving general non-
speech acoustic event detection.

3.1. Multi-stream Hidden Markov Models

In a two-stream HMM, the state-dependent emission of the
audiovisual observationoav,t is governed byP (oav,t|St) =
P (oa,t|St)

λa,St,tP (ov,t|St)
λv,St,t for all HMM statesSt, where

λs,St,t denotes the nonnegative stream weights, which models the
stream reliabilities as a function of modalitys, HMM stateSt and
time t.

Multistream HMMs assume the state synchrony between audio
cues and visual cues. Because of the simple topology, it’s relatively
easy to obtain robust estimation of the parameters.

Fig. 3 illustrates a two-stream HMM, where the transitions prob-
abilities are referred to asP (St|St−1). State observation distribu-
tions are referred to asP (oav,t|St). St is a multinomial random
variable representing the state of the CHMM system variableat time
t. Note, both the streams progress in a synchronous fashion.

3.2. Coupled Hidden Markov Models

The assumption of audio-visual state synchrony is not always satis-
fied. For example, in an object dropping event, the acoustic sound
is not always in existence when the object is in motion, but when
the object stops dropping. Similarly, a door slamming soundoccurs
in the end of the door movement. Though the asynchrony between
modalities can be alleviated by a larger local time window for each
frame, a more flexible statistical model allowing asynchrony between
the hidden state sequences for the two modalities is desired.

In this work, we propose using coupled HMM to model modal-
ity asynchrony in audio-visual events. We select the transition-only
Coupled Hidden Markov Model (CHMM), in which different modal-
ities are coupled through state transitions. The CHMM is capable
of capturing both the synchronous and asynchronous inter-modal de-
pendencies between two information channels. CHMM proves to be
an effective method in audio-visual speech recognition [8].

CHMM can be viewed as parallel rolled-out HMM chains cou-
pled through cross-time and cross-chain conditional statetransition
probabilities. An n-chain CHMM hasn hidden nodes in a time slice,
each connected to itself and its nearest neighbors in the next time
slice. In our task, we use a 2-chain CHMM for audio-visual model-
ing, as shown in Fig. 4, where circular nodes in each slice arethe



Figure 4: Audio-visual fusion using CHMM

Figure 5: Converting a CHMM to an equivalent HMM by state-space
mapping and parameter tying

multinomial state variables, square nodes in each slice represent the
observation variable, and the directed links represent conditional de-
pendence between nodes.

The state of the CHMM system in each time slice is jointly de-
termined by the two multinomial state variable, each depending on
its two parent states in the previous time slice. The configuration per-
mits unsynchronized progression of the two chains while keeping the
Markov property that a future state variable is conditionally indepen-
dent of the past given the present state variables. Note thatCHMM
can be seen as a generalized multi-stream HMM.

Following a transformation strategy based on state-space map-
ping and parameter tying [8], we can convert a CHMM to an equiv-
alent HMM, whose hidden states each corresponds to the stateof
the system described by the CHMM. The number of hidden statesin
the equivalent HMM equals the number of possible combinations of
states from both modalities. Fig. 5 illustrates a 2-chain CHMM with
Qa = 3 andQv = 2, whereQa andQv are the numbers of audio
and visual states respectively. For example, state 3 in the equivalent
HMM corresponds to the CHMM state defined by audio stateqa = 2
and visual stateqv = 1. The modality-dependent observation proba-
bilities corresponding to the same observation distribution in the orig-
inal CHMM are tied and coded using the same tag. For example, the
output densities modeling the visual stream in state 1, 3, 5 are tied
and tagged as “V1”, because they correspond toP (O1|qv = 2) in the
CHMM.

In this work, we use a left-to-right non-skip HMM for each of
the two modalities in the CHMM. The allowed state transitions in the
equivalent HMM are derived from state space mapping. For example,
in the state diagram in Fig. 5, given state 1 (qa = 1, qv = 1) at
present, in next time slice,qa can either transit toqa = 2 or stay in
qa = 1, andqv can either transit toqv = 2 or stay inqv = 1. Hence,
state 1 can either stay in itself or transit to CHMM state 2 (qa =
1, qv = 2) or state 3 (qa = 2, qv = 1) ,or state 4 (qa = 2, qv = 2).

