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Abstract
Mobile app marketplaces are dominated by free apps that
rely on advertising for their revenue. These apps place in-
creased demands on the already limited battery lifetime of
modern phones. For example, in the top 15 free Windows
Phone apps, we found in-app advertising contributes to 65%
of the app’s total communication energy (or 23% of the app’s
total energy). Despite their small size, downloading ads each
time an app is started and at regular refresh intervals forces
the network radio to be continuously woken up, thus lead-
ing to a high energy overhead, so-called ’tail energy’ prob-
lem. A straightforward mechanism to lower this overhead
is to prefetch ads in bulk and serve them locally. However,
the prefetching of ads is at odds with the real-time nature
of modern advertising systems wherein ads are sold through
real-time auctions each time the client can display an ad.

This paper addresses the challenge of supporting ad
prefetching with minimal changes to the existing advertising
architecture. We build client models predicting how many ad
slots are likely to be available in the future. Based on this
(unreliable) estimate, ad servers make client ad slots avail-
able in the ad exchange auctions even before they can be
displayed. In order to display the ads within a short dead-
line, ads are probabilistically replicated across clients, us-
ing an overbooking model designed to ensure that ads are
shown before their deadline expires (SLA violation rate) and
are shown no more than required (revenue loss). With traces
of over 1,700 iPhone and Windows Phone users, we show
that our approach can reduce the ad energy overhead by over
50% with a negligible revenue loss and SLA violation rate.
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1. Introduction
The consumer draw of free mobile applications (apps) over
paid apps is prevalent in app stores such as the Apple App
Store, the Google Play market and the Windows Phone (app)
Store. The Google Play market, for instance, reports roughly
2/3 of their apps as being free [3] of which the large majority
(80% according to a recent study [20]) rely on targeted
advertising as their main business model.

While the use of in-app advertising has enabled the prolif-
eration of free apps, fetching and displaying advertisements
(ads) in an application significantly contributes to the ap-
plication’s energy consumption. In Section 2, we quantify
this cost for popular Windows Phone apps and find that on
average ads consume 65% of an app’s total communication
energy, or 23% of an app’s total energy.

Mobile apps refresh their ads every 12–120 seconds [12,
37]. Just downloading an ad takes no more than a few sec-
onds. However, after an ad’s download is completed, the
3G connection stays open for an extra time, called ‘tail
time’, which, depending on the network operator, may be
10 (Sprint 3G) or even 17 (AT&T 3G) seconds [25]. The
tail time alleviates the delay incurred when moving from the
idle to the high-power transmission state of the device’s ra-
dio, but at the cost of energy, so-called ’tail energy’. This
results in the high energy overhead incurred by ads.

Previous work has investigated energy-saving mecha-
nisms to address the tail energy problem (see Section 6 for
more details). In general, most of these solutions study how
to adapt the tail time [9, 39], but as this parameter is under
the network operator’s control they require modifications of
the base station, thus incurring significant deployment obsta-
cles. Other energy-saving solutions, such as switching from
low-power/low-bandwidth interfaces to high-power/high-
bandwidth interfaces when network activity requires [29],
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involve modifications at the device’s network stack. A last
approach, which we adopt, is prefetching (or batching of
data transmissions in general) [7]. This can be done at the
application level, without requiring any changes in network
operators or device OS. Ads are prefetched in bulk, periodi-
cally or when network conditions are favorable. The mobile
platform serves ads locally, until the budget is exhausted or
the cache is invalidated (e.g., ads have expired).

Achieving an accurate prefetching model is hard in gen-
eral, but if a good prediction model can be built, integrat-
ing the concept of prefetching into an actual application is
usually straightforward. To achieve high energy savings, the
key is to prefetch as much content as possible in batches,
perhaps once or twice a day (e.g., in the morning when the
user wakes up). Prefetching can be managed by the client,
independently of the server. While this is all true for many
applications, particularly web browsing [4, 22, 27] and web
search [7, 19], it is not practical for advertising systems. In
these systems, ads are sold through on-demand auctions, and
only if a client can immediately display an ad. By offering
the client the option of downloading ads in batches, an adver-
tising system risks losing revenue, especially for display ads
where the advertising system pays based on ad impression
count. Revenue loss can occur either because a prefetched ad
is not shown within its deadline or is shown more times than
required (this can happen if the ad is prefetched at the same
time by multiple clients to ensure it will be shown eventu-
ally). Despite the risk, as the largest mobile advertising plat-
forms are owned by the largest smartphone providers (e.g.,
Google’s AdMob and Android, Apple’s iAds and iPhone,
Microsoft’s MSN Ad Network and Windows Phone), there
is an incentive to provide low-energy apps to attract users.

Modern advertising systems include an ad server that
mediates between client devices and ad exchanges. Ad ex-
changes are neutral parties that aggregate ads from different
third-party ad networks. One way to integrate ad prefetching
into current advertising systems is to expose to the ad net-
works the uncertainty of an ad being shown on the client de-
vices, and charge advertisers only if the ad is actually shown.
The advantage is that ad networks can directly manage their
risk by balancing with their ad campaigns. The disadvantage
is that ad networks’ decisions are limited to their own in-
ventory and lack global knowledge. More importantly, this
approach significantly alters the existing ad exchange model
and makes the interface to advertisers more complex. In-
stead, we decide to favor ease of deployability and limit
changes to the current infrastructure.

This paper explores to what extent today’s advertising
systems can afford, with minimal changes to their infrastruc-
ture, to offer ad prefetching to mobile clients, how much en-
ergy can be saved, and what risk prefetching entails. We start
by considering the problem of predicting for how long a cer-
tain user is likely to use phone applications in a given time
interval. This prediction gives an indication of how many ads

the client will be able to consume in the future. Note that ad
platforms today already have access to logs of their clients,
so this prediction comes at no additional privacy cost. We an-
alyze the application traces of 1,693 Windows Phone users
over one month and 25 iPhone users over one year, and mea-
sure the predictability of app usage from past behavior. Our
entropy-based evaluation shows that user-specific and time-
dependent prediction models are the most accurate among
those we considered, but can still be somewhat inaccurate.
The client may fetch too few ads, thus achieving only limited
energy savings. Or the client may fetch too many ads and not
be able to display all of them by their deadlines, thus causing
SLA violations for the ad infrastructure. We compensate for
the inaccuracy of the prediction model by scheduling ads in
order of expiring deadlines and by introducing an overbook-
ing model that probabilistically replicates ads across clients.
Our evaluation shows that our approach is capable of reduc-
ing the energy consumed by an average client by 50%, while
maintaining SLA violation rates below 3%.

