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Abstract—Complex data can be grouped and interpreted in many different ways. Most existing clustering algorithms, however, only find
one clustering solution, and provide little guidance to data analysts who may not be satisfied with that single clustering and may wish to
explore alternatives. We introduce a novel approach that provides several clustering solutions to the user for the purposes of exploratory
data analysis. Our approach additionally captures the notion that alternative clusterings may reside in different subspaces (or views).
We present an algorithm that simultaneously finds these subspaces and the corresponding clusterings. The algorithm is based on an
optimization procedure that incorporates terms for cluster quality and novelty relative to previously discovered clustering solutions. We
present a range of experiments that compare our approach to alternatives and explore the connections between simultaneous and

iterative modes of discovery of multiple clusterings.

Index Terms—Kernel methods, non-redundant clustering, alternative clustering, multiple clustering, dimensionality reduction

1 INTRODUCTION

The goal of exploratory data analysis is to find structure
and interesting patterns in data, and to summarize,
organize, and/or extract information from data. Many
of these goals can be formulated as clustering problems,
but existing clustering methods are often not sufficiently
flexible to cover the range of desired data analytic goals.
In particular, most clustering algorithms find only a
single partitioning of the data [1], but data items can
often be grouped together in several different ways for
different purposes. For example, face images can be
grouped based on their pose or on identity. Given the
same medical data, what is interesting to physicians
might be different from what is interesting to insurance
companies.

Clustering algorithms are generally based on some no-
tion of cluster quality and/or some notion of similarity
among data items. Each such criterion has a particular
bias, and given that “Different classifications [cluster-
ings] are right for different purposes, so we cannot say
any one classification is best” [2], users of clustering are
often compelled to try a variety of different algorithms.
It would be desirable, however, to capture this goal of
diversity formally, and optimize directly for diversity
within an algorithmic framework; this may provide a
more systematic exploration of the range of alternatives.

Our approach is built on spectral clustering, which,
relative to traditional clustering methods, has two ma-
jor advantages in the multiple clustering setting. First,
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spectral clustering captures a flexible notion of cluster
shape which is not restricted to convex or homogeneous
clusters, a particularly useful feature when attempting to
discover multiple clusterings. Second, as we show here,
the standard spectral clustering objective function turns
out to be closely related to the Hilbert-Schmidt inde-
pendence criterion [3], a general measure of nonlinear
dependence. This same criterion can be used to capture
a notion of alternativeness or non-redundancy of clus-
terings. This motivates our general optimization-based
framework that combines cluster quality and diversity
criteria into a single optimization functional.

1.1 Related Work

Although the literature on clustering is enormous, there
has been relatively little attention paid to the problem
of finding multiple non-redundant clusterings. There are
two general ways to find alternative clustering solutions:
one is to find multiple solutions simultaneously and the
other is to find one alternative solution given known
clusterings iteratively.

An early paper on alternative clustering was by
Gondek and Hofmann [4], who suggest finding an
alternative clustering via conditional information bot-
tleneck. This approach is dependent on distributional
assumptions. Bae and Bailey [5] utilize “cannot-link
constraints” imposed on data points belonging to the
same group (as defined by a previous clustering) and
agglomerative clustering in order to find an alternative
clustering. Both the information bottleneck approach
and the agglomerative clustering approach are designed
to find a single alternative solution given an existing
one. In general, however, there may be more than two
alternative clustering interpretations. Cui, Fern and Dy
[6], [7] developed an iterative approach that was not
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dependent on a specific clustering algorithm and that
can find multiple alternative views by clustering in the
subspace orthogonal to the clustering solutions found in
previous iterations. They directly address the problem
of finding several (more than two) alternative clustering
solutions by iteratively finding one alternative solution
given the previously found clustering solutions. David-
son and Qi [8] also developed an approach that was
not dependent on a specific clustering algorithm. They
represent the existing clustering as a matrix of distances
and obtain an alternative distance metric by retaining
the left and right singular vectors and taking the inverse
of the singular values of the original distance matrix.
In [9], they suggest preserving properties of the original
data while searching for alternativeness by minimizing
the Kullback-Leibler divergence between the original
data and the transformed data subject to the constraint
that the sum-of-squared error between samples in the
projected space with the means of the existing clusters is
smaller than a pre-specified threshold. Dang and Bailey
[10] finds an alternative clustering that preserves data
characteristics by maximizing the mutual information
between the new clusters and data at the same time as
minimizing the alternative from a reference clustering.
Simultaneous approaches, on the other hand, discover
multiple alternative solutions jointly. Caruana et al. [11]
generate a diverse set of clustering solutions by ei-
ther random initialization or random feature weighting.
These solutions are then “meta-clustered” using an ag-
glomerative clustering based on Rand index for measur-
ing similarity between pairwise clustering solutions. Jain
et al. [12] find two disparate clusterings simultaneously
by minimizing a sum-of-squared objective for the two
clustering solutions while at the same time minimizing
the correlation between these two clusterings. CAMI [13]
simultaneously discovers two disparate clusterings by
optimizing for cluster quality, quantifying these crite-
ria by maximizing the likelihood of Gaussian mixture
models and minimizing the mutual information between
them. The method [12] is based on K-means and CAMI
[13] is based on Gaussian mixtures; both are thus lim-
ited to convex clusters. Dasgupta and Ng [14] obtain
multiple clustering views by using each eigenvector in
standard spectral clustering for each view. Poon et al.
[15] formulated a probabilistic latent pouch tree model
for selecting features in each clustering solution. Guan et
al. [16], Mansinghka et al. [17], and Niu et al. [18] formu-
lated nonparametric Bayesian models to learn multiple
clusterings and features in each clustering solution.
Another line of work which is related yet different
from the general direction of the methods in the above
two paragraphs is that of subspace clustering [19], [20].
The goal of subspace clustering is to discover clusters
hidden in high-dimensional spaces, where each cluster
is embedded in its own subspace. It is similar to our
work in that the broader definition of subspace clus-
tering allows samples to belong to multiple clusters
and is also concerned about discovering quality clusters

that are non-redundant vis-a-vis the other clusters [21],
[22]. However, the main distinction between subspace
clustering and this paper is that, here each clustering
view consists of multiple clusters that partition the data,
and an alternative view means another partitioning of
the data. Thus, cluster quality and alternativeness, in
our case, is defined in terms of data partitionings; and
the features or low-dimensional subspace in each view
describes the subspace which defines the notion of sim-
ilarity on which the samples are partitioned. Subspace
clustering, on the other hand, defines cluster quality
based on each individual cluster embedded in its own
subspace.

1.2 Contributions of This Work

Learning from all these initial attempts to address this
new clustering paradigm, we advance the field in the
following way. We address finding multiple alternative
views, as in Cui, Fern and Dy [6], [7]. We utilize an
independence criterion to evaluate alternativeness/non-
redundant views. Our criterion can measure nonlinear
dependencies, making it more flexible than the orthog-
onalization approach [6] and the sum-squared-distance
approach [9]; both of these approaches capture only
linear dependencies. Moreover, we endow our method
with an adjustable parameter to trade off the qual-
ity of clustering and alternativeness. This is similar in
spirit to previous work [9], [10], [13], but differs in
that our approach does not need to estimate probability
distributions or make restrictive assumptions regarding
these distributions. We achieve this by using a kernel
dependence measure, the Hilbert-Schmidt Independence
Criterion (HSIC) [3], to quantify alternativeness between
clustering solutions. Moreover, we both find an alterna-
tive clustering and the lower-dimensional subspace in
which this clustering resides in a single optimization
formulation; in contrast, previous work [6], [9] finds
the transformed space first, then applies a clustering
algorithm. In addition, while [5], [10], [13] find an al-
ternative clustering in the original space; our approach
finds alternative clusterings in an alternative projected
(potentially lower-dimensional) spaces. An additional
benefit of our formulation is that in the special case of
using a linear kernel, our approach can be solved via an
eigen-decomposition. Furthermore, if we do not need to
obtain the low-dimensional subspace explicitly but only
need to learn the cluster embeddings, our method also
reduces to an eigenvalue problem.

A preliminary version of the work reported here
first appeared in [23]. That work differs from the cur-
rent paper in that it focuses on discovering the differ-
ent clusterings simultaneously; this manuscript intro-
duces approaches for discovering alternative clusterings
iteratively. Moreover, we provide connections and com-
parisons between these alternative modes of discovery
(simultaneous and iterative). Finally, we identify two
special cases of particular interest which can be solved
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via eigen-decomposition and present empirical compar-
isons between these special cases and the general case.