For robust estimation of the CHMMs, we perform the CHMM
training in two stages. In the first stage, the observation distributions
for both modalities are initialized using simpler models. The ini-
tial simpler models can be a two-stream audio-visual HMM, which
requires strict state synchrony between audio and visual modalities;
or one audio-only HMM and one video-only HMM, which impose

no explicit state correspondence between the two modalities. In the
second stage, the audio and visual observation distributions from the
multi-stream HMM or two single-modality HMMs are used to con-
struct the CHMM-equivalent HMM. Additional parameter estimation
iterations using the Balm-Welch algorithm are performed with this
HMM.

4. Experiments
4.1. Dataset and Setup

We use the audio-visual dataset collected by the Universitat Politec-
nica de Catalunya [1]. The database contains multimodal recordings
of acoustic events (AEs) in a meeting room environment. The target
events in this dataset include: Knock door/table (kn), Doorslam (ds),
Steps (st), Chair moving (cm), Spoon/cup jingle (cl), Paperwork -
listing, warping (pw), Key jingle (kj), Keyboard typing (kt), Phone
ringing/Music (pr), Applause (ap) and Cough (co). There areap-
proximately 90 instances per event class for the whole dataset of six
sessions (S01-S06). Among S01-S04, we use three sessions for train-
ing, and one for testing. All reported measures are averagedfrom
four-fold cross validation. Additional two sessions (S05,S06) are
used as the development set. We use the observations from a far field
microphone and an overhead camera.

To make the task more realistic we add different levels of Gaus-
sian white noise to the clean recorded audio, to illustrate the perfor-
mance of the different approaches at different noise levels. Percep-
tual Linear Prediction coding (PLP) coefficients are used asthe audio
features. In particular, PLP coefficients, including 12 coefficients and
the0th cepstral coefficient, are extracted from 30ms Hamming win-
dows with a temporal step of 20ms. The delta and accelerationco-
efficients are computed and appended to the static PLP coefficients.
Cepstral mean normalization is performed on each recorded session.

The visual features are obtained according to Section 2 using 20
bins for each histogram of optical flow magnitude. The concatena-
tion of histograms from all blocks is projected into 40 dimensions
using Principle Component Analysis, retaining 98% of the total en-
ergy. These visual features are interpolated to match the 20ms frame
period of the audio features.

In this work, each multistream HMM or CHMM has 4 audio and
4 video states with stream weights tuned on the development data
using coarse-to-fine grid search. For simplicity, the stream weights
are time-invariant. The different methods are evaluated using classi-
fication accuracy and detection accuracy AED-ACC [1, 4]. A set of
audio-only HMMs are used for comparison, given their effectiveness
[17].

4.2. CHMM Training Schemes

Initialization of the observation distributions in the CHMM is im-
portant, because of the high degree of freedom in the CHMM topol-
ogy. As discussed in Section 3, we explore two different initializa-
tion schemes for CHMM, referred to asCHMMm and CHMMs,
in which the observation distributions of the CHMMs are initial-
ized using multistream HMMs, or pairs of audio-only and video-only
HMMs respectively.

The CHMMs parameters (the Gaussian means, covariance, mix-
tures weights, and the state transition probabilities) arefurther esti-
mated with a few iterations using the Balm-Welch algorithm.We
found in our pilot experiments that allowing estimation of all the
CHMM parameters above is better than estimating any subset of pa-
rameters above and using the initialized parameters for therest.

