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Abstract

Acoustic event detection (AED) aims to identify both timeesps
and types of multiple events and has been found to be veriecigal
ing. The cues for these events often times exist in both aadd
vision, but not necessarily in a synchronized fashion. Weysim-
proving the detection and classification of the events usirgg from
both modalities. We propose optical flow based spatial piddns-
tograms as a generalizable visual representation thatanesquire
training on labeled video data. Hidden Markov models (HMsli®)
used for audio-only modeling, and multi-stream HMMs or dedp
HMMs (CHMM) are used for audio-visual joint modeling. Todl
the flexibility of audio-visual state asynchrony, we expl@ffective
CHMM training via HMM state-space mapping, parameter tyand
different initialization schemes. The proposed methodsessfully
improve acoustic event classification and detection on dimedia
meeting room dataset containing eleven types of generaspeach
events without using extra data resource other than the\dtteam
accompanying the audio observations. Our systems perfavor-f
ably compared to previously reported systems leveraginigoadvi-
sual cue detectors and localization information obtaimethfmulti-
ple microphones.

Index Terms: acoustic event detection, optical flow, hidden Markov
models, multi-stream HMM, coupled hidden Markov models

1. Introduction

Acoustic events help describe human and social activitias ac-
cur in many environments. For example, the sound of footsstep
door slamming can be used to detect human activities foedlance
[2] and yawn or chair moving noise reveals audience feedbaek
seminar. Detection of nonspeech sounds also helps imppmech
recognition performance [3].

Acoustic event detection (AED) aims to identify both tineesaps
and types of multiple events and has been found to be verjecigal
ing. The CLEAR 2007 AED Evaluation and follow-up work [4, 5]
highlighted research efforts and challenges in the detecti general
acoustic events, in contrast to highlight/key events, sisodxplosion.
In particular, the acoustic footprints of the events aregy ¥ezzy and
subject to noise.

Recently, incorporating both audio and visual informatfon
AED has been demonstrated as an effective approach to ieaginev
performance and robustness over the audio-only systent; [2],
However, these works either leverage on specific visualoplge-
tectors, usually requiring hand-labeled training data»qrect domi-
nance or strong prior of the visual cues in the recorded videme-
times impossible for real applications.

Leveraging additional visual cues for audio signal analyss
been explored in other applications, such as speech ramyfi]
and person identification [9]. In particular, the multiegm HMM
and the couple HMM (CHMM) are two effective models for audio-
visual fusion. While audio-visual event detection sharked af chal-
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lenges with audio-visual speech recognition, they diffemiultiple
ways: First, the visual cues for general acoustic eventctietecan
be much less constrained: there is no consistent visuamegiich as
the mouth in audio-visual speech processing, in which alletent
information is embedded. Second, the synchrony and asymghr
between the two modalities is not governed by a well consdi
mechanism, such as human speech articulation. For exakeglgn-
gling presents mostly simultaneous audio and visual faatrbut
we can observe a person move before or after s/he makes the foo
step sound, or a door start moving before making a slammiagdso
the asynchrony being more arbitrary than what is observeddfio-
visual speech. Itis not yet studied whether the audio-Viswalels
in speech processing can be effectively applied in audiaalievent
modeling to improve acoustic event detection.

In this work, we study using a generalizable visual represgam
to improve acoustic event detection, via different audsal syn-
chrony and asynchrony modeling. In particular, a combamadif op-
tical flow and overlapping spatial pyramid histograms cbemazes
the visual cues, which can be non-dominant in the recordeelovi
Compared with more task-specific alternatives [1], the psegl vi-
sual features have the merit of requiring minimum labeliffgres:
no extra labels required other than the event onset/offsestamps
used for audio-only modeling. We propose applying multain
HMMs for synchronized audio-visual event modeling and dedp
hidden Markov models [8] for more flexible modeling allowiagyn-
chrony.

Acoustic event detection and classification experimergspar-
formed on meeting room data with eleven general non-spesmlsa
tic events. With the proposed visual representation andi+madal
modeling, the visual cues, often local and subtle in the esagre
shown to consistently improve both classification and dietecac-
curacy of the concerned events. All the experiments useitteov
associated with the audio as the only extra data resourgeirirgg
no additional labeling.