1.3 Organization of This Paper

In Section 2, we present our general formulation for dis-
covering alternative clusterings. In Section 3, we discuss
the special case of linear kernels and show that this
leads to an eigenvalue problem. In Section 4, we present
another special case in which only a cluster embedding
is desired and show that this also leads to an eigenvalue
problem. In Section 5, we explore experimentally the
various settings for alternative clustering discovery: (1)
simultaneous vs. iterative discovery, (2) dimensionality
reduction vs. none (original space), and (3) sufficient
dimensionality reduced subspace vs. embedding view.
Then, in Section 7 we present an empirical study of our
iterative approach compared to other methods on syn-
thetic and real data. Finally, we report our conclusions
in Section 8.

2 ITERATIVE DISCOVERY OF ALTERNATIVE
CLUSTERINGS

Given a current partitioning or clustering solution F,
the goal is to find an alternative partitioning P;. A par-
titioning P, here denotes a set of clusters {C,...,C.}.
The number of possible partitionings of a dataset of size
n is very large (it is given by the Bell number), but not
all of these groupings are meaningful. We would like
to find an alternative partitioning P; that is of good
quality and that is novel (meaning, different or non-
redundant) when compared to the current partitioning
Py so as to provide a possibly new discovery to the
analyst. When additional alternative clusterings are de-
sired, the process continues—searching for an alternative
partitioning P; given all the previous partitionings {P; },
where j =t —1,...,0, up to ¢ equal to the number of
desired alternative solutions, v.

2.1 Formulation
Let our n data samples be denoted {z1,...,z,}, with
each x; a column vector in R?, and X = [z1,...,2,]|T €

R"*4 represent our data matrix, where (-)7 is the trans-
pose of a matrix. Given an existing clustering solution,
Py, let us define a cluster labeling matrix Yy of size
n by ¢, where n is the number of instances and c is
the number of clusters. If z; belongs to cluster j in
Py, yi; = 1, otherwise it is 0. Similarly, let us define a
cluster labeling matrix U for the alternative partitioning
P,. At iteration t, we consider {P;} (j = t —1,...,0)
as the previously found partitionings. At this point, we
now have more than one existing clustering solutions.
We represent this multiple existing clusterings by aug-
menting all the existing cluster labeling matrices in a
single matrix ¥ = [Yp,...,Y;_1] which is now of size
n by Z;;(l) ¢; (Y; is the cluster labeling matrix and c;
is the number of clusters per iteration). Thus, in each

iteration, we are given a matrix Y (representing all the
previously presented solutions) and our goal is to find
an alternative clustering solution U that is both novel

and of good quality.

2.1.1 Cluster Quality and Spectral Clustering

There are many ways to define the quality of clusters
resulting in a variety of clustering algorithms in the
literature [1], [24]. In this paper, we focus on spectral
clustering because it is a flexible clustering algorithm
that is applicable to different types of data and makes
relatively weak assumptions on cluster shapes (clusters
need not be convex or homogeneous). Spectral clustering
can be presented from different points of view [25]; here,
we focus on the graph partitioning viewpoint. We are
given a set of n data samples, {z1,...,z,}, with each
x; a column vector in R?, and we are given a set of
similarities, {k;;}, between all pairs z; and z;, where
k;j > 0.Let G = {V, E} be a graph, with V' = {v1,...,v,}
the set of vertices and E the set of edges. Each vertex
v; in this graph represents a data sample z;, with the
similarities k;; treated as edge weights. When there is
no edge between v; and wv;, k;; = 0. Let us repre-
sent the similarity matrix as a matrix K with elements
k;j. This matrix is generally obtained from a kernel
function, examples of which are the Gaussian kernel
(k(xi,2;) = exp(— ||z; — z;]|* /202)) and the polynomial
kernel (k(z;,x;) = (x; - x; + c)P).

The goal of spectral clustering is to partition the
data {zi,...,z,} into k disjoint groups or partitions,
Pi,..., P, such that the similarity of the samples
between groups is low, and the similarity of the sam-
ples within groups is high. There are several objec-
tive functions that capture this desideratum; in this
paper we focus on the normalized cut objective. The
k-way normalized cut, NCut(G), is defined as follows:
NCut(Py,...,Py) = Zle %ﬁ\)ﬂ), where the cut be-
tween sets A, B C V, cut(A, B), is defined as cut(A, B) =
ZvieA,ujeB k;ij, the degree, d;, of a vertex, v; € V, is
defined as d; = Z?Zl ki;, the volume of set A C V,
vol(A), is defined as vol(A) = .. 4d;, and V\ A de-
notes the complement of A. In this objective function,
note that cut(P.,V\P.) measures the between-cluster
similarity and the within-cluster similarity is captured
by the normalizing term wvol(P.). The next step is to
rewrite NCut(G) using an indicator matrix U of cluster
membership of size n by k£ and to note that NCut(G)
takes the form of a Rayleigh coefficient in U. Relaxing
the indicator matrix to allow its entries to take on any
real value, we obtain a generalized eigenvalue problem.
That is, the problem reduces to the problem:

maxyepnxr  tr(UTD™Y2KD~1/20) 1

st. UTU =1. @)

where tr() stands for trace of a matrix. The solution is to
set U equal to the k eigenvectors corresponding to the
largest k eigenvalues of the matrix D~'/2K D~'/2. This
yields the spectral embedding. Based on this embedding,
the discrete partitioning of the data is obtained from a
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“rounding” step. One specific rounding algorithm, due
to Ng et al. [26], is based on renormalizing each row of
U to have unit length and then applying K-means to the
rows of the normalized matrix. We then assign each z;
to the cluster that the row u; is assigned to.

2.1.2 Novelty and HSIC

To ensure that the alternative clustering is novel com-
pared to existing clustering solutions, we minimize the
dependence between the transformed data XW € R"*¢
in the alternative view and the existing clustering so-
lutions Y. W is a d by ¢ transformation matrix which
transforms the data X with dimension d to a lower di-
mensional space with dimension ¢. The work [6] applies
orthogonal projection to find an alternative view; how-
ever, orthogonal projection only captures linear depen-
dencies; similarly the work [9] use sum-of-squared dis-
tance to measure dependence, which also only captures
linear dependence. Gondek and Hofmann [4] utilize a
conditional information bottleneck to capture nonlinear
dependence, but this requires estimating the joint prob-
ability distribution. In this paper, we measure depen-
dence in terms of a kernel dependence measure, the
Hilbert-Schmidt Independence Criterion (HSIC) [3]. This
criterion measures dependence by mapping variables
into a reproducing kernel Hilbert space (RKHS) such
that correlations measured in that space correspond to
high-order joint moments between the original distribu-
tions [27]. This approach is able to estimate dependence
between variables without explicitly estimating the joint
distribution of the random variables and without having
to apply discretization to continuous variables. We now
describe this method in some detail.

Consider X and Y to be two domains with samples
(z,y) that are drawn from these two domains. Let us
define a mapping ¢(x) from =z € X to kernel space F,
such that the inner product between vectors in that space
is given by a kernel function ki(z,2’) = (¢(z), ¢(2')).
Let G be a second kernel space on } with kernel func-
tion kz(-, ) and mapping ¢(y). A linear cross-covariance
operator C;, : G — F between these feature maps
is defined as: Cu, = Boy(6(2) — 1) ® (p(y) — ),
where ® is the tensor product. The Hilbert-Schmidt
norm |- HHS of this cross-covariance operator defines
the HSIC measure of dependence between two random
variables, x and y, as follows:

HSIC(p2y, F.9) = [ICuylag
= Eroyylki(z,2)ka(y,y)]+
Eg o [k1(z, 2")| By o [ka(y, )]
2By y[Ep [k (2, 2)| By [F2(y, )]
Given n observations Z := {(x1,¥y1), ..., (Tn, yn)}, we can
estimate the HSIC by:

HSIC(Z, F,G) = (n — 1) *tr(K 1 HK2H), ()
where K;, Ky € R**" are the Gram matrices K ;; =
k‘l(l‘i,l‘j), Kg,ij = ]{ig(yi,yj), and Hij = (Sij — ’/l_l centers
the Gram matrix to have zero mean in the feature space.
To ensure that subspaces in different views provide non-
redundant information, we use HSIC to penalize for

dependence between data in these subspaces.