1.1 Contributions and overview
Prefetching has been used to save energy in various con-
texts [4, 7, 19, 22, 27], and particularly the idea of prefetch-
ing ads on mobile phones has been previously consid-
ered [13, 17, 35, 37]. However, we are not aware of any work
that looked at the problem of ad prefetching in detail, and
produced a solution compatible with existing ad infrastruc-
tures. Recent work on privacy-preserving advertising implic-
itly assumes prefetching of ads in bulk. For instance, in Pri-
vad [13], each client subscribes to coarse-grained classes of
ads the user is interested in and an anonymization proxy con-
stantly fetches ads on the client’s behalf. Our design is com-
patible with such systems and can help them become a fea-
sible business model for privacy preservation.

In summary, this paper makes the following contribu-
tions: (i) proposes a methodology for accurately measur-
ing the energy overhead of mobile ads and gives an esti-
mate of such an overhead based on popular Windows Phone
apps; (ii) studies the predictability of app usage behavior and
derives personalized, time-based models based on roughly
1,700 iPhone and Windows Phone user traces; (iii) models
the problem of ad prefetching as an overbooking problem
where the ad server can explicitly tune the risk of SLA vio-
lations and revenue loss; and (iv) evaluates the feasibility of
the proposed approach and quantifies the energy savings for
a realistic population of mobile users.

The rest of the paper is organized as follows. In the next
section, we motivate this work and report how much energy
ads consume in 15 of the most popular Windows Phone
apps. Section 3 illustrates how existing mobile advertising
systems work and explains why it is hard to add support for
ad prefetching in bulk. The next two sections present and
evaluate our approach including app usage prediction and
overbooking model. We review related work in Section 6 and
conclude in Section 7.
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2. The real cost of mobile ads
More than half of the apps available in today’s app market-
places are ad-supported [20]. How much energy do these ad-
supported apps consume to communicate with ad servers?
In this section, we empirically answer this question with the
top 15 ad-supported Windows Phone apps. Note that some
of the most popular apps (e.g., Facebook, YouTube) do not
display any ads, while some other popular apps (such as An-
gry Birds) are ad-free paid apps; they are omitted from our
study.

2.1 Communication costs for serving ads
Previous work highlighted significant overheads of ads in
smartphone apps [17, 28, 37]. In [17], the authors measured
non-negligible network traffic due to ads in Android apps.
Translating network traffic into communication energy, how-
ever, is nontrivial because communication energy depends
on various other factors such as the current radio state, ra-
dio power model, radio bandwidth, etc. In [28], the authors
propose eprof, a fine-grained energy profiler for smartphone
apps that traces various system calls and uses power mod-
els to report energy consumption of various components of
an app. Using this tool, the authors demonstrate that third
party modules consume significant energy on six Android
apps they study (e.g., Flurry [1], a third party data aggrega-
tor and ad generator, consumes 45% energy in the Angry-
Birds application). The goal of the study was not to isolate
the communication overhead of ad modules. In fact, with
eprof ’s approach, accurately isolating communication over-
head of a third party module alone is nontrivial when the app
itself communicates with a backend server and communica-
tions of the app and third-party module interleave. This is
because when multiple components share a radio for com-
munication, it is not clear to whom to attribute the nontrivial
wake-up and tail energy of the radio.

2.2 Measurement methodology
In order to isolate the exact communication overhead of ads
within an app, we use an approach different from eprof [28].
Given an app, we produce three versions of it: the origi-
nal ad-enabled version, a modified ad-disabled version that
does not communicate with the ad server and shows a locally
cached ad, and a modified ad-removed version that does not
show any ad. We then execute all these versions with the
same user interaction workload and measure their energy
consumption. The difference between the first and the sec-
ond version gives the communication energy overhead due
to the ad module, and that between the second and the third
version gives the non-communication energy overhead of the
ad module. This approach is more accurate than eprof as we
do not need to use any ad-hoc heuristics to distribute shared
network costs between the app and ad modules. However, in
taking this approach we need to address several challenges.

Measuring energy. To compare the ad module’s communi-
cation energy with that of the app, we need to measure their
communication energy as well as total energy. Thus, tools
that give only total energy (such as a powermeter or battery
level monitor) are not sufficient. We use WattsOn [25], a tool
for estimating energy consumption of a Windows Phone app
while running it on the Microsoft’s Windows Phone Em-
ulator (WPE). WPE can run any app binary downloaded
from the Windows Phone Marketplace. When an app runs on
WPE, WattsOn captures all network activities of the app and
uses state-of-the-art power models of WiFi, 3G radio, CPU,
and display to estimate communication and total energy of
the app. WattsOn also allows using various operating con-
ditions (carrier, signal strength, screen brightness). Experi-
ments on a Samsung Focus Windows Phone show that Watt-
sOn’s estimation error is < 5% for networked apps, com-
pared to the true energy measured by a power meter.

In our measurements, WattsOn is set to simulate the Sam-
sung Focus phone with AT&T as the carrier. The phone uses
3G communication and enjoys ‘good’ signal strength and
network quality, with average download and upload band-
width of 2500 kbps and 1600 kbps respectively [34]. The
display is configured with medium brightness.

Producing ad-disabled and ad-removed versions of an app.
To produce an ad-disabled version of a given app, we need
to disable communication of ad modules with ad servers.
This is relatively simple for most of the apps we tried: these
apps include standard ad controls (such as Windows Ad
Control or AdDuplex) that communicate with predefined ad
servers. To disable such communication, we redirect appli-
cation DNS requests for their ad servers to the localhost
interface (127.0.0.1). WattsOn ignores any communication
redirected to this interface. As we run the apps in an emula-
tor, this is done easily by modifying the /etc/hosts file in
the machine the WPE runs on. Most ad controls show a de-
fault locally-cached ad after failing to connect to ad servers,
without affecting an app’s normal operations.

The above simple trick does not work for apps (e.g., Bub-
bleBursts) that dynamically download IP addresses of ad
servers from the network. It also does not work for apps (e.g.,
Weather) that use the same backend server for downloading
ads and useful application data. For such apps, we used bi-
nary rewriting techniques to modify app binaries to remove
instructions that request new ads. Windows Phone apps are
written in .Net, and we used the Common Compiler Infras-
tructure library [24] for such rewriting.

To generate an ad-removed version of an app, we use bi-
nary instrumentation to replace the app’s ad module with a
dummy module that does not do anything other than show-
ing a blank box.