The organization of this paper is as follows. Section 2 pre&se
the generalizable visual features adopted in this work,artigular
the overlapping spatial pyramid histograms based on dpiioa.
Section 3 discusses the audio-visual modeling methodsriicplar
the multi-stream HMM and the coupled HMM. Section 4 presents
the experimental results on audio-visual event classificand de-
tection. We conclude the paper in Section 5.

2. Generalizable Visual Featuresfor AED

Previous literatures [1] reported using ad-hoc visualaiets to gen-
erate visual features for the purpose of improving eveneclien.
However, training these detectors requires expensivéitapefforts,
usually at least bounding boxes of the concerned objectsedier,
these detectors are task-specific. Alternatively, we erplsing vi-
sual features that do not require such training and datéitahand
are not task-specific, i.e. generalizable.
In this work, we propose using a combination of optical flow

and overlapping spatial pyramid histograms to charaaeéhie visual
cues in the acoustic events.



Figure 1: (Left) The image sequence for the event 'foot stephe
overhead camera; (Right) the corresponding optical flovddidor
each image, where the flow field is visualized using hue tocatei
the direction and intensity for the magnitude.
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Figure 2: Optical flow based overlapping spatial pyramiddgsams
for a footstep event: (first row) Spatial pyramid arrangenaenl op-
tical flow magnitude visualization; (second row) Opticaiflmagni-
tude histogram in each corresponding block.

The visual cues of the non-speech audio-visual events asdymo
related to motion. We propose using visual features basegbtical
flow between consecutive frames to capture the movementiafo
tion. We utilize a highly efficient algorithm on variationadethods
utilizing a GPU [10] to calculate the optical flow, i.e. therizontal
and vertical movement for each pixel. Fig. 1 illustratesakeacted
optical flow for a “foot step” event.

The visual cues of the acoustic events have their spatiatcor
lates: the spatial distribution sometimes, but not alwalyféers be-
tween the different events and the background. Therefeealefine
eight overlapping blocks from the whole image, includinghbthe
complete image and seven spatially local regions. The dnatos
of motion vector magnitude within all the blocks are emphbyes
the video features [11]. We refer to this representatiorhasver-
lapping spatial pyramid histograms. Similar representation was
successfully used for kernel estimation in general imagaecat-
egorization [12], which shares the property that the visues are
highly variant and sometimes localized.

An example of the proposed visual representation for a $teg’
event is illustrated in Fig. 2.

3. Multi-M odality Fusion for AED

We propose using multi-stream HMMs for synchronized awdsoral
event modeling, and coupled hidden Markov models [8] for enor
flexible modeling allowing asynchrony.

Different fusion methods have been explored for the audi an
visual modalities. First, feature fusion techniques idelylain fea-
ture concatenation [13], feature weighting [14] and a datdata
mapping of either one modality into the space of another @h bo
modalities into a new common space [15]. Second, decisisioffu
provides a mechanism for capturing reliabilities of eacldadity by
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Figure 3: A two stream hidden Markov model encoded as a dymami
Bayesian network

classifier combination. Third, intermediate fusion pearfsrmulti-
modal integration at a level between decision fusion antufegu-
sion. Intermediate integration strategies have been showntper-
form the early and late integration strategies in varioysliagtions
[16].

Multi-stream HMMs and coupled HMMs are used as two inter-
mediate fusion methods . The synchrony and asynchrony betwe
the modalities are modeled by the hidden state transitidhseugh
such models have been successfully applied in audio-vipegch
recognition [8], they have not been applied in improvinggyahnon-
speech acoustic event detection.

3.1. Multi-stream Hidden Markov Models

In a two-stream HMM, the state-dependent emission of the
audiovisual observatior,,,: is governed by P(0qv,:|S:) =
P(0a,t]S¢) 58t P(0y,¢|S¢) 5S¢t for all HMM states Sy, where
As,s;,+ denotes the nonnegative stream weights, which models the
stream reliabilities as a function of modality HMM state S; and
timet.

Multistream HMMs assume the state synchrony between audio
cues and visual cues. Because of the simple topology, Itsively
easy to obtain robust estimation of the parameters.

Fig. 3illustrates a two-stream HMM, where the transitiorap
abilities are referred to a®(S;|S;—1). State observation distribu-
tions are referred to a®(04v,:|St). S: is a multinomial random
variable representing the state of the CHMM system variabteane
t. Note, both the streams progress in a synchronous fashion.