Figure 1 shows an illustrative example suggesting why
HSIC is better than correlation for capturing high order
dependencies between two random variables. In subfig-
ure (a), « and y are linearly correlated. In (b) and (c), two
variables are uncorrelated but dependent. In (d), they are
independent. The HSIC values are 0.53, 0.41, 0.14 and
0 respectively, whereas, the correlation coefficient values
are 0.81, 0, 0 and 0 respectively. This figure confirms that
compared to the correlation coefficient, HSIC is better in
measuring the dependence between variables because it
takes higher-order moments into account.

2.1.3 Relation between HSIC and Spectral Clustering

In this section, we show that spectral clustering can
be expressed as the HSIC between the variable z and
the embedding U as indicated in [28], [29]. Let K; =
DY2KD~'/2 be the kernel defined by z, where K
is the similarity kernel with elements k;; = k(z;,z;).
= UUT be the second kernel defined by embedding
U. For notational convenience, let us assume that K; and
K, are centered and ignore the scaling factor (n —1)72,
and use HSIC(X,U) = tr(K1 K3). Then,
HSIC(X,U) =tr(D'2KD~1/2uUT)
=tr(UTD~Y2KD~'/2U),
which is the spectral clustering objective.

2.1.4 Learning the Low-Dimensional Subspace

When we search for quality alternative clustering U,
unlike standard spectral clustering which utilizes all
the original features to compute the kernel similarity
matrix K between samples, here we compute the kernel
similarity in a reduced dimensional subspace W (W is
d by g, where ¢ < d) as follows:
kij = k(WTIi, WTSCJ').

In this paper, we refer to this subspace as a sufficient
dimensionality reduced subspace. This notion allows
us to search for alternative clustering solutions in dif-
ferent subspace views W. We incorporate learning of
the subspace in our approach to learning an alternative
clustering because we observe that in real data, different
subspaces provide different clustering interpretations.

2.1.5 Overall Objective

Given a matrix Y (representing all the previously pre-
sented solutions), we find an alternative clustering so-
lution U in subspace W that is both novel and of good
quality by optimizing the following:
maxy, HSIC(XW,U) — X HSIC(XW,Y)
st. UTU=1 ©)]
WTw =1I.

Equivalently, we can express the first term using the
spectral clustering criterion as follows:

maxpw tr(UTD~Y2KD~Y2U) — AHSIC(XW,Y)
st. UTU=1
kij = k(WTZCi, WT{IIj)
WIW =1,

(4)
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Fig. 1. lllustrative example comparing HSIC with correlation coefficient, p: (a) x and y are linearly correlated with some
noise (HSIC = 0.53, p = 0.81), (b) uncorrelated but dependent (HSIC = 0.41, p = 0), (c) uncorrelated but dependent

(HSIC = 0.14, p = 0), (d) independent (HSIC = 0, p = 0).

where [ is the identity matrix.

Maximizing (3) and equivalently (4) is achieved when
the first term is large (large dependence between XW
and clustering U which implies a good clustering) and
the second term is small (small dependence between
XW and existing clusterings ¥ which implies not much
similarity to Y'). The first term measures cluster quality
while the second term measures novelty. Note that the
kernel similarity matrix K is defined in subspace W. A
is a regularization parameter that controls the trade-off
between these two criteria.

2.2 Optimization

We optimize the objective function 4 by alternately opti-
mizing the relaxed clustering indicator matrix U and the
transformation matrix W in two steps as follows:

Assuming W fixed, we optimize for U. With projec-
tion operators W fixed, we can calculate the similarity
and degree matrices K and D. Similar to spectral clus-
tering, here we relax the indicator matrix U to take on
real values. The problem now becomes a continuous op-
timization problem resulting in an eigenvalue problem.
The solution for U is equal to the first k eigenvectors
(corresponding to the largest k eigenvalues) of the matrix
D~Y2K D=1/2 where k is the number of clusters in the
alternative clustering solution. Note that unlike applying
spectral clustering in the projected space W'z, this
optimization step stops here; it retains U as a real-valued
matrix and does not need to explicitly assign the cluster
membership to the samples.

Assuming U fixed, we optimize for V. Interest-
ingly, when U is fixed, the objective can be written in

the following form:
ul'u; _
Z%‘jkiy‘ = Z( —L — \gij)kij, 5)
ij ij did;
optimized under the constraint WTW = I, where Usj
are the elements of U, w; = [u;1...u;]7 (the soft cluster
assignment for sample i), d;; are the diagonal elements
of D, d; = \/%, and k;; = k(WTxz;, WTz;). The first term
in 4, tr(UTD'Y2KD~Y?2U) = tr(D'2UUT D~/?K)
using the cyclic property of the trace function. The

elements of (D~'/2UUTD~1/?),; = 1:5;37 Let A be an
arbitrary matrix, tr(AK) = >, a;jk;;. Since our kernel

matrix K is symmetric, the first term can be expressed as

Do y i;j k;j. Let Ky be the kernel for the label matrix ¥’
(in our experiments, we used a linear kernel). The second
term can be expressed as tr(Ky HKH) =tr(HKy HK) =
> ; Yij k;j, where g;; are the elements of H Ky H. Thus,
we arrive at formulation 5. The objective becomes a
linear combination of kernel functions with coefficients
7i;- Basically, ;; is the normalized embedding of this
alternative clustering minus the labeling in other cluster-
ing views. The labeling kernel in other views is used to
penalize the dependence on previous clustering views.

With U fixed, optimizing the objective with respect
to W is a nonlinear optimization problem with or-
thonormality constraints. We utilize a dimension growth
algorithm, introduced in [29], to optimize for W. First,
we set the dimensionality of the subspace to be one,
and we let w; denote a vector spanning that subspace.
We use gradient ascent to optimize w;, where w; is
initialized by random projection and normalized to have
unit norm. We then increase the dimensionality by one
and optimize for wy. wy is initialized by random projec-
tion, then projected to the space orthogonal to w;, and
finally normalized to have unit norm. We decompose the
gradient of wy into two parts,

Vf= vfproj +Vfi, (6)
where Vf,,,; is the projection of Vf onto the space
spanned by w; and wq, and Vf, is the component
orthogonal to V fpr0; (V fporoj L Vf1). Vfi is normalized
to have norm one. We update w; according to the
following equation:

W2 new = V 1- a2w2,old + ava_' (7)
The step size o > 0 is set by line search satisfying the
two Wolfe conditions [30]:
D(a) > P(0) + a1ad’(0)
/ !/ (8)
12" ()] < ax®'(0),
where ®(-) is a univariate function:
Dla) = 3, vik(V1 = aPwy g + aV f1) xy,
(\/ 1- a2w2,old + ava_)ij)v
and where 0 < a; < 1 and 0 < a2 < 1. We repeat
Equation 7 until convergence. Because w; and wy are
initially set to be orthonormal and ws is updated ac-
cording to the above equation, wy and w; will remain
orthonormal. w; is optimized in the same way; it is
updated orthogonal to wi,ws,...,w;—1. Once we have
the desired number of dimensions ¢, we repeat Equation
7 for each w;, j =1,..., ¢ until convergence.
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We repeat these two steps iteratively until conver-
gence. After convergence, we obtain the discrete clus-
tering by using K-means in the embedding space U.
Algorithm 1 provides a summary of our approach. We
call this general approach kernel dimension alternative

clustering (KDAC).

2.2.1 Example Kernels

To make the steps concrete, we provide details for the
examples of Gaussian and polynomial kernels.
For the Gaussian kernel, we can rewrite the optimiza-

tion problem in Step 2 as follows:
Aw?jWWTAzij
maxy . Vij eXp(——L5—) )
Wt
st. W W =1,
where Az is the vector x; — x;, and Az WWT Az is
the ly-norm of x; — z; in the subspace defined by W.