4.3. Results

Table 1 and Table 2 present the classification and detection results us-
ing the proposed visual representation coupled with different audio-
visual modeling methods as well as the audio-only and video-only
models. In both detection and classification, the multistream HMM
system consistently improves from the audio-only system aswell as



the video-only system for all SNR conditions studied in thiswork.
Further, CHMM-based systems (CHMMs and CHMMm) outperform
the multistream HMM system in event detection for all SNR condi-
tions.

We also performed event detection using original clean audio,
the same condition studied in [1]. The proposed visual features and
audio-visual modeling perform favorably, compared to the best sys-
tems reported in [1]. These reference systems [1] leverage aperson
tracker, a laptop detector, a face detector, a door activityestimator
to capture the visual cues and optional localization information ob-
tained from multiple microphones (denoted as “AV” and “AVL”in
Table 2 respectively).

Fig. 6 shows the confusion matrix of event classification us-
ing the audio-only HMM, audio-visual multistream HMM, CHMMm
and CHMMs systems. Using the proposed generalizable visual fea-
tures with the multistream HMM or the CHMM boosts classification
accuracy for most event classes compared to the audio-only system.
The more flexible CHMM-based systems (CHMMs and CHMMm)
further improve classification of some events, such as kn: knock
(door, table) and co: cough from the multistream HMM system.

To verify that the audio-visual state asynchrony allowed bythe
CHMM systems is utilized, we examine the state sequences found by
the Viterbi decoding. The percentages of observation frames claimed
by the CHMM states defined by an asynchronous pair of audio and
video states are 65.944% for CHMMs, and 65.842% for CHMMm
respectively. Note that the multistream HMM system assignsall
frames to states that are defined by synchronous audio and visual
states.

Classification Accuracy (%) mean±standard error
SNR Audio-only Video-only Multistream CHMMm CHMMs

10dB 28.05±4.40 61.57±3.18 64.35±4.35 67.22±3.76 65.76±4.36
20dB 51.54±5.21 61.57±3.18 72.33±6.15 76.40±5.87 76.92±5.09
30dB 77.45±6.96 61.57±3.18 89.07±4.13 89.12±3.51 87.10±4.36

Table 1: Classification accuracy with different audio SNR. (“Multi-
stream”: the bimodal system using multistream HMMs. “CHMMm”:
the CHMM-based system initialized using multistream HMMs.
“CHMM s”: the CHMM-based system initialized using audio-only
and video-only HMMs.)

Detection Accuracy (%) mean±standard error
SNR Audio Video Multistream CHMMm CHMMs

10dB 26.73±6.99 45.22±2.22 45.45±3.04 50.47±2.97 48.35±2.33
20dB 47.96±6.03 45.22±2.22 63.74±3.78 65.89±3.98 66.28±3.95
30dB 69.35±5.26 45.22±2.22 78.55±4.13 79.50±2.71 79.54±2.27
clean 87.54±2.99 45.22±2.22 90.57±2.07 91.85±2.11 90.79±2.97

clean “AV” [1] 85 “AVL” [1] 86

Table 2: Detection accuracy with different audio SNRs. (“AV”: [1]
system using video features from multiple ad-hoc detectors. “AVL”:
“AV” system plus localization information obtained via multiple mi-
crophones [1].

5. Conclusion
In this work, we study using generalizable visual features to improve
acoustic event detection via audio-visual intermediate integration.
We propose using optical flow based spatial pyramid histograms to
represent the highly variant visual cues for the acoustic events. This
representation is demonstrated to significantly improve event classi-
fication and detection using systems based on multistream HMMs
or coupled HMMs. Compared to the multistream HMMs, the cou-
pled HMMs further boost the performance by allowing state asyn-
chrony between the audio and visual modalities. Our systemswith
the proposed generalizable visual features and audio-visual modeling
perform favorably compared to previously reported systemsleverag-
ing ad-hoc visual cue detectors and localization information obtained
from multiple microphones [1].

Figure 6: Confusion Matrix for Event Classification (averaged over
SNRs 10dB, 20dB, 30dB) based on audio-only HMM, audio-visual
multistream HMM, CHMMm and CHMMs respectively.
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