Workload. We use each app three times and report the aver-
age energy consumption. In each run of an app, we use it for
two minutes in its expected usage mode. For example, if the
app is a game, we start it and play a few levels of the game;
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Figure 1. Energy consumed by top ad-supported WP apps.
Both original and ad-disabled versions are run with the
same sequence of user interactions for 2 minutes. The la-
bel x%, y% on top of each bar means ads consume x% of
the total energy and y% of the communication energy of the
app. Ads consume significant communication energy, even
for communication-heavy apps. On average, ads consume
23% of the total energy, or 65% of the communication en-
ergy, of an app.

if the app is a news app, we open it, navigate to a few pages
and read them.

A typical app’s energy consumption depends on how it
is used, e.g., which pages within the app are visited and
for how long. For a fair comparison of the ad-enabled, ad-
disabled, and ad-removed versions of the same app, we run
them with the same sequences of user interactions. More
precisely, we record user interactions with the original app
and replay the recorded interactions on all three versions of
the app. Some apps show random behavior across runs. For
example, the Bubble Burst game starts with a random game
every time it is started. For such apps, we cannot replay
a prerecorded sequence of user interactions, and hence we
simply use all three versions independently for the same
duration of time.

2.3 Results
Figure 1 shows the results of our measurements for the
top 15 ad-supported Windows Phone apps. These apps use
various ad controls such as Windows Phone Ad Control,
AdMob, AdDuplex, Somaata, and DoubleClick, and some
apps use multiple ad controls.

Our measurements reveal several important points. First,
ad modules consume a significant part of an app’s energy.
Across the 15 apps we measured, ads are, on average, re-
sponsible for 23% of the total energy consumed by the app
(including CPU, display, and communication), and 65% of
the total communication energy. This overhead is significant,
considering that typical ads are small in size (< 100 bytes
for most textual ads). Second, the overhead of ads is big-
ger in apps such as Blox and Speedometer with no or small
network activity.

On the other hand, in apps such as CNNNews and
Weather that need to communicate with the Internet, com-
munication of an ad module can often piggyback on the
phone’s already-turned-on radio. Interestingly, overheads of
ads are substantial even in communication-heavy apps such
as Weather and CNNNews—without ads, these apps can
keep the phone’s radio in low power state more often. Third,
most of the overhead of ad modules comes from commu-
nication: CPU and display constitute < 8% of the total ad
overhead. We therefore focus on reducing communication
overheads of ads.

2.4 Tail energy problem
Why do in-app ads consume more than half of the commu-
nication energy consumed by the app itself? Typically, in a
GSM or 3G network, the radio operates in three power states:
‘idle’ if there is no network activity; DCH (Dedicated Chan-
nel) in which a channel is reserved and high-throughput,
low-delay transmission is guaranteed; and FACH (Forward
Access Channel) in which a channel is shared with other de-
vices and is used when there is little network traffic. The idle
state consumes 1% of the power of the DCH state, and the
FACH state consumes about half of the DCH power. After a
transmission, instead of transitioning from the DCH state to
the idle state, the device spends some extra time in the DCH
state and then in the FACH state—5 and 12 seconds respec-
tively for an AT&T 3G network [25]. This delay, called ‘tail
time’, determines how responsive the device is when new
network activity starts. The tail time cannot be controlled
by the application directly. Instead, each network provider
decides on this tradeoff: a longer tail time consumes more
power, but makes the device more responsive; a shorter tail
time consumes less power, but introduces delays [9].

Each time a user starts ad-supported mobile apps, ads are
fetched one by one, and they are regularly refreshed during
app operation. Downloading an ad takes no more than a few
seconds, but once the ad’s download has completed, the 3G
connection stays open for the extra tail time. The energy
consumed during this idle time, called ‘tail energy’, causes
the ads’ large energy overhead. In a typical 3G network (with
a tail time of 12.5 seconds), Balasubramanian et al. [7] have
shown that about 60% of the energy consumed for a 50 kB
download is tail energy. The overhead is even bigger for
shorter downloads, such as a typical ad of size 5 kB.

The overall severity of the tail energy problem may de-
pend on various factors. One factor is the usage of WiFi net-
works instead of cellular networks. WiFi’s tail energy prob-
lem is smaller (tail time is ≈ 500ms). To keep our study
simple, we focus on only one type of network and we pre-
fer cellular networks over WiFi for two main reasons. First,
several recent studies have pointed out that smartphone users
spend significant fraction of their app-usage time (reported
to be > 90% in [15] and > 60% in [8]) on cellular networks
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compared to WiFi networks.1 Moreover, 3G coverage is sig-
nificantly larger than WiFi coverage (e.g., reported to be 8×
more in US cities [6]) In fact, a non-negligible fraction of
users (e.g., reported to be > 25% in a survey [11]) do not
even enable WiFi connectivity even though their phones are
WiFi-capable. Finally, WiFi is more energy dense than 3G
(i.e., the WiFi radio consumes more energy for each second
it is switched on compared to the 3G radio), making WiFi
unsuitable for short transfers such as ads [30].

Another factor that might affect the overall impact of the
tail energy is the presence of background traffic. Unfortu-
nately, applications’ traffic is unlikely to significantly allevi-
ate the tail energy problem of ads traffic. We observed this in
our experiments with the Weather and CNNNews apps, and
a recent measurement study [37] based on the one-day data
connections of more than 3 million subscribers of a major
European mobile network confirms this finding. The study
reports that roughly 81% and 68% of the network traffic re-
lated to ads was isolated for Android and iPhone devices re-
spectively. In most cases, interleave times between network
activity sessions (of apps themselves and ads) were so high
that the device radio was likely to be in the idle power mode
when ad requests were generated (We experimentally verify
the impact of background traffic in our evaluation).

In the rest of the paper, we investigate how prefetching
can help reduce the high energy overhead of ads. Intuitively,
prefetching can amortize the tail energy cost among multi-
ple ads. Our experiments show that downloading 10 ads of
size 1 kB (or 5 kB) in bulk over AT&T 3G network con-
sumes 8.6× (or 4.1× respectively) less energy than down-
loading them one every minute. Moreover, prefetching en-
ables downloading ads at opportune times, such as when the
phone is being charged or WiFi connectivity is available. Fi-
nally, unlike solutions that require changes at the network-
ing stack, a prefetching-based solution can be deployed on
today’s smartphones with minimal changes to existing ad in-
frastructures, as we will show later.

3. Prefetching ads: feasibility and challenges
We start by providing a description of how mobile advertis-
ing works today and then discuss the challenges involved in
supporting batch prefetching of ads with minimal changes to
the current infrastructure.

3.1 Background on mobile advertising
As Figure 2 shows, a typical mobile advertising system con-
sists of five parties: mobile clients, advertisers, ad servers, ad
exchanges and ad networks. A mobile application includes
an ad control module (e.g., AdControl for Windows Phones,
AdMob for Android) which notifies the associated ad server
any time an ad slot becomes available on the client’s device.