This objective function can be expressed as
tr(w” Az Az, W)

m Sy 0 eSS g
st. W W =1,
or wl A wi+wl A jwa+
ey 5yl )
st. W W =1,

where wj is the Ith column of W, and A;; is the d x d pos-
itive semidefinite matrix Agcw Az . In this step, we as-
sume v;; is fixed. Note that w] A;; wl is a convex function.
Thus, the summation of wlTAij w; is convex. The function
exp(—y) is decreasing, so exp(—wlTA”wlgng“wﬁ“') is
a concave function. The components w; are mutually
orthogonal and have norm one. Unfortunately, due to the
orthonormality constraints on W, the optimization prob-
lem is not concave. The dimension growth algorithm
aims to solve this problem. We rewrite the objective as:

T T
wi Ajiwy wy Ajziwo

max Z%J exp(— 12 “— ) exp(— 22 2—=).... (12)

With w; ﬁxed we can absorb the term with w; into the

coefficient. Taking the derivative with respect to wq, we

get:

T
Wy AU Wo

952 JAijwa,

1
i
where g(wq) is eXp(_w]T;%wl)
For the polynomial kernel with degree p, we can

rewrite the objective as follows:

maxy 3, Vi (Wa) TWha; + 1)P
s.t. 7ZW =1 (14)
This is equivalent to the following:
maxy  »..; Vij(wi Bijwi + ...+ w] Bjjw, +1)P (15)
s.t. 7ZW =1,

where w; is the lth column of W, and B;; is the d x d
matrix z;z]. In this step, we assume 7;; is fixed. We
then apply the dimension growth algorithm to solve
this problem. With w; fixed, we can absorb the term
with waijwl into the constant in the polynomial kernel.
Taking the derivative with respect to wq, we get:
> vid(wy Bijws + g(wy) + 1P (Byj + B wa,  (16)
ij
where g(w;) is w{ B;jws.

Algorithm 1 Kernel Dimension Alternative Clustering
(KDAC)

Input: Data X, existing labeling/s Y, reduced dimen-
sion ¢, cluster number ¢ for non-redundant clustering.
Initialize: W = I.

Step 1: Project data on subspaces W, calculate the
kernel similarity matrix K and degree matrix D in
each subspace, calculate the top ¢ eigenvectors of
D=Y2K D=2 to form matrix U.

Step 2: Given U, update W according to the dimension
growth algorithm.

REPEAT steps 1 and 2 until convergence.

K-means Step: Form n samples y; € R° from rows of
U for each view. Cluster the points y;, i = 1,...,n,
using K-means into c¢ partitions, P, ..., P,.

Output: Alternative clustering and transformation ma-
trix W.

2.2.2 Discussion of Convergence

The dimension growth algorithm will converge to a local
optimum. The algorithm is based on Equation 7, with
a > 0 satisfying the two Wolfe conditions. We have
<Vfla vf(w)> = <vavvfl+vfproj> = <Vfla vfl> >0,
thus Vf, is an ascent direction (i.e., it gives f(wpeyw) >
f(weoiq)). The algorithm will generate a sequence of w
with f(wy) > f(wp—1) > f(wn—2).... The objective func-
tion is upper bounded in both steps. In step 1, the objec-
tive is bounded because the eigenvalues of a normalized
similarity matrix are bounded. In step 2, if each element
in the kernel similarity matrix is bounded, the objective
is bounded. For the Gaussian kernel, exp(— AZ“’) < 1.
For the polynomial kernel, using the Cauchy-Schwartz
inequality, (zIWW7z; + 1)? < (|2ZTWWTz;| +1)P <
(W |[WTz;| + 1)P < (|ail|lzj] + 1)P. This kernel is
then bounded for finite p if each original input z; is
finite. Assuming these conditions hold, the algorithm
will converge to a local optimum.

2.2.3 Implementation Details

Our approach is dependent on initialization. Our sug-
gested initialization procedure is to start by setting the
kernel similarity based on all the features W) = I. We
then calculate the alternative embedding U using all of
the features.

Calculating the kernel similarity matrix K and the
eigen-decomposition of K can be time consuming. Sup-
pose we have n instances, the complexity of calculating
K itself is O(n?) and the eigen-decomposition of K has
complexity O(n?). Since the eigenvalues of the kernel
similarity matrix drops very fast, we can find low-
rank approximations of the kernel similarity matrix with
rank s (s << n). Here, we use incomplete Cholesky
decomposition [27] giving us an approximate similarity
matrix K. The complexity of calculating this matrix is
O(ns?), where n is the number of data points, s is the
size of the Cholesky factor G, where K = GGT. We set
s such that the approximate error is less than ¢ = 107,
Thus, the complexities of the eigen-decomposition and
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Algorithm 2 Alternative Clustering with Linear Kernels
(KDAClinea'r‘)

Algorithm 3 Alternative
(KDACembedding)

Clustering Embedding

Input: Data X, existing cluster labeling/s Y, reduced
dimension ¢, and number of clusters c.

Solve for W: Set W equal to the ¢ eigenvectors
corresponding to the first ¢ eigenvalues of the matrix
XTX - AXTYYTX.

K-means Step: Cluster the samples in the transformed
data, U = XW, by K-means.

Output: Alternative clustering solution and transfor-
mation matrix W.

derivative computations are now O(ns?) and O(ns). The
complexity of the overall algorithm is O((ns? + nsrd)t),
where d is the reduced dimensionality, = is the number
of steps in the gradient ascent in Step 2, and ¢ is the
number of overall iterations.

3 EIGEN-DECOMPOSITION SOLUTION WITH
LINEAR KERNELS

For the special case of linear kernels, the approach leads
to an eigenvalue problem that provides us with a global
solution. With linear kernels, the objective of spectral
clustering is equivalent to the PCA objective if we ignore
the normalizing degree matrix. In the linear case, the
spectral embedding U is a linear transformation of data
U = XW. Note that in [31], it has been shown that PCA
is the continuous solution to the K-means algorithm.
Setting the kernel similarity matrix to K = XX” and
assuming X is zero-centered, the spectral objective term
for cluster quality becomes
tr(UTKU) = tr(WTXTXXTXW)
= tw(WTs2w),
where ¥ is the covariance matrix of the data. With a
linear kernel, the empirical estimate for HSIC between
XW and Y becomes
HSIC(XW,Y) = tr(K:1K>) = tr(XWWTXTYYyT)
= tr(WTXTYYTXW),
where K; and K, are the Gram matrices for the data
and labeling respectively. The overall objective is
maxy  tr(WTS2W) — Mr(WTXTYYTXW)

st. WIw =1. (17)
The solution for W is the first ¢ eigenvectors of matrix
$2 = AXTYYTX. We then cluster the transformed data
U = XW using K-means. A summary of this algo-
rithm is provided in Algorithm 2. We call this approach
KDAC ipeqr to emphasize that it is a linear variant of our
general framework.

4 EIGEN-DECOMPOSITION FORMULATION IN
FINDING AN ALTERNATIVE EMBEDDING VIEW

In the previous section, we minimize the dependence
between the transformed data and existing labeling
HSIC(WTX,Y). For alternative clustering, if we are not
interested in learning a low-dimensional subspace W,
we can simply minimize the embedding and labeling
directly using HSIC(U,Y). In the discrete partitioning

Input: Data X, existing cluster labeling/s Y, embed-
ding dimension ¢, and number of clusters c.

Solve for U: Set U equal to the ¢ eigenvectors cor-
responding to the first ¢ eigenvalues of the matrix
D7V2KD™Y2 - AvyT,

K-means Step: Cluster the samples in the embedding
space U by K-means.

Output: Alternative clustering solution.

step in spectral clustering, we apply K-means in the
embedding space U. This makes the assumption that
the cluster boundaries in U have a linear structure. We
thus find it is reasonable to use the linear kernel for
HSIC(U,Y). HSIC can be expressed as tr(UUTYYT). The
overall objective becomes
maxy tr(UTD~Y2KDV2U) — Mr(UTYYTU) 18
st. UTU =1 (18)
Note that K is the Gram matrix defined in all the original
features. This is an eigenvalue problem. The solution
for the alternative clustering embedding U is then the
first ¢ eigenvectors of the matrix D™Y/2KD~1/2 - \yyT.
We then cluster in the embedding space U. Algorithm 3
gives a summary of the procedure. We call this approach
KDACmpedding to emphasize that it is an embedding
variant of our general model.

5 COMPARATIVE ANALYSIS OF VARIOUS AL-
TERNATIVE CLUSTERING SCENARIOS

In this section, we present some experiments with syn-
thetic data that explore some of the dimensions of
variation of solutions to the multiple alternative non-
redundant clustering problem. In particular, we compare
and contrast (1) simultaneous and iterative approaches,
(2) methods that search for clusterings in the original
space versus those that search in reduced dimensionality
subspaces, and (3) methods that are based on sufficient
dimensionality reduction versus based on embedding.