3.2. Coupled Hidden Markov Models

The assumption of audio-visual state synchrony is not adveafis-
fied. For example, in an object dropping event, the acoustinc

is not always in existence when the object is in motion, buervh
the object stops dropping. Similarly, a door slamming soocclrs

in the end of the door movement. Though the asynchrony betwee
modalities can be alleviated by a larger local time windowefach
frame, a more flexible statistical model allowing asynclgrbatween
the hidden state sequences for the two modalities is desired

In this work, we propose using coupled HMM to model modal-
ity asynchrony in audio-visual events. We select the ttarsionly
Coupled Hidden Markov Model (CHMM), in which different mdea
ities are coupled through state transitions. The CHMM isabép
of capturing both the synchronous and asynchronous intelahde-
pendencies between two information channels. CHMM provédset
an effective method in audio-visual speech recognition [8]

CHMM can be viewed as parallel rolled-out HMM chains cou-
pled through cross-time and cross-chain conditional statesition
probabilities. An n-chain CHMM has hidden nodes in a time slice,
each connected to itself and its nearest neighbors in thetimes
slice. In our task, we use a 2-chain CHMM for audio-visual eled
ing, as shown in Fig. 4, where circular nodes in each slicetteae
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Figure 4: Audio-visual fusion using CHMM
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Figure 5: Converting a CHMM to an equivalent HMM by state<spa
mapping and parameter tying

multinomial state variables, square nodes in each slioesept the
observation variable, and the directed links represenditional de-
pendence between nodes.

The state of the CHMM system in each time slice is jointly de-
termined by the two multinomial state variable, each depgndn
its two parent states in the previous time slice. The corditjom per-
mits unsynchronized progression of the two chains whilg@kegthe
Markov property that a future state variable is conditignaidepen-
dent of the past given the present state variables. NoteCtHMM
can be seen as a generalized multi-stream HMM.

Following a transformation strategy based on state-spagg m
ping and parameter tying [8], we can convert a CHMM to an equiv
alent HMM, whose hidden states each corresponds to the aftate
the system described by the CHMM. The number of hidden states
the equivalent HMM equals the number of possible combinatiaf
states from both modalities. Fig. 5 illustrates a 2-chainVBHwith
Q. = 3andQ, = 2, whereQ, andQ, are the numbers of audio
and visual states respectively. For example, state 3 inghivaent
HMM corresponds to the CHMM state defined by audio state- 2
and visual statg, = 1. The modality-dependent observation proba-
bilities corresponding to the same observation distrduitn the orig-
inal CHMM are tied and coded using the same tag. For exanipe, t
output densities modeling the visual stream in state 1, 3e8ied
and tagged asV”, because they correspond R{O1|q, = 2) in the
CHMM.

In this work, we use a left-to-right non-skip HMM for each of
the two modalities in the CHMM. The allowed state transisiomthe
equivalent HMM are derived from state space mapping. Fangie,
in the state diagram in Fig. 5, given stateql (= 1,q, = 1) at
present, in next time slice, can either transit tg, = 2 or stay in
g. = 1, andg, can either transit tq, = 2 or stay ing, = 1. Hence,
state 1 can either stay in itself or transit to CHMM stateg? &
1,q, = 2) or state 3¢, = 2,q, = 1) ,or state 44, = 2, g, = 2).

For robust estimation of the CHMMs, we perform the CHMM
training in two stages. In the first stage, the observatistridutions
for both modalities are initialized using simpler modelsheTini-
tial simpler models can be a two-stream audio-visual HMMiclvh
requires strict state synchrony between audio and visudhtities;
or one audio-only HMM and one video-only HMM, which impose

no explicit state correspondence between the two modalitiethe
second stage, the audio and visual observation distrilsifrom the
multi-stream HMM or two single-modality HMMs are used to eon
struct the CHMM-equivalent HMM. Additional parameter esition
iterations using the Balm-Welch algorithm are performethwiis
HMM.

4. Experiments
4.1. Dataset and Setup

We use the audio-visual dataset collected by the UniveéRiktec-
nica de Catalunya [1]. The database contains multimodaldétgs
of acoustic events (AEs) in a meeting room environment. ahget
events in this dataset include: Knock door/table (kn), Dxdam (ds),
Steps (st), Chair moving (cm), Spoon/cup jingle (cl), Paperk -
listing, warping (pw), Key jingle (kj), Keyboard typing (ktPhone
ringing/Music (pr), Applause (ap) and Cough (co). There @pe
proximately 90 instances per event class for the whole datdssix
sessions (S01-S06). Among S01-S04, we use three sessidrario
ing, and one for testing. All reported measures are averéoed
four-fold cross validation. Additional two sessions (S@R6) are
used as the development set. We use the observations frarfielda
microphone and an overhead camera.