1 The volume of data traffic over WiFi, however, is reported to be bigger
than that over cellular network.
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Figure 2. Architecture of a typical mobile ad system.

The ad server decides how to monetize the ad slot by dis-
playing an ad. Ads are collected from an ad exchange. Ad
exchanges are neutral parties that aggregate ads from differ-
ent third party ad networks and hold an auction every time
a client’s ad slot becomes available. The ad networks par-
ticipating in the exchange estimate their expected revenue
from showing an ad in such an ad slot and place a bid on be-
half of their customers (i.e., the advertisers). An ad network
attempts to maximize its revenue by choosing ads that are
most appropriate given the context of the user, in order to
maximize the possibility of the user clicking on the ads. The
ad network receives information about the user such as his
profile, context, and device type from the ad server, through
the ad exchange. Ad exchange runs the auction and chooses
the winner with the highest bid.

Advertisers register with their ad networks by submitting
an ad campaign. A campaign typically specifies an advertis-
ing budget and a target number of impressions/clicks within
a certain deadline (e.g., 50,000 impressions delivered in 2
weeks). They can also specify a maximum cap on how many
times a single client can see a specific ad and how to dis-
tribute ads over time (e.g., 150 impressions per hour).

The ad server is responsible for tracking which ads are
displayed and clicked, and thus determining how much
money an advertiser owes. The revenue of an ad slot can
be measured in several ways, most often by views (Cost Per
Impression) or click-through (Cost Per Click), the former be-
ing most common in mobile systems. The ad server receives
a premium on the sale of each ad slot, part of which is passed
to the developer of the app where the ad was displayed.

3.2 A proxy-based ad prefetching system
One way to incorporate ad prefetching into the existing ad
ecosystem is to use a proxy between the ad server and the
mobile client. A client with available ad slots contacts the
proxy that prefetches a batch of ads from the ad exchange
(through the ad server) and sends the batch to the client.
After the client has displayed all ads of the batch, it contacts
the proxy again and gets the next batch of ads. Such a
solution is easy to implement in any existing smartphone app
that receives ads through an ad control module embedded
within the app. The client-side of the prefetching logic can
be implemented within the ad control, while the server-side
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Figure 3. Ad system without and with ad prefetching (the
prefetching proxy runs at the ad server).

logic can be implemented in the ad server, which acts as the
prefetching proxy. Figure 3 shows how the ad system works
today without ad prefetching, and how it can work with ad
prefetching.

While it is easy to incorporate a prefetching proxy into
the existing ad ecosystem, feasibility and advantage of
prefetching depend on various factors. The two key deci-
sions a prefetching model must take are ‘what’ to prefetch
and ‘when’ to prefetch. These have been successfully ad-
dressed in the context of web browsing [4, 22, 27] and web
search [19]. However, the key property that distinguishes ad
prefetching from other prefetching scenarios is that ads have
deadlines and there are penalties if ads are prefetched, but
not served within their deadlines. In fact, ad prefetching can-
not be implemented as a stand-alone client action as for web
browsing. A bad prefetching strategy that does not respect
ad deadlines can adversely affect other parties involved in
the ad ecosystem.

Ad deadlines. The deadline D of an ad may come from
multiple sources. The advertiser typically wants all ads in
an ad campaign to be served within a deadline. For example,
an advertiser may start a campaign for an upcoming sale and
the associated ads must be delivered before the sale ends.
Even when an advertiser puts a long deadline, it expects
the ad network to guarantee some SLA about the rate at
which ads are served. For example, an advertiser may start a
one-week ad campaign, but still want the guarantee that 100
impressions of its ads will be served per hour. In existing ad
systems, these are the only factors affecting ads’ deadlines
since ads are delivered to clients within a short time period
time (few hundred milliseconds) after being retrieved from
the ad exchange.

With prefetching, however, other factors play into decid-
ing an ad’s deadline. Suppose the proxy serves ads within a
serving period (smaller than the ad deadline specified by the
advertiser). Since the bid price for the ads changes over time,
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Figure 4. CDFs of (a) how often bid prices change for an ad
and (b) relative price difference when a bid price changes.

the proxy (hence, the ad server) takes some risks in prefetch-
ing ads. One type of risk is that it may not be able to serve
all prefetched ads within the advertiser’s deadline. We will
discuss this risk in more details later. Another type of risk is
that the bid price for an ad may change within the serving
period, and if the price actually goes up, the ad server could
have made more revenue by collecting the ad from the ad
exchange at a later point in time rather than at the beginning
of the serving period. How big is this risk?

To answer this, we sampled around 1 TB of log data from
a production advertising platform spanning a 12 hour period
in August 1, 2012. The data covers over several hundred
million auctions and unique ads shown to users of a popular
search engine across all search topics. The trace record for
an auction lists all the ads that participated in it (whether the
ad was ultimately shown or not) and the bids corresponding
to each ad. We use this trace to understand how often the
bid price for an ad changes and by how much. We observed
that most ads do not change their bid prices within the
trace period. Figure 4(a) shows a portion of the CDF of
the average time of an ad changing its bid price. As shown,
only less than 0.5% of the ads change their bid price within
30 minutes of their most recent price change (or their first
appearance in the system). Figure 4(b) shows the CDF of
the relative price change when an ad changes its bid: 95% of
the bid changes are within 10% of the previous bid price.

The results above highlight that even though auction
prices in the ad exchange are dynamic, the dynamics and
hence the revenue risks of the ad server are relatively small
for a small window of time. For example, if the ad server
prefetches ads for a serving period of 30 minutes, the proba-
bility that any of the ads will change its bid price within the
serving period is < 0.5%, and even if an ad changes its bid
price, the change will be < 10% in 95% of the cases. An
ad server can choose a suitable value for its serving deadline
depending on the dynamics. Unless otherwise specified, we
assume a serving deadline of 30 minutes in the rest of the
paper.

With prefetching, the actual deadline of an ad is the mini-
mum of the deadline specified by the advertiser and the serv-
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ing deadline the server uses for its prefetched ads. Deadlines
specified by advertisers are typically longer than 30 minutes,
and therefore, we consider the serving deadline as the dead-
line D for all prefetched ads.

3.3 Ad prefetching tradeoffs
Ideally, a proxy would want to serve all prefetched ads
within their deadline D. This is possible if the proxy can
predict exactly how many ads it will be able to serve to its
clients within its prediction period. As we will show later,
however, such predictions are unlikely to be accurate in prac-
tice. Hence, the ad infrastructure runs into the following two
types of risks.

• SLA violations: SLA violations may happen if a proxy
(hence, the ad server) fails to deliver a prefetched ad
within its deadline (e.g., an ad for a promotion is dis-
played after the promotion ends, or an ad is displayed
when its bid price is significantly different from when it
was prefetched).