5.1 Simultaneous vs. lterative Approaches

Given data, one can discover multiple clusterings either
simultaneously or iteratively. In general, the choice of
approach is driven by the exploratory analysis situation
the data analyst faces. If the data analyst has some
existing clustering solutions that are known and would
like to search for alternative solutions, then iterative
approaches are appropriate. Otherwise, either approach
is applicable.

Generally, one can convert a simultaneous approach to
an iterative one by setting the number of views to ¢ and
setting the ¢ — 1 clustering views equal to the previously
found or existing clustering solutions.

Besides mechanistic differences, these two approaches
lead to different biases in the cluster structures they dis-
cover. Because simultaneous approaches discover multi-
ple clusterings at the same time, they provide a global
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perspective to optimizing the multiple alternatives and
tend to prefer balanced clusterings. In contrast, because
iterative methods sequentially find clustering solutions
which is essentially a sequential search strategy, they
tend to greedily favor and find the more dominant clus-
ter structure first. We test this intuition by designing a
synthetic experiment as follows. We generate a synthetic
data with 200 equal variance features and two clustering
views based on two feature subsets. Each clustering view
has three Gaussian clusters with identity covariances.
We associate “strength” or “dominance” of a cluster-
ing by the number of features in this clustering view.
We generated several datasets by varying the number
of features utilized to create each clustering view. We
then compare the results of a simultaneous version of
our multiple clustering approach [23] and the iterative
algorithm (KDAC) described in this paper (Algorithm
1).

In Figure 2, we plot the normalized mutual informa-
tion (NMI) [32] between the clustering results for the
simultaneous method (magenta line with circle symbol)
and the iterative method (black line with plus symbol)
compared to the true cluster labeling in view 1 as the
number of features in view 1 is increased. Let U be
the alternative clustering and L be the known labels,

NMI(L,U) = ALY where I(L,U) is the mutual
H(L)H(U)

information between L and U, and H(L) and H(U)
are the entropies of L and U respectively. The higher
the NMI value, the more similar the clustering and
the labels are. In Figure 2, we observe that when the
underlying clustering structures are more balanced, i.e.,
when the number of features in each view are equal,
the simultaneous approach works well as reflected by
high NMI values in the middle portion of the x-axis.
On the other hand, the iterative approach works well
when the underlying cluster structures are imbalanced
(i.e., one view is more dominant than the other) as
reflected by high NMI values for the black curve in the
extreme (left or right) portions of the x-axis. In summary,
simultaneous approaches provide a global perspective
and works well when the views are balanced; whereas,
iterative approaches are greedy and finds the more dom-
inant cluster structures first. Iterative methods work well
when the underlying clustering views are imbalanced.

5.2 Importance of Dimensionality Reduction

[5], [13], [10] and [12] explore alternative clustering
solutions using all of the original features. In this paper,
we allow the clustering solutions in different alternative
views to reside in different low-dimensional subspaces.
In this subsection, we investigate when incorporating
dimensionality reduction in searching for alternative
clustering views is beneficial and when it is not.

We generate a synthetic experiment as follows. Let the
original dimension be 100. We generate two clustering
views from two feature subspaces and create multiple
such synthetic datasets by varying the overlapping levels

NMI Value of Clustering

o2 40 o0 s it
Number of Features in Clustering View 1

20 10 100 180 200

Fig. 2. The NMI value of the results: the simultaneous
method with view 1 is shown in magenta with “circle” sign;
and the iterative method with view 1 is shown in black with
“plus” sign.

between the two feature subspaces. An overlap of zero
means that the two views have disjoint features with 50
features each; overlap of 0.3 means that 30 features are
common to the clustering views.

In Figure 3, we show the NMI results of our method
with view 1 in magenta with circle symbol and the
NMI results for decorrelated K-means [12] in red with
asterisk symbol. The results confirm that dimensionality
reduction helps (and indeed, importantly, leads to an
increase in average NMI of different clusterings from
less than 0.6 to 1) when the clustering views reside in
different subspaces. When the overlap in features is high,
dimensionality reduction is not needed.

NMI Value

(] 02 04 08 08 1
Overlapping Level

Fig. 3. The NMI values with respect to view 1 for differ-
ent overlapping level of feature subspaces: our method
(KDAC) is shown in magenta with “circle” sign; and decor-
related kmeans is shown in red with “asterisk” sign.

5.3 Embedding vs. Sufficient Dimensionality Re-
duced Subspace

We can reduce the dimension by either finding
a lower dimensional embedding U (Algorithm 3,
KDACmpeading) or a sufficient lower dimensional
subspace W (Algorithm 1, KDAC). The first ap-
proach, KDAC . pedding, has the advantage of lead-
ing to an eigen-decomposition whose relaxed cluster-
ing/embedding solution is guaranteed to achieve the
global optimum. However, the embedding method is not
as robust to noise compared to finding a sufficient lower
dimensional subspace W because KDAC also learns
the kernel by learning the low-dimensional subspace in
which the cluster embedding lies.
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To demonstrate this, we generate synthetic data as
follows. We generated two clustering views from sub-
spaces, s; and s, both with underlying dimensionality
two. We then transform this underlying subspace, s =
[$1, s2], to a higher dimensional space of dimensionality
ten by random projection R and adding uncorrelated
Gaussian noise: Rs + noise. Assume the cluster labeling
in view 1 (s;) is given. We discover the second clustering
in the data. We generate several datasets as we vary
the noise level. In Figure 4, we plot the NMI results of
alternative sufficient dimensionality reduced subspace,
KDAC, with respect to view 2 (in magenta with circle
symbol), and the NMI results for alternative embed-
ding, KDACpbedding, With view 2 (in red). We observe
that as the noise level increases, the NMI value of the
embedding method decreases faster than the sufficient
dimensionality reduction method.

e

NMI Value

4
Noise Level

Fig. 4. NMI values with view 2 as the noise level is
increased: alternative sufficient dimensionality reduced
subspace, KDAC, is shown in magenta with “circle” sym-
bol; and alternative embedding, KDAC.,,,bedding iS Shown
in red with “asterisk” symbol.

6 EXPERIMENTS

In this section, we perform experiments on both syn-
thetic and real data to investigate whether our algo-
rithm gives reasonable alternative clustering solutions
with high quality. We first test our method on synthetic
datasets in Section 6.1 to get a better understanding
of the method. Then we test our method on real data
in Section 6.2. In particular, we perform experiments
on a face image, two image segmentation tasks and
text data. We compare our kernel dimension reduction
alternative clustering (KDAC) method and two varia-
tions (KDAC ineqr and KDAC.,pedding) against five re-
cently proposed algorithms for alternative clustering: the
conditional information bottleneck (CIB) approach [4],
COALA [5], orthogonal projection clustering (OP) [6],
the constrained optimization of the Kullback-Leibler di-
vergence (cons-KL) approach [9] and CAMI [13]. Finally,
in Section 6.3 we test our method’s ability to iteratively
find more than two clustering solutions on a synthetic
dataset and a machine sound dataset.

Evaluation Measures. The evaluation of clustering
results is a challenging problem. Two types of criteria
are generally used for measuring cluster quality: exter-
nal and internal criteria. External criteria measure the

agreement between the clustering result and an external
input (usually from known labels). Internal criteria, on
the other hand, measure quality based on characteristics
of the data and the partitioning result. Here, we evaluate
our results on both type of criteria. The external criteria
serve two purposes in our setting. The first purpose is
to measure the dissimilarity with the existing clustering.
The more dissimilar, the better the result is. If the dataset
has two labelings, we consider the second labeling as the
alternative labeling. The second purpose is to measure
the similarity between the alternative clustering solution
and the second labeling. The higher the similarity, the
better the result is. We utilize the normalized mutual
information (NMI) suggested in [32] and defined earlier
in Subsection 5.1 as our external measure.