To make the task more realistic we add different levels of<sau
sian white noise to the clean recorded audio, to illustiateperfor-
mance of the different approaches at different noise leve&cep-
tual Linear Prediction coding (PLP) coefficients are usetthasudio
features. In particular, PLP coefficients, including 12ffioients and
the0*" cepstral coefficient, are extracted from 30ms Hamming win-
dows with a temporal step of 20ms. The delta and acceleration
efficients are computed and appended to the static PLP deafic
Cepstral mean normalization is performed on each recorelesia.

The visual features are obtained according to Section 2)in
bins for each histogram of optical flow magnitude. The coewat
tion of histograms from all blocks is projected into 40 dirgiems
using Principle Component Analysis, retaining 98% of thalten-
ergy. These visual features are interpolated to match thresZtame
period of the audio features.

In this work, each multistream HMM or CHMM has 4 audio and
4 video states with stream weights tuned on the developmeat d
using coarse-to-fine grid search. For simplicity, the streeeights
are time-invariant. The different methods are evaluatétgudassi-
fication accuracy and detection accuracy AED-ACC [1, 4]. Adfe
audio-only HMMs are used for comparison, given their effertess
[17].

4.2, CHMM Training Schemes

Initialization of the observation distributions in the CHMis im-
portant, because of the high degree of freedom in the CHMMlI+op
ogy. As discussed in Section 3, we explore two differeniahita-
tion schemes for CHMM, referred to &HMM,, and CHMM,
in which the observation distributions of the CHMMs are iadit
ized using multistream HMMs, or pairs of audio-only and admly
HMMs respectively.

The CHMMs parameters (the Gaussian means, covariance, mix-
tures weights, and the state transition probabilities)fardaer esti-
mated with a few iterations using the Balm-Welch algorithkve
found in our pilot experiments that allowing estimation dif the
CHMM parameters above is better than estimating any sulbget-o
rameters above and using the initialized parameters faette

4.3. Results

Table 1 and Table 2 present the classification and dete@#rits us-
ing the proposed visual representation coupled with diffeaudio-
visual modeling methods as well as the audio-only and vialdg-
models. In both detection and classification, the multstredMM

system consistently improves from the audio-only systenvelsas



the video-only system for all SNR conditions studied in thisrk. Autio-only HMM ' Mulistream
Further, CHMM-based systems (CHMMnd CHMM,,) outperform :
the multistream HMM system in event detection for all SNRdien o
tions. g

We also performed event detection using original clean@udi
the same condition studied in [1]. The proposed visual festand z
audio-visual modeling perform favorably, compared to thetlsys-
tems reported in [1]. These reference systems [1] levergmgrson o
tracker, a laptop detector, a face detector, a door actstimator 8
to capture the visual cues and optional localization infation ob-
tained from multiple microphones (denoted as “AV” and “Avid
Table 2 respectively).

Fig. 6 shows the confusion matrix of event classification us- #
ing the audio-only HMM, audio-visual multistream HMM, CHMM :
and CHMM,; systems. Using the proposed generalizable visual fea-
tures with the multistream HMM or the CHMM boosts classificat
accuracy for most event classes compared to the audio-psigra. i
The more flexible CHMM-based systems (CHMMnd CHMM,,)
further improve classification of some events, such as krockn
(door, table) and co: cough from the multistream HMM system.

To verify that the audio-visual state asynchrony allowedhsy

CHMM systems is utilized, we examine the state sequencesifoy Figure 6: Confusion Matrix for Event Classification (avezdgver
the Viterbi decoding. The percentages of observation feact@med SNRs 10dB, 20dB, 30dB) based on audio-only HMM, audio-Visua
by the CHMM states defined by an asynchronous pair of audio and ., jjtistream HMM, CHMM,, and CHMM, respectively.

video states are 65.944% for CHMMand 65.842% for CHMM,

respectively. Note that the multistream HMM system assialhs

frames to states that are defined by synchronous audio anodl vis
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