• Revenue loss: Revenue earned by an ad server is related
to the number of unique ads served to clients. A bad ad-
prefetching and -serving system can cause revenue loss to
the ad server: by serving ads after deadlines, by serving
the same ad impression to more users than required, by
not serving an ad even when a slot is available, etc.

There exist tradeoffs between the above two factors and
network overhead. An aggressive strategy may prefetch
more ads than can be served to the client within the ad
deadline— this will minimize communication overhead, but
cause frequent SLA violations. On the other hand, a con-
servative prefetching approach may avoid SLA violations
by prefetching a small number of ads, but will incur large
communication overhead. The prefetching proxy may con-
sider replicating ads to reduce SLA violations: it can send
the same ad impression to multiple clients to maximize the
probability that the ad impression will be served to at least
one client. However, this may incur revenue loss. A good
prefetching strategy needs to strike a good balance between
these competing factors.

In the rest of the paper, we will investigate these trade-
offs. In particular, we consider the following mechanisms,
implemented in a proxy, and their effects on energy, SLA
violations and revenue.

• App usage prediction: The prefetching proxy estimates
how many ads a client will be able to show in next T min-
utes (T is called the prediction interval) and prefetches
that many ads from the ad server. A perfect prediction
should result in an optimal communication energy, with
no SLA violations and no revenue loss.

• Overbooking: The proxy may replicate one ad across
multiple clients. In the presence of inaccurate predic-
tions, this may reduce SLA violations, but increase rev-
enue loss.

4. Ad prefetching with app usage prediction
The first challenge to address is to decide how many ads
to prefetch and how often. Suppose each ad comes with a
deadline of D minutes, all ads are of the same type2 and one
ad is displayed every t minutes during app usage. We also
call t the size of an ad slot and the refresh period of an ad. For
simplicity, let us assume for now that the client periodically
prefetches ads once every round of T minutes (the prediction
period). If the client could predict the number of ad slots (k)
available in the next round, it could prefetch exactly k ads,
satisfying the client’s needs and without wasting any ads. Is
this kind of accurate prediction possible in practice?

4.1 App usage prediction
The number of ad slots available in the future depends on
how often the user is likely to use apps installed on his
phone. We analyze two real user datasets to answer the
following key questions:

1. Is app usage predictable based on users’ past behavior?

2. What features of past app usage are useful in prediction?

Note that previous work considered predicting what apps
will be used in a given context in order to preload apps on
the phone [38] or to customize homescreen icons [32]. In
contrast, we aim to find how long apps will be used in a
given time window.
Datasets. We use the following two datasets reporting mo-
bile applications’ usage.

• Windows Phone logs: we use the device logs of 1,693
WP users over roughly a month. Users were randomly
selected worldwide, among a larger number of mobile
users that opted into feedback.

• iPhone logs: we use the device logs of 25 iPhone
users [21, 31]. Logs were collected by the LiveLab
project at Rice University. The deployment involved 25
undergraduate iPhone users and lasted one year.

We filtered the logs by eliminating apps which do not
support ads, such as call application, sms, alarm clock, and
settings. We then assumed all remaining apps display an ad
at startup time and refresh it every t minutes, where t = 1.
I Predictability with past behavior. We first use an
information-theoretic measure to get insights into pre-
dictability of phone usage based on past behavior. The mea-
sure tells us how often we can predict phone usage. Even
though this does not tell us how accurately we can predict
or how we can do reasonable prediction, the analysis gives
us valuable insights that we use in the prediction process we
describe later.

Information entropy is a well-known metric that measures
the level of uncertainty associated with a random process. It
quantifies the information contained in a message, usually in

2 The ad type indicates the app category the ad was initially bid for.
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bits/symbol. The entropy of a discrete random variable X is
defined as

H(X) = −
∑
x∈X

p(x) log2 p(x)

where p(x) is the probability mass function, 0 ≤ p(x) ≤
1. In our scenario, the variable X denotes the value of k
(the number of ad slots) in a given round of length T (the
prediction period).

To understand how predictable X is in our datasets, we
compute the entropy of the underlying process that deter-
mines the value of X . From a given dataset, we compute
the PDF of X , with Pr(X = i) as the probability of having
i ad slots in time T (i.e., the probability of the user using
apps for i ad slots in a window of T minutes). Finally, we
compute the entropy of X by using the above equation. For
concreteness, assume that T = 60 minutes. The value of k
can be any integer within the range [0, 60]. Thus, the value
log2(61) ≈ 6 gives the upper bound of X’s entropy.

Since entropy tells us about the uncertainty associated
with a process, it can implicitly provide information about its
predictability. When the entropy is 0, the outcome of the pro-
cess is completely deterministic and hence completely pre-
dictable. On the other hand, when the process is completely
random, p(x) takes on a uniform distribution, and the cor-
responding upper bound on the entropy can be calculated
using the above equation. In general, the lower the entropy,
the lower is the information uncertainty associated with the
process, and the easier it is to predict future outcomes based
on history.
I Choosing granularities of prediction. To predict future
outcomes of the value of k, past observations can be used
at various granularities. Entropy at a given granularity will
demonstrate how effective the granularity is in prediction.
We consider two orthogonal dimensions to partition past
observations:

1. Collated vs. user-specific: In a collated model, we assim-
ilate traces of all users to form a collective trace. We then
compute one entropy value of the collective trace. In a
user-specific model, we consider each user trace in isola-
tion, compute one entropy value for each user, and exam-
ine average entropy.

2. Time independent vs. dependent: In a time-independent
model, we consider all rounds in the history alike and
compute entropy from the PDF of T = 1 hour. In a time-
dependent model, we maintain 24 PDFs (one for each
hour of the day), compute their entropy values, and take
the average entropy.3

The above two dimensions can produce four combinations
of models.
3 In a time-dependent model, one can consider partitioning a trace even
further, such as one PDF for every hour of the week; however, with our
limited dataset, such model becomes sparse and useless for prediction.
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Figure 5. Entropy of app usage in our two datasets, at dif-
ferent granularities.

Figure 5 shows the entropy of the two datasets under
various models. The label Collated,Time on the x-axis, for
example, denotes that we compute a time-dependent model
over the collective trace of all users. The results highlight
a number of key points. First, entropy is in general high. If
we assume that past observations are completely random and
hence useless in prediction, the entropy becomes log2 61 ≈
6. In both datasets and under all models, entropy is closer to
this upper bound than the lower bound of 0. This suggests
that app usage times in our dataset are mostly unpredictable.
Note that this conclusion is based on the assumption that we
use past app usage durations, user ID and time of use only.
Prediction quality is likely to increase (and hence entropy is
likely to decrease) if we use other information such as user’s
location context, as shown in previous work [38]. On the
other hand, the ad server already has access to access logs
that have temporal data, but might not have more intrusive
data about the user for additional customization.