Sometimes there is no external labeling available and
in this case internal criteria are used to evaluate the
clustering results by measuring cluster quality. However,
clustering algorithms generally optimize some internal
criteria; thus, internal criteria are necessarily biased to
favor those algorithms with the same objective. With this
caveat in mind, we nonetheless present these measures
to give at least some indication of cluster quality. We uti-
lize two standard measures: mean-squared-error (MSE)
and Dunn Index (DI). MSE is a widely used criterion
for clustering which measures the error of instances
to its corresponding cluster centroid. It is defined as
MSE = 3% 1 X cc, |z —u;l?, where n is the number
of instances and y; is the centroid of cluster C;. To make
this criterion suitable for data with nonlinear structure,
we also employ a kernel version of MSE, which is
defined as MSEjerner = %25:1 ercj [(é(z) — /‘j)HQ/
where p; = % >_zec, ¢(x) is the mean in kernel space,
¢(z) transforms z to some nonlinear space and n; is
the cardinality of clustering C;. Expanding the formula,
the inner product in the kernel version of MSE can be
calculated using kernel functions in the input space.
Lower MSE values mean better cluster quality. The Dunn
index is a ratio of the between-cluster separation nor-
malized by the within-cluster distance. For a clustering
C = {c1,...,cx}, where § : ¢ x ¢ = RT is a cluster-to-
cluster distance and A : ¢ — RT is a cluster diameter
measure, the Dunn index is DI(C) = %

1<i<k c)}
Higher values of this index indicate higher quality. In
all our experiments, the internal criteria are calculated
using all the original features.

6.1 Experiments on Synthetic Data

To get a better understanding of our method and test its
applicability, we first perform our approach on two syn-
thetic datasets. The first synthetic dataset has two pos-
sible clustering structures. The second synthetic dataset
has two clusters with complex shapes. In this dataset,
we investigate whether or not our approach can discover
alternative nonlinear structures. We apply the Gaussian
kernel for KDAC and KDAC,tedding On both datasets.
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(a) View 1 (b) View 2
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Fig. 5. Two alternative cluster labeling interpretations
for synthetic data 1. The color and symbol indicate the
labeling.

(a) View 1

(b) View 2

Feature 2

Feature 4
o

Feature 1 Feature 3

Fig. 6. Two alternative cluster labeling interpretations
for synthetic data 2. The color and symbol indicate the
labeling.

The first synthetic dataset is generated from six fea-
tures with 600 instances (see Figure 5). Three Gaussian
clusters are generated in features {Fi,F>} with 200,
200 and 200 instances in each cluster. The other three
Gaussian clusters are generated in features {F5, F;} with
200, 200 and 200 instances respectively. The other two
features are Gaussian noise with variance equal to 10.
We assume the first clustering view is the existing clus-
tering solution. Given this current labeling, we apply
the different methods to find the alternative clustering.
The second synthetic dataset is generated from four
dimensions with 600 instances. Two nonlinear structures
reside in the two subspaces with two and three clusters
respectively, as shown in Figure 6. The color and symbol
of points indicate cluster labelings. We use the labeling in
features {F1, F»} as the given existing clustering. Figure
7 shows the NMI results with the existing labeling (view
1) and the NMI with the alternative labeling (view 2)
for the different methods. Low NMI with the existing
(left) and high NMI with the new clustering (right) is
desired. For synthetic data 1, all the methods work well,
with KDAC and KDAC ;¢ Obtaining the best results.
For synthetic data 2, KDAC and KDACpcqding perform
much better than the other methods because of their
ability to capture nonlinear dependence.

6.2 Experiments on Real-World Data

We now test our method on four real-world datasets to
see whether our method can find meaningful alternative

I «oAc
I <oACinear

Q KDACembedding
-

[ coata
—

‘ - cons-KL
B c v

NMI with “true” labeling

NMI with existing labeling

04
02| I II
o

Data 1 Data 2

Data 1 Data 2

Fig. 7. Results on synthetic data.

clusterings. We select data that have multiple possible
partitionings. In particular, we test our method on a face
image dataset, two image segmentation datasets and a
web-page text dataset. We use a Gaussian kernel for the
image datasets, and a polynomial kernel with degree p =
3 for the text data.

6.2.1 Experiments on Face Data

The face dataset from UCI KDD repository [33] consists
of 640 face images of 20 people taken at varying poses
(straight, left, right, up), expressions (neutral, happy,
sad, angry), eyes (wearing sunglasses or not). The two
dominant clusterings of this face dataset are: the identity
of the person and their pose. Each person has 32 images
with four equally distributed poses. The image resolu-
tion is 32 x 30. In summary, this results in a dataset with
640 instances and 960 features. Each feature represents
a pixel value. Given one existing clustering solution,
we test whether our method can find the alternative
clustering. In the experiment, we use the person’s iden-
tity as the existing clustering solution and pose as the
alternative clustering.

Table 1 shows the results for all methods based on
the different evaluation measures: NMI.(|) measures
similarity with the existing clustering; NMI, (1) measures
similarity with the alternative labeling; and MSE(),
MSEg (), MSEp(]), and DI(1) are internal criteria that
measure the cluster quality of the alternative clusters.
MSE; stands for MSE with the Gaussian kernel and
MSEp with the polynomial kernel. (]) reminds us that
lower values are desired and, similarly, higher values
for the (1) are desired. We highlight the best values in
bold font. The results show that our methods, KDAC
and variations, successfully find alternative clusterings
of the face data with higher NMI, (1) values and the
best cluster internal criteria values compared to the other
five methods. We also have the lowest NMI.({) similarity
with the existing clustering.

Given face identity as the current clustering, our ap-
proach is able to find the alternative clustering based
on pose as shown in Figure 8. This figure shows the
mean of each cluster discovered and the number below
each image is the percentage of time this pose appears
in this cluster. We show results for two different values
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TABLE 1 TABLE 2
Results on the Face Data Results for the Escher Fish Data
NMI.} | NMI,T | DIf | MSE] | MSEc) NMIL.(J) | DI(1) | MSE(]) | MSEc(])
KDAC 0.037 0.482 | 0.738 | 29.32 0.535 KDAC 0.031 0.885 1431 0.783
KDAC incar 0.043 0451 | 0.720 | 29.22 0.557 KDAC incar 0.131 0.903 1423 0.793
KDAC,mbedding | 0083 0478 | 0.703 | 30.22 0.542 KDAC, mbedding 0.113 0.823 1583 0.813
CIB 0.126 0372 | 0.710 | 30.39 0.603 CIB 0.143 0.744 1534 0.801
COALA 0.073 0.424 | 0.704 | 30.38 0.589 COALA 0.176 0.738 1573 0.823
oP 0.051 0442 | 0722 | 29.36 0.576 )3 0.230 0.892 1489 0.893
cons-KL 0.082 0451 | 0.707 | 29.39 0.565 cons-KL 0.239 0.801 1467 0.795
CAMI 0.061 0439 | 0.712 | 30.19 0574 CAMI 0.241 0.751 1511 0.815

of the control parameter A. In our approach, KDAC, the
parameter )\ allows us to control the trade-off between
cluster quality and alternativeness. Cons-KL [9] also has
a parameter that controls the trade-off between quality
and alternativeness. In practice during interactive explo-
ration, the control parameter can be tuned until a desired
alternative solution is provided. In Figure 9, we compare
KDAC and cons-KL in terms of both MSE (to measure
cluster quality) and NMI with the existing clustering (to
measure novelty). The plot shows that KDAC is able to
discover better quality clusters (smaller MSE) than cons-
KL for the same level of alternativeness (NMI).

056 A=0.1 o8

(a) Mean faces of the alternative clus-
tering discovered with A = 0.1.

0.38 A=1.2 o=

(b) Mean faces of the alternative clus-
tering discovered with A = 1.2.

Fig. 8. Mean face images for each cluster discovered by
KDAC.

6.2.2 Experiments on Image Segmentation

Image data usually have a rich structure that can be
interpreted in several ways. Figures 10 and 11 show
the Escher Fish and Butterfly datasets respectively. Each
pixel is treated as a sample and there are three features

corresponding to the RGB color values of these pixels.
The goal is to segment the image into foreground and
background (two clusters). Note that there are several
ways to segment these images. There is no external
labeling available for this data. Column (b) of Figures 10
and 11 show the result of spectral clustering which we
set as our existing clustering. We compare the different
methods in terms of their NMI.(]) values with the
existing clustering and the quality of their alternative
clustering solution based on internal criterion measures,
MSE(l), MSE¢({), and DI(1).

Tables 2 and 3 show the results for all methods based
on the different evaluation measures on the fish and
butterfly data respectively. The results show that our
methods, KDAC and variations, outperform the other
methods in terms of finding an alternative clustering that
is most dissimilar with the existing clustering in terms
of NMI and the best in terms of cluster quality measures
DI, MSE and MSEg.

