
Efficient Band Approximation of Gram Matrices for Large
Scale Kernel Methods on GPUs

Mohamed Hussein
Department of Computer Science

University of Maryland
College Park, MD 20742

mhussein@cs.umd.edu

Wael Abd-Almageed
Institute for Advanced Computer Studies

University of Maryland
College Park, MD 20742

wamageed@umiacs.umd.edu

ABSTRACT
Kernel-based methods require O(N2) time and space com-
plexities to compute and store non-sparse Gram matrices,
which is prohibitively expensive for large scale problems.
We introduce a novel method to approximate a Gram ma-
trix with a band matrix. Our method relies on the locality
preserving properties of space filling curves, and the special
structure of Gram matrices. Our approach has several im-
portant merits. First, it computes only those elements of the
Gram matrix that lie within the projected band. Second, it
is simple to parallelize. Third, using the special band ma-
trix structure makes it space efficient and GPU-friendly. We
developed GPU implementations for the Affinity Propaga-
tion (AP) clustering algorithm using both our method and
the COO sparse representation. Our band approximation is
about 5 times more space efficient and faster to construct
than COO. AP gains up to 6x speedup using our method
without any degradation in its clustering performance.

1. INTRODUCTION
Kernel-based machine learning methods [15][25][27][32] have
gained significant attention within the machine learning com-
munity and other applied fields for more than a decade.
They are commonly used for many purposes, such as classi-
fication [12], regression [29], clustering [10], and dimension-
ality reduction [25]. The main advantage of kernel methods
is their ability to learn non-linear functions using simple lin-
ear methods. They achieve this by implicitly mapping the
input points from the input space to a typically higher, and
possibly infinite, dimensional feature space. The mapping is
realized via a kernel function, which computes a dot product
between a pair of data points in the feature space without
explicitly performing the mapping to that space. This is
popularly known as the kernel trick. The pairwise dot prod-
uct values are stored in the so-called Gram matrix or kernel
matrix.

Given a data set of N points, computing the pairwise ker-

nel values requires O(N2) computations and the values are
stored in an N ×N matrix. For large values of N , the time
and space complexities to compute and store the Gram ma-
trix can be prohibitively expensive. A common solution to
the space complexity problem is to compute the elements
of the kernel matrix on-demand, which trades the memory
requirements for a much longer computational time. These
complexities limit the use of kernel methods to relatively
small problems. However, our era is marked with the avail-
ability of tremendous amounts of digital data that needs
to be analyzed. Moreover, in many learning applications,
increasing the number of training data points significantly
improves the model’s performance. For example, Munder
and Gavrila [17] showed that the classification error of their
Support Vector Machine (SVM) classifier, for human detec-
tion in images, was reduced by approximately a factor of
two by only doubling the size of the training data set. They
also noted that the reduction in the classification error ob-
tained by increasing the number of training points exceeded
any reduction obtained by using better features or learning
algorithms. A similar observation was made by Torralaba et
al. [31]. Inspired by such observations, our research focuses
on enabling large scale learning with kernel based methods.

Fortunately, the availability of massive datasets nowadays
and the increased demand and motivation for large scale
learning is accompanied with the emergence of several new
computing architectures, such as Graphics Processing Units
(GPUs). GPUs have been rapidly advancing towards higher
levels of parallelism, and have recently become readily pro-
grammable with simple thread-based Application Program-
ming Interfaces (API) instead of using graphics primitives.
However, the tremendous computing power provided by such
devices is both a bless and a challenge at the same time. The
virtue of parallelism offered by GPUs comes at the expense
of several restrictions on the algorithm design in order to
achieve the promised performance. One of the most crit-
ical of these restrictions is on the memory access pattern
exhibited by the algorithm.

In this paper, we present a novel approach to address the
limitations of kernel based methods for large-scale machine
learning applications. Specifically, we introduce a new method
to construct a band sparse matrix approximation to the
Gram matrix. The idea is to order the input points so that
the significant elements of the Gram matrix become confined
to a limited band. Having a sparse structure for the Gram
matrix is generally one of the ways to address the space com-

plexity problem of kernel methods. However, having a band
sparse matrix structure in particular offers more advantages.
It allows for a very simple representation that has signifi-
cantly lower memory overhead than general sparse matrix
representations. Moreover, this simple representation natu-
rally adheres to the restrictions on memory access patterns
on GPUs for many common matrix operations. Therefore,
it allows for significantly more efficient implementations for
most algorithms that operate on the matrix.