Figure 5 also shows that considering each user’s trace in
isolation makes the future outcomes of k a little bit more
predictable (as shown by a reduction in entropy for User).
Finally, considering data from different hours of the day
separately further reduces the entropy. The entropy of the
user-specific, time-dependent model is lower than all other
models. Based on this observation, we consider each user’s
trace in isolation and build one model for every hour of the
day in the prediction algorithm that we describe next.
I Choosing the predictor. We now consider several statis-
tical predictors to predict how many ad slots will be avail-
able in a given round. The goal is to choose the one with the
smallest prediction error that we measure with coefficients
of variations (root mean square error divided by mean) of
the predictions. We consider the following predictors.

• Sampling returns a random value sampled from the PDF
of the user in the current hour of the day.

• Avg returns the average number of slots in the current
hour of the day from past observations.

• k’th percentile returns the k’th percentile slot count
in the current hour of the day from past observations.
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Figure 6. Coefficients of variation (RMSE/mean) of various
predictors on user-specific, time-dependent models. We use
k = 50% in the percentile predictor.

Figure 6 shows the result of using these predictors for our
two datasets. As shown, the percentile predictor seems to be
a good predictor for both the datasets and hence we use it in
the rest of the paper. In these tests, we used k = 50%. In the
following, we discuss which value of k is best to use.

I Choosing k for the percentile predictor. The coefficient
of variation metric treats both underprediction and overpre-
diction equally. In practice, they have different effects: un-
derprediction forces the client to prefetch smaller numbers
of ads, thus increasing its communication energy cost, while
overprediction causes more frequent SLA violations. The
best percentile to use depends on the relative importance of
energy and SLA violations.

We experimentally evaluate the impact of the percentile
predictor on energy efficiency and number of SLA violations
in a complete ad prefetching system. Our system works as
follows. The client contacts the proxy when it has an ad slot
but no ad to display. The proxy uses the percentile predictor
to predict how many ads (m) the client might need in the
next T time, where T is the prediction period smaller than
the ad deadline D. It then collects m ads, by prefetching
them from the ad exchange or from its pool of previously
prefetched ads, and sends them to the client. If the client
runs out of ads before time T , it simply contacts the proxy
again for additional ads. On the other hand, if the client has
displayed only m′ < m ads during time T , it returns the
undisplayed ads to the server and gets a new batch of ads for
the next prediction period. The undisplayed ads (that have
now smaller lifetimes) are sent to other clients who have
higher probabilities of showing ads. Finally, the proxy also
ensures that ads targeted to different profiles/apps are shown
only in ad slots of a matching type.

For the evaluation, we use the Windows Phone logs to
generate a realistic client workload. Unless otherwise spec-
ified, we assume all ads have the same deadline D of 30
minutes, the same type, and the same price. We also conser-
vatively assume that a new ad is shown every minute while
the user is using an app; a shorter ad refresh period will im-
prove the relative benefit of prefetching on the battery life-
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Figure 7. Tradeoff between energy savings and SLA vio-
lations for increasingly larger prefetching rates (controlled
by k of the kth percentile prediction model). The prediction
interval is 20minutes.

time. We use ads of size 5 kB each, which is the average ad
size in the top 15 apps we used in Section 2. To measure en-
ergy, we capture network traces from our experiment, feed
it into WattsOn used in Section 2, and measure communica-
tion energy for a phone using AT&T 3G wireless (the same
setup we used in Section 2). We report the energy savings
compared to a baseline client that fetches ads one by one, as
in today’s ad systems.

To determine the best value of k, we plot both average
energy savings and SLA violations as a function of k in
Figure 7. We use a prediction interval of 20 minutes. As
shown, there is an almost linear increase in energy savings
until it reaches the point where most of the batches are larger
than the set of shown ads (around the 90th percentile). More
interestingly, we see that the number of ads whose SLA
is violated remains relatively low until the 80th percentile
and then shoots up sharply. This suggests that k = 80%
represents a sweet spot between energy and SLA violation.
Therefore, we use 80th percentile as our predictor in the rest
of the paper.

To conclude, we observe that above we assumed the pre-
dictor uses only app usage history of users, in particular dis-
tribution of usage durations. It may be possible to improve
prediction accuracy by using additional information such as
user’s context, correlation of usage patterns of various apps,
etc. We expect that even though the prediction can get bet-
ter by using additional such information, as long as there are
some prediction errors, ad prefetching will affect SLA and
energy efficiency.

On the other hand, there are other ways for the proxy to
limit the risk of causing SLA violations. We evaluate them
next.

275



0 5 10 15 20 25 30
Prediction period (minutes)

0

5

10

15

20
Fr

ac
tio

n
of

ad
s

m
is

si
ng

S
LA

(%
)

0

10

20

30

40

50

60

70

80

E
ne

rg
y

sa
vi

ng
s

(%
)

Figure 8. SLA violation rate and reduction in client’s en-
ergy consumption for increasingly infrequent prediction.
The number of ads prefetched is predicted using the 80th
percentile prediction model.

4.2 Evaluating tradeoffs
Using the same setup previously described, we evaluate
how prediction period, ad deadlines and background traffic
can impact on the energy savings and SLA violation rates
achieved.

Impact of prediction periods. Increasing the prediction pe-
riod should intuitively increase the energy efficiency since
the client device fetches larger batches of ads. On the other
hand, this increases also the period of uncertainty on the sta-
tus of the ads downloaded by the client. Figure 8 shows the
percentage of the ad inventory that incurred an SLA viola-
tion and the corresponding reduction in energy consump-
tion for increasingly longer prediction intervals. Since the
ads have a deadline of 30 minutes, if the prediction pe-
riod is longer than or equal to 30 minutes, then it is ef-
fectively equivalent to the client not reporting the status of
the prefetched ads before their deadline. We see from the
graph that for a prediction interval between 15–20 minutes
the client achieves a net energy reduction of 40–50% while
fewer than 3% of the ads in the inventory experience an SLA
violation. To achieve higher savings in energy consumption,
a longer prediction interval can be chosen at the cost of in-
creasing the SLA violations. We also observe that after 20
minutes the energy savings are relatively constant for in-
creasing values of the prediction interval. For these reasons,
for ads with deadline of 30 minutes, we consider a reason-
able prediction interval to be 15 or 20 minutes.