Figures 10 and 11 columns (c) and (d) show two
alternative clustering results based on different values of
the trade-off parameter A\. Column (c) images reveal al-
ternatives that capture a more textured pattern compared
to the existing one in column (b). These segmentation re-
sults are more novel with respect to the existing labeling
(low NMI,) but have low cluster quality (high MSE).
Column (d) images provide alternative segmentations
that capture the fish or butterflies from colors other
than the existing one in column (b). These segmentation
results are less novel with respect to the existing labeling
(high NMI,) but have high cluster quality (low MSE). In
Figure 9, we compare KDAC and cons-KL in terms of
both MSE (to measure cluster quality) and NMI with the
existing clustering (to measure novelty). The plot shows
that KDAC is able to discover better quality clusters
(smaller MSE and MSE respectively) than cons-KL for
the same level of alternativeness (NMI) for the fish and
butterfly data; but at higher NMI for the linear case
and for the fish data, cons-KL starts to have better MSE
values.

6.2.3 Experiments on WebKB Text Data

The WebKB dataset [34] is a sub-sample of 1041 html
documents from four universities: Cornell University,
University of Texas, Austin, University of Washington
and University of Wisconsin, Madison. These web pages
can be alternatively labelled as from four topics: course,
faculty, project and student. We preprocessed the data
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Fig. 9. NMI with existing labeling vs. mean-squared error. Blue solid curves are KDAC results and black dashed curves

are cons-KL results.

(a) Original
Fig. 10. Escher Fish Image Data.

(a) Original

(b) Spectral Clust.
Fig. 11. Escher Butterfly Image Data.

TABLE 3
Results for the Escher Butterfly Data
NMI.({) [ DI(f) | MSE(l) | MSEc()
KDAC 0.072 0.830 | 1383 0.723
KDACinoar 0.137 0.785 | 1375 0.751
KDAC . bedding 0.114 0.725 T411 0.841
CIB 0.223 0.754 | 1438 0.839
COALA 0276 0742 | 1484 0.823
or 0.230 0692 | 1484 0.788
cons-KL 0.279 0.739 1438 0.823
CAMI 0.208 0.776 | 1411 0.753

by removing the rare words, stop words, and words
with low variances, retaining 350 words. We use the
university information as the existing clustering and the
web page’s topic as the alternative clustering. Results
are shown in Table 4. From Table 4, we see that our
algorithm with the polynomial kernel (KDAC) obtains
the highest NMI with the alternative labeling (topics)

Syg%*f—\
¥y
$5 65

TABLE 4
Results for the WebKB Text Data
NMI.] | NML,f | DIf | MSE] | MSExJ
KDAC 0.088 0.467 | 0.633 | 792 6023
KDAC,incar 0.135 0307 | 0.603 | 85.1 6219
KDAC,nbedding | 0125 0417 | 0.607 | 823 6113
CIB 0.137 0326 | 0593 | 835 6139
COALA 0.124 0373 | 0.604 | 817 6134
or 0.142 0331 | 0.622 | 804 6192
cons-KL 0.131 0412 | 0507 | 813 6213
CAMI 0.115 0362 | 0617 | 825 6145

and lowest NMI with the existing labeling (universities).

6.2.4 Summary of Results on Real-World Data

The results on face, fish, butterfly, and WebKB data show
that the proposed approach, KDAC, consistently out-
performs the competing methods. This is because KDAC
provides a more flexible model, able to capture nonlinear
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dependence structures nonparametrically. In contrast,
OP only considers linear independence; CAMI and cons-
KL assume Gaussian mixture models; COALA utilizes
average linkage to measure similarity/dissimilarity be-
tween clusters; and although CIB applies conditional
mutual information (which can model nonlinear depen-
dencies), it needs to learn and make parametric assump-
tions regarding the joint distributions.

6.3 Multiple Alternative Clustering Solutions

In this section, we explore an application of our method
to a multiple iterative discovery process in which one
finds multiple clustering solutions by iteratively com-
puting alternative clusters given one or more previously
discovered clustering solutions. Among the competing
methods, we compare our method to orthogonal projec-
tion clustering (OP) [6], cons-KL [9] and CAMI [13].
OP allows iteratively discovering multiple solutions;
cons-KL can be adapted to multiple iterative solutions
by accumulating constraints generated by all previous
clusterings; and CAMI can be adapted by adding penalty
for the mutual information of all the previous clustering
results in its objective function.

We generate totally unsupervised multiple solutions
by first applying spectral clustering to give us the first
partitioning P, then iteratively apply our nonlinear
method to find P; given all previous clusterings, F to
P;_;. Orthogonal projection iteratively generates solu-
tions by first applying PCA followed by K-means to
get Py; then iteratively applies orthogonal projection and
PCA followed by K-means in the orthogonal space until
the desired number of views. For our linear method, we
first apply PCA followed by K-means to get P, to give
us a fair comparison with OP and to be consistent with
being a linear model. In all the methods running PCA,
we set the reduced dimensionality so as to retain at least
90% of the total variance.

We test these methods on a synthetic dataset with
three independent cluster labelings and a machine sound
dataset also with three known labelings. The synthetic
data has 100 dimensions with 1000 instances and three
independent clustering solutions. In each feature set,
(F(l..?)O)/ F(31..60) and F(Gl..lOO))/ random vectors with
three Gaussian components are generated. One of the
projects in our lab is to classify different machine sounds
inside buildings. We have collected 280 machine sounds.
We applied Fast Fourier Transformation (FFT) on this
data and selected 1000 highest points in the frequency
domain as our features. In this data, there are three kinds
of machine sounds: pump, fan, motor. Each instance of
sound can be from one machine, or a mixture of two, or
a mixture of three machine types. We set pump vs. no
pump as one clustering interpretation; fan vs. no fan as
another; and motor vs. no motor as the third labeling.

Table 5 provides the NMI results of these two methods
on each of the possible labelings for both datasets. The
higher the NMI values the better. The results show

TABLE 5
Results for the Multiple Iterative Discovery
Synthetic Machine Sound

NMIT | NMI2Z | NMI3 | NMIT | NMI2 | NMI3

KDAC | 087 | 082 0.76 0.81 0.82 0.73
KDAC; | 094 0.90 0.91 0.65 0.64 0.63
KDAC. | 085 0.81 0.77 0.62 0.72 0.75
OP 0.85 0.74 0.82 0.62 0.54 0.58
cons-KL | 0.83 0.69 0.79 0.65 0.54 0.61
CAMI 0.81 0.71 0.84 0.73 0.52 0.60

that on both datasets our algorithms are able to find
clustering solutions that match in terms of NMI with
the different labelings better than competing methods.
KDAC ipeqr did much better than KDAC on the syn-
thetic data because this data only requires linear rela-
tionships. Both KDAC;;,,cqr and orthogonal projection
clustering only take linear relationships into account.
However, KDAC;,cqr does better because it considers
both novelty and quality. Orthogonal projection only
accounts for novelty. On the machine sound data, KDAC
obtained the best match in terms of NMI because this
data has nonlinear structure and KDAC takes nonlin-
ear dependencies into account. Moreover, KDAC does
not need to estimate probability distributions or make
restrictive assumptions regarding these distributions.

7 CONCLUSIONS

We have introduced a new methodology for allowing a
user to iteratively discover alternative clustering solu-
tions given previously discovered clustering structures
for exploratory data analysis. In finding alternative so-
lutions, it is important to find solutions that are both
novel and of good cluster quality. Our approach provides
a flexible model that can discover alternative clusters
with complex shapes and simultaneously learns the
linear subspace in which the clustering resides. These
clusters are as independent as possible from the previ-
ously learned solutions. We achieve this by utilizing a
kernel dependence criterion for assessing cluster qual-
ity and similarity /dissimilarity between clustering solu-
tions. Moreover, for the special case of a linear kernel or
when we only search for an alternative embedding, we
obtain an eigenvalue problem. Our experiments on both
synthetic and real data show that our algorithm outper-
forms competing alternative clustering algorithms.
Acknowledgments: This work is supported by NSF
11S-0915910 and by the Office of Naval Research under
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REFERENCES

[11 A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A
review,” ACM Computing Surveys, vol. 31, no. 3, pp. 264-323,
1999.

[2] J. A. Hartigan, “Statistical theory in clustering,” Journal of
Classification, vol. 2, pp. 63-76, 1985.