To construct a band approximation to the Gram matrix, we
order the input points so that those that are close to one
another in the resulting ordering are more likely to be close
in the Euclidean space in which they reside. To efficiently
obtain the desired ordering, we rely on the locality preserv-
ing properties of space filling curves [24]. To construct the
matrix, we evaluate the kernel function only within a fixed
neighborhood around each point in the obtained ordering.
This results in a band Gram matrix by construction. The
assumptions here are that the value of the kernel function
is monotonically decreasing with the Euclidean distance be-
tween the input points, and the significant values of the func-
tion occur between points within the selected neighborhood
size.

To illustrate the validity of the proposed approach, we use
Affinity Propagation [9][10], an unsupervised clustering al-
gorithm, as an example of kernel methods. Affinity Prop-
agation (AP) operates on a similarity matrix. Similar to a
kernel matrix, a similarity matrix has an element for every
pair of points, whose value represents a measure of simi-
larity between the two points. Typical choices of similarity
functions, such as the negative sum of squared differences,
and its exponential, can be shown to be dot products in
higher dimensional mappings of the input points. We devel-
oped two GPU implementations for AP: one is based on our
method, and the other is based on the COO (Coordinate)
general sparse matrix representation [23]. As a baseline for
comparison, we also developed a CPU implementation for
AP based on COO. Our results show that the band matrix
representation used in our method is 5 times more space
and time efficient to construct than the COO representation
on GPUs. Moreover, the GPU implementation of AP using
our approach is 6 times faster than the GPU implementation
using COO and 114 times faster than the CPU implementa-
tion. This significant speedup for AP comes with no loss in
its clustering performance despite the approximation in our
approach.

The main contributions of this paper are:

• An efficient method to construct a band approxima-
tion of a Gram matrix, without having to compute
all elements of the matrix first. The simplicity of
representing a band matrix allows for space efficiency
and time efficiency on processing the matrix on GPUs.
Hence, our method can effectively address the space
and time complexities associated with kernel based
learning methods for large scale problems.

• An efficient GPU implementation of the Affinity Prop-
agation algorithm using our method. This implemen-
tation achieves 114x speedup over the CPU implemen-

tation and 6x speedup over another GPU implemen-
tation based on the COO sparse matrix representa-
tion. These speedups are achieved without compro-
mising the quality of the output clustering.

The rest of the paper is organized as follows: We briefly
present the related work in Section 2. In Section 3, we high-
light the main features of GPUs and the performance-critical
considerations needed to be taken into account to develop
efficient GPU algorithms. Then, we explain our method to
construct band approximations to Gram matrices on GPUs
in Section 4. We introduce AP and its implementation on
GPUs in Section 5. In Section 6, we present the experimen-
tal results. Finally, we outline our conclusions and plans for
future work in Section 8.

2. RELATED WORK
The work addressing the limitations of large scale kernel
methods can be broadly classified into two main categories –
(1) methods that depend on constructing low-rank approx-
imations of the kernel matrix and (2) efficient implemen-
tations for computing the kernel matrix. Low-rank meth-
ods depend on the observation that the eigen-spectrum of
the kernel matrix rapidly decays, especially when the ker-
nel function is a Radial Basis Function (RBF) [25][26][33].
Hence, for a kernel matrix K with eigenvalues λ1 ≥ λ2 · · · ≥
λN ≥ 0 and corresponding eigenvectors vi, K =

∑N
i λiviv

T
i .

However, since the eigen-spectrum decays rapidly (i.e. most
of the information is stored in the first few eigen vectors),

the kernel matrix can be approximated by K̃ =
∑M

i λiviv
T
i ,

and M << N . Williams and Seeger [34] use the Nystrom
method [6] to compute the most significant M eigenval-
ues and eigenvectors. The number of computed eigenvec-
tors is inversely proportional to the approximation error.
Nystrom-based methods are O(M2N) where M is the num-
ber of computed eignvectors. Also, Drineas and Mahoney
[8], and Smola and Schökopf [30], for example, compute a
rank-k approximation of the kernel matrix using a subset of
the column (or basis functions) of the kernel matrix. These
methods generally are O(N) in both space and time.

Due to the importance of kernel-based methods, they have
been the target of prior GPU implementations. Ohmer et al.
[21] use GPUs to implement the classification step of SVM
classifier, in which the kernel values are computed between
the input test vector and the set of support vectors. While
focusing on the classification phase rather than the train-
ing phase of the computation can be justified by the higher
frequency of using a trained model for classification in prac-
tical applications, for large scale learning the training phase
becomes the main obstacle. In SVM classifiers, for exam-
ple, the number of support vectors in a trained model can
be much smaller than the training vectors used to train the
model. Catanzaro et al. [4] presented an implementation
of Platt’s Sequential Minimal Optimization (SMO) [22] on
GPUs for training SVMs. In this implementation, the kernel
size issue was handled by caching recently used values and
computing other values on demand upon cache misses. For
large scale problems, cache misses are more likely to hap-
pen. Hence, computing the kernel values on cache misses is
expected to be the computational bottleneck in large scale
problems.