Impact of ad deadlines. Another parameter to consider
when trading off energy savings with the number of SLA-
violated ads is the ad deadline. Figure 9 illustrates this trade-
off. Longer ad deadlines allow for less frequent prediction.
For example, the same prediction period of 15 minutes that
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Figure 9. Tradeoff between ad deadlines and prediction pe-
riod. The longer the ad deadlines, the smaller the client-
proxy prediction period required for maintaining the same
SLA violation rate. Prefetching uses the 80th percentile pre-
diction model.

we considered above generates almost no SLA violations for
ads with an hour or longer deadline. To put this in perspec-
tive, our analysis of an existing production ad platform (see
Section 2) shows that only 1% of the ads change their bid
price in less than an hour, which means that ad prefetching
basically incurs no penalty on the ad infrastructure.

Impact of background traffic. A measurement study [37]
analyzing the data connections of more than 3 million sub-
scribers of a major European mobile network showed that,
in general, ad traffic is likely to occur in isolation from other
traffic—no background traffic is present when ad requests
are generated. Our results are in accordance with this find-
ing.

We simulate background network traffic with interflow
times following a Poisson distribution (memoryless) with
differing values of the distribution mean. Our proxy oppor-
tunistically uses the presence of background traffic such that
if network activity is observed, reports are generated and
sent back to the ad server. As the network radio is already ac-
tive, these reports come at low energy cost. If no network ac-
tivity is observed during the reporting period, the proxy de-
lays its transfers by a maximum of 2 minutes. This approach
allows the proxy to reduce even further the energy overhead
of ads. Conversely, in the existing ad architecture, where ads
are retrieved on demand, unless a background network flow
is initiated in the time interval immediately preceding the ad
request (as the network radio is active only for a maximum
period of about 17 seconds [25]), no energy saving occurs.
Figure 10 shows the amount of ad traffic that is sent when
the radio is already active due to the background traffic, for
both the prefetching and the baseline (non prefetching) case.
In the prefetching case, we use the 80th percentile prediction
model, and we assume an ad deadline of 30 minutes and a
prediction intervals of 20 minutes. We observe that when the
background network flows are on average distributed within
10 minutes of each other, even 78% of the ad network con-
nections occur at low energy cost. On the other hand, the
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Figure 10. Reduction in the number of network flows that
require the radio to be activated when our prefetching model
is enabled or disabled. Prefetching uses the 80th percentile
prediction model.

non-prefetching system is unable to exploit the background
network flows unless they occur extremely frequently.

Overall, based on these experiments, we conclude that for
ad deadlines of 30 minutes, using the 80th percentile model
with a prediction interval of 20 minutes, we can reduce the
energy overhead of ads by as much as 50%, while impacting
the SLAs of only 3% of the ad inventory. For ads with
deadlines longer than 30 minutes, a prediction interval of
15 minutes is sufficient to eliminate the problem of SLA
violations. In the presence of background traffic, the energy
reduction is even higher.

5. Overbooking model
The app usage prediction model guarantees a negligible
number of SLA violations for ads with deadlines over
30 minutes, but could the proxy deal with shorter deadlines?

We explore whether advertising systems can take advan-
tage of research in the area of overbooking of temporal re-
sources [10, 33], which besides the traditional use cases of
airline and hotel reservation systems, has been shown to be
effective also for resource provisioning in the cloud [36].

To support overbooking, we modify our prefetching sys-
tem as follows: (a) The proxy maintains a queue of un-
expired, pending ads that have already been sent to some
clients. (b) Each time a new client request is received, the
proxy computes not only an estimation of how many ad slots
the client will have in the next prediction interval, but also
the probability of each of those slots being used. This can be
computed from the PDF of historical slot counts of the user.
(c) On a request of new ads, the proxy sends to the client not
only a set of ads, but also the information about which ad to
be shown in which slot. (d) The proxy can send new ads to a
client, or overbook (or replicate) some of the pending ads.

Intuitively, overbooking or sending an ad to multiple
clients increases the chance that the ad will be displayed by
at least one client and hence decreases the SLA violation
rate. However, it entails the risk of displaying the same ad in
multiple client slots while only being paid for one impres-

sion by the advertiser (i.e., revenue reduction may occur).
The goal of the overbooking model is to maximize the num-
ber of distinct ads that can be shown given a certain num-
ber of client ad slots. In particular, prefetched ads which are
unlikely to be shown, and only those, should be replicated
across clients more aggressively. For the next experiments,
we conservatively assume that there is no background net-
work traffic for opportunistic notifications to the proxy.
Overbooking algorithm. Each time a client device requests
a set of ads, the overbooking model attributes a showing
probability to each of its pending ads. For a given pending
ad, let S denote the set of ad slots (in different clients) it has
been sent to, and let P (Si) denote the probability of the ith
slot in S being used. Let X be the random variable denoting
the number of times the pending ad will be displayed. Then,

P (X ≥ 1) = 1−
∏
i

(1− P (Si))

P (X = 0) = 1− P (X ≥ 1)

P (X = 1) = P (S1)
∏
i6=1

(1− P (Si)) + . . .

P (Sn)
∏
i6=n

(1− P (Si))

P (X > 1) = P (X ≥ 1)− P (X = 1)

P (X = 0) is the probability that an SLA miss will occur
for the ad and P (X ≥ 1) is the probability that multiple
displays will be made.

Each time a request is made for a batch of ads, the proxy
iterates through the set of ads it has already retrieved from
the ad exchange whose display status is unknown, and ver-
ifies if the penalty for associating the ad with a given slot
will increase or decrease. If the penalty decreases, the ad is
associated to the slot that most minimizes its penalty. The
penalty function is defined as:

Penalty = P (X ≥ 1)×O + P (X = 0)

The parameter O is the overbooking threshold value that
the proxy uses to tune the aggressiveness of the overbooking
model. The smaller the value of O, the more aggressive
overbooking is. We use the same value of O for all ads, but
this could also be used to prioritize certain types of ads over
others, potentially based on revenue.

The above penalty function can be computed for ads that
have already been sent to other clients (and hence the set S
of slots they are attached to is non empty). For an ad which is
currently not sent to any client, however, this is not true. For
such an ad, we use the following procedure to pick a slot.
Each such ad has a lifetime d, computed as the difference
between its original deadline D and the time elapsed since it
was first prefetched. We would like to attach shortly expiring
ads to the first ad slots available, with higher probability of
being used. We therefore assign the ad to any of the first
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Figure 11. Effect of different overbooking thresholds.

d/D × B slots, where B is the batch size predicted. For
example, if an ad is not attached to any slot (in any client)
yet, but its lifetime is only 1/3rd of its deadline, we assign
it to any of the first 1/3rd slots. This ensures that the shorter
the lifetime, the more aggressively the proxy puts the ad on
slots with higher showing probability.
Evaluating overbooking. Overbooking results in decreased
SLA violations at the cost of revenue loss. Different ad
networks may have different preferences towards these two
factors. For example, in existing ad systems, when the ad
proxy retrieves an ad from the ad exchange, the ad network
who won the auction assumes that it will be immediately
displayed on the client. This is important because the ad
network has to manage its own campaigns from different
advertisers. Thus, it is expected that the proxy will try to
reduce the SLA violations as much as possible, even at
the cost of losing some revenue (when ads are displayed
multiple times). This preference can be controlled by the
overbooking threshold O.