[3] A. Gretton, O. Bousquet, A. Smola, and B. Schélkopf, “Measuring
statistical dependence with Hilbert-Schmidt norms,” International
Conf. Algorithmic Learning Theory, pp. 63-77, 2005.

[4] D.Gondek and T. Hofmann, “Non-redundant data clustering,” in
IEEE International Conf. on Data Mining, 2004, pp. 75-82.




IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED 2011, ACCEPTED 2013 14

[5] E.Baeand]. Bailey, “COALA: A novel approach for the extraction
of an alternate clustering of high quality and high dissimilarity,”
in IEEE Int'l Conf. on Data Mining, 2006, pp. 53-62.

[6] Y. Cui, X. Z. Fern, and J. Dy, “Non-redundant multi-view cluster-
ing via orthogonalization,” in IEEE ICDM, 2007, pp. 133-142.

[71 Y. Cui, X. Z. Fern, and J. G. Dy, “Learning multiple nonredundant
clusterings,” ACM Trans. on Know. Disc. from Data, vol. 4, no. 3,
2010.

[8] Z.]. Qi and I. Davidson, “Finding alternative clusterings using
constraints,” in IEEE Intl. Conf. on Data Mining, Bari, Italy, 2008.

[9] ——, “A principled and flexible framework for finding alternative

clusterings,” in ACM KDD, 2009.

X. H. Dang and ]. Bailey, “A hierarchical information theoretic

technique for the discovery of non linear alternative clusterings,”

in ACM KDD, 2010.

R. Caruana, M. Elhawary, N. Nguyen, and C. Smith, “Meta

clustering,” in IEEE ICDM, 2006, pp. 107-118.

P. Jain, R. Meka, and I. S. Dhillon, “Simultaneous unsupervised

learing of disparate clustering,” in SIAM Int'l Conf. on Data

Mining, 2008, pp. 858-869.

[13] X. H. Dang and ]. Bailey, “Generation of alternative clusterings

using the CAMI approach,” in SIAM Int'l Conf. on Data Mining,

2010.

S. Dasgupta and V. Ng, “Mining clustering dimensions,” in Int'l

Conf. on Machine Learning, 2010, pp. 263-270.

L. Poon, N. Zhang, T. Chen, and Y. Wang, “Variable selection in

model-based clustering: To do or to facilitate,” in Int'l Conf. on

Machine Learning, 2010, pp. 887-894.

Y. Guan, J. G. Dy, D. Niu, and Z. Ghahramani, “Variational

inference for nonparametric multiple clustering,” in MultiClust

Workshop at KDD, 2010.

V. Mansinghka, E. Jonas, C. Petschulat, B. Cronin, P. Shafto,

and J. Tenenbaum, “Cross-categorization: A method for discov-

ering multiple overlapping clusterings,” in Nonparametric Bayes

Workshop at NIPS, 2009.

D. Niu, J. G. Dy, and Z. Ghahramani, “A nonparametric bayesian

model for multiple clustering with overlapping feature views,”

Int’] Conf. on Artificial Intelligence and Statistics, vol. 22, pp. 814—

822, 2012.

L. Parsons, E. Haque, and H. Liu, “Subspace clustering for high

dimensional data: a review,” SIGKDD Explor. Newsl., vol. 6, no. 1,

pp- 90-105, 2004.

K. Sim, V. Gopalkrishnan, A. Zimek, and G. Cong, “A survey

on enhanced subspace clustering,” Data Mining and Knowledge

Discovery, pp. 1-66, 2012.

G. Moise and ]. Sander, “Finding non-redundant, statistically

significant regions in high dimensional data: a novel approach to

projected and subspace clustering,” in ACM SIGKDD Int’l Conf.

on Knowledge Discovery and Data Mining, 2008, pp. 533-541.

E. Muiller, I. Assent, S. Gunnemann, R. Krieger, and T. Seidl,

“Relevant subspace clustering: Mining the most interesting non-

redundant concepts in high dimensional data,” in IEEE Int’l Conf.

on Data Mining, 2009, pp. 377-386.

D. Niu, J. G. Dy, and M. L Jordan, “Multiple non-redundant

spectral clustering views,” in Int'l Conf. on Machine Learning,

2010, pp. 831-838.

A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern

Recognition Letters, vol. 31, pp. 651-666, 2010.

[25] U. V. Luxburg, “A tutorial on spectral clustering,” Statistics and

Computing, vol. 5, pp. 395-416, 2007.

A. Y. Ng, M. L Jordan, and Y. Weiss, “On spectral clustering:

Analysis and an algorithm,” in Advances in Neural Information

Processing Systems, vol. 14, 2001, pp. 849-856.

FE. R. Bach and M. L Jordan, “Kernel independent component

analysis,” Journal of Machine Learning Research, vol. 3, pp. 1-

48, 2002.

L. Song, A. J. Smola, A. Gretton, and K. M. Borgwardt, “A

dependence maximization view of clustering,” in International

Conference on Machine Learning, 2007, pp. 815-822.

D. Niu, J. Dy, and M. L Jordan, “Dimensionality reduction for

spectral clustering,” in Int'l Conf. on Artificial Intelligence and

Statistics, 2011, pp. 552-560.

[30] J. Nocedal and S. J. Wright, Numerical Optimization. New York,

NY: Springer, 2006.

C. Ding and X. He, “K-means clustering via principal component

analysis,” in Int'l Conf. on Machine Learning, 2004.

[10]

[11]

(12]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[26]

[27]

[28]

[29]

[31]

[32] A. Strehl and ]J. Ghosh, “Cluster ensembles—a knowledge
reuse framework for combining multiple partitions,” Journal on
Machine Learning Research, vol. 3, pp. 583-617, 2002.

[33] S. D. Bay, “The UCI KDD archive,” 1999. [Online]. Available:
http:/ /kdd.ics.uci.edu

[34] CMU, “CMU 4 universities WebKB data,” 1997.

Donglin Niu obtained his Bachelor of Science
in Electrical Engineering at Nanjing University,
China, and his Masters of Science degree in
Material Science and Engineering at the Uni-
versity of California, Irvine. He is now pur-
suing a Ph.D. degree in Electrical and Com-
puter Engineering at Northeastern University,
Boston, under Prof. Dy’s supervision. His re-
search areas are in machine learning, data min-
ing and numerical optimization with a research
focus on novel data clustering algorithms: high-
dimensional data clustering and multiple data clusterings.

Jennifer G. Dy is an associate professor at the
Department of Electrical and Computer Engi-
neering, Northeastern University, Boston, MA,
where she first joined the faculty in 2002. She
received her M.S. and Ph.D. in 1997 and 2001
respectively from the School of Electrical and
Computer Engineering, Purdue University, West
Lafayette, IN, and her B.S. degree (Magna Cum
Laude) from the Department of Electrical Engi-
neering, University of the Philippines, in 1993.
Her research is in machine learning, data mining
and their application to computer vision, health, security, science and
engineering, with a particular focus on clustering, multiple clusterings,
dimensionality reduction, feature selection and sparse methods, large
margin classifiers, learning from the crowds and Bayesian nonparamet-
ric models. She received an NSF Career award in 2004. She serves
as an action editor for Machine Learning, an editorial board member
for JMLR, organizing/senior/program committee member for ICML, ACM
SIGKDD, AAAI, IJCAI, AISTATS and SIAM SDM, and program chair for
SIAM SDM 2013.

Michael I. Jordan is the Pehong Chen Distin-
guished Professor in the Department of Elec-
trical Engineering and Computer Science and
the Department of Statistics at the University of
California, Berkeley. He received his Masters in
Mathematics from Arizona State University, and
earned his PhD in Cognitive Science in 1985
from the University of California, San Diego. He
was a professor at MIT from 1988 to 1998.
His research in recent years has focused on
Bayesian nonparametric analysis, probabilistic
graphical models, spectral methods, variational methods, kernel ma-
chines and applications to problems in statistical genetics, signal pro-
cessing, computational biology, information retrieval and natural lan-
guage processing. Prof. Jordan is a member of the National Academy
of Sciences, a member of the National Academy of Engineering and
a member of the American Academy of Arts and Sciences. He is a
Fellow of the American Association for the Advancement of Science.
He has been named a Neyman Lecturer and a Medallion Lecturer by
the Institute of Mathematical Statistics. He is an Elected Member of the
International Institute of Statistics. He is a Fellow of the AAAI, ACM,
ASA, CSS, IMS, IEEE and SIAM.