Figure 11 shows the effects of two different overbooking
thresholds. We unify SLA violation and revenue loss into a
single loss metric: (α×sla violations+(1−α)×rev loss),
which allows ad networks to weigh the two factors according
to their preference. We report the loss metric for two values
of α. As shown, when SLA violation is more important
than revenue loss (i.e., α = 1), the ad network should
use aggressive overbooking, with a smaller value of the
overbooking threshold (e.g., O = 1). On the other hand,
when revenue is more important, the ad network should use
conservative overbooking, with a larger value of O.

6. Related work
Previous work looked at the energy cost of mobile ads and
proposed prefetching and caching to limit the overhead.
Vallina-Rodriguez et al. [37] provide an in-depth character-
ization of mobile ad traffic using traces of over 3 million
subscribers of a major European mobile network. They pro-
pose a phone prototype for prefetching and caching ads and

show the energy improvements achievable. The authors of
[17] focus their study on the ad overhead of 13 popular An-
droid apps and sketch the proposal for a middleware that
prefetches ads when network conditions are most favorable.
No implementation or evaluation is provided. Finally, a third
study by Pathak et al. [28] evaluates the high network cost
of advertising using a fine-grained energy profiler for smart-
phones. They test the tool with 6 popular Android apps and
find that ads in a game such as Angry Birds consume 45%
of the total energy. We share the same goal of the first two
studies, but we focus on designing and evaluating a solu-
tion compatible with the current ad ecosystem, particularly
with the real-time bidding model of ad exchange. Our en-
ergy measurements are in accordance with the findings of
all these three studies. We further isolate the communication
overhead of advertising from that of the app itself in order to
get a more precise estimate.

As discussed in Section 2.4, the high communication en-
ergy costs of mobile ads are due to the ‘tail time’ of 3G
networks. A long tail time improves responsiveness, but
causes a large energy tail. Balasubramanian et al. [7] show
that in 3G networks, about 60% of the energy consumed
for a 50 kB download is tail energy. In a GSM network
where the tail time is shorter, network transfers consume
40% to 70% less energy compared to 3G, but suffer from
higher network latency. WiFi is not affected by the tail en-
ergy problem, but incurs a high initialization cost for as-
sociating with an access point. Solutions to the tail energy
problem looked into determining the optimal tail time for
different 3G networks [9, 39]. However, as the tail time is
under the carrier’s control, they require changes at the net-
work operator’s side. Other solutions use “cheaper” radios
to reduce the wake up and tail energy of the cellular ra-
dio [7]. For instance, Cell2Notify[2] uses the GSM radio to
wake up WiFi. Others, such as Coolspots [29], switch from
low-power/low-bandwidth interfaces (Bluetooth) to high-
power/high-bandwidth interfaces (WiFi), when an applica-
tion requires it. In general, these approaches are orthogonal
to the savings that prefetching ads in bulk provides. Finally,
application-specific solutions have been considered as well.
Balasubramanian et al. [7], for example, propose efficient
scheduling of network transfers for delay tolerant applica-
tions (email, news feeds and software updates) and prefetch-
ing for web search and browsing. Our solution falls in this
category and focuses on the dynamics of modern advertising
networks.

In general, prefetching techniques have been studied ex-
tensively in the context of web browsing, both for desk-
tops [16, 23, 26, 27] and mobile devices. For mobile devices,
prefetching has been used to support disconnected opera-
tion [18, 40], or to reduce access latency and power con-
sumption [4, 7, 40]. Predicting a user’s web accesses typ-
ically relies on determining the probability of the user ac-
cessing web content based on previously accessed content,
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by extracting sequential and set patterns [14, 26], as well as
temporal features for higher prefetching accuracy [22]. Our
app usage prediction model is based only on temporal access
patterns. The main difference between web content prefetch-
ing techniques and ad prefetching is that for web content the
prefetching strategy is entirely client-driven, whereas for ads
the server needs to be in control to minimize the risk of rev-
enue loss.

Techniques to preemptively load mobile apps for reduced
launch time use location features to predict which apps are
more likely to be used in specific locations [38]. Our system
could use these techniques to improve targeting of ads.

Finally, ad systems have been the focus of several recent
projects [5, 13, 35] mainly because of the privacy issues they
raise. Privacy-preserving architectures such as Adnostic [35]
and Privad [13] allow users to disclose only coarse-grained
information about themselves, while personal profiles are
kept local and use to rank relevant ads. Although the main
motivation of our work is not privacy, interestingly, these
architectures build on the assumption that prefetching ads in
bulk is a feature supported by ad servers. For instance, Privad
uses subscription-based prefetching where the user manually
subscribes to ads category of interest and corresponding ads
are fetched at a proxy whenever available. Our solution to
ad prefetching, which is also compatible with the existing
ad infrastructure, can make privacy-preserving ad system
viable.

7. Conclusion
Although content prefetching is a well-established practice
in several domains (file systems, web browsing and search),
applying it to ad systems is non trivial. The on-demand
nature of the ad exchange’s auction model does not lend
itself easily for disconnected operation. The advantage of
prefetching ads in bulk for smartphone users is significant:
we show the communication energy consumed by ads can be
reduced by 50% or more. The incentive for the ad ecosystem
to support such a model is manifest by the largest mobile ad-
vertising platforms being owned by the largest smartphone
providers. The remaining question is: can ad platforms af-
ford to support such a model? This paper explores this ques-
tion by architecting an ad prefetching system that relies on
app usage prediction models to estimate how many ads users
are likely to consume in the future, and an overbooking
model to probabilistically replicate ads across clients.

We show the tradeoffs involved in tuning such a system
to provide energy savings with limited revenue loss for the
ad system. Specifically, the risk of not being able to show all
prefetched ads by their deadlines and unnecessarily showing
the same ad multiple times should be kept to a minimum.
This paper is a first step towards establishing an ad prefetch-
ing model on which more complex functionality can be built.
Among those, privacy is one we intend to explore in the fu-
ture. Recent systems have already shown ad prefetching to

be essential in supporting anonymization of users’ personal
information, but it is unclear whether the prefetching band-
width is sufficient to achieve solid privacy guarantees.
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