The idea of using space filling curves to order points for
efficient access on GPUs was recently used by Leiberman et
al. [14] with the similarity joint operation and was suggested
also for use to approximate k-nearest neighbor search. Our
sparse matrix representation actually uses approximate k-
nearest neighbor search to obtain the band matrix structure.

In contrast to band reduction techniques, such as the RCM
algorithm [5], our method does not start from an already
constructed general sparse matrix and reduce it to a band
matrix. Instead, our method directly constructs a band ma-
trix from the input points. This is a fundamental differ-
ence since constructing a sparse matrix typically requires
the computation of the full dense matrix first to determine
which elements to keep. Our method computes only the
elements within the projected band. Moreover, band reduc-
tion techniques typically use graph algorithms, which are
hard to implement in parallel. Our method can be easily
implemented in parallel in an efficient way.

3. MODERN GRAPHICS PROCESSING UNITS
We briefly present the main features of the Compute Uni-
fied Device Architecture (CUDA), which is the main stream
architecture/model used for general purpose computing on
GPUs nowadays. For a detailed description, the reader is
referred to Nickolls et al. [18], and the NVIDIA CUDA
Programming Guide [19].

3.1 Architecture
In CUDA, a parallel compute device, such as the GPU, is
referred to as a device. A CUDA device is responsible of
running CUDA kernels in parallel. A CUDA kernel is a C
function which specifies the operation performed by a single
thread of execution. Launching CUDA kernels and control-
ling the path of execution from one kernel to the next are
performed by a separate serial processor, such as the CPU,
referred to as a host.

Figure 1 is an illustration of CUDA’s device architecture. A
CUDA device consists of a number of Streaming Multipro-
cessors (SMs) that ranges from 2 to 30. Each SM consists
of 8 core Streaming Processors (SPs). Each SP has exclu-
sive access to a designated number of registers in its SM’s
register file. All SP’s in the same SM have access to a low
latency shared memory space. The shared memory is or-
ganized in banks so that each bank can serve one memory
access at a time. All SPs in all SMs have access to three
common memory spaces, which are

1. Global Memory: A read/write non-cached memory space.

2. Constant Memory: A read-only cached memory space.

3. Texture Memory: A read-only cached memory space
with hardware support for filtering operations and mem-
ory access modes needed for texture fetching.

Accessing constant and texture memory spaces is as fast
as accessing local registers on cache hits. Accessing shared
memory is as fast as accessing registers if there is no memory
bank conflict, i.e. if no two SPs access two different locations
within the same shared memory bank. On the other hand,

accessing global memory is typically up to two orders of
magnitude slower. In fact, accessing global memory is also
two orders of magnitude slower than floating point multiply
and add.

3.2 Execution Model
The execution of CUDA kernels follows a Single-Instruction
Multiple-Thread (SIMT) model. Each thread executes a
CUDA kernel on a single SP. Threads are virtually orga-
nized in a three dimensional discrete space referred to as a
grid. This space is further divided into equally sized rect-
angular boxes called blocks. The number of threads and
dimensionality of the thread blocks and grid are specified
by the programmer depending on the operation to be per-
formed and the size and dimensionality of the input data.
All threads in the same block execute on SPs of the same SM.
Therefore, threads within a block can communicate with one
another through the shared memory space in the assigned
SM. Threads in the same block can also use efficient barrier
synchronization to coordinate their executions. The execu-
tion unit of the SM executes threads in parallel in groups
of 32, called warps. Threads within the same warp need
to follow the same execution path to obtain the maximum
possible performance. Otherwise, divergent execution paths
within a warp are serialized. Different warps are run in par-
allel by an SM in a time slicing fashion.

3.3 Performance Considerations
There are several important considerations that must be
taken into account in order to maximally exploit the com-
putational power of CUDA device. For an extensive dis-
cussion of these considerations, the reader is referred to the
”CUDA C Programming Best Practices Guide” [20]. The
most important of these considerations is optimizing global
memory accesses. As noted earlier, accessing global memory
is significantly slower than accessing other memory spaces
and than compute instructions. One way to alleviate this
overhead is through sharing data loaded from global mem-
ory among threads by using the shared memory space. A
significant gain can be achieved also by considering how ac-
cesses to global memory are realized by the hardware. If
data is organized in a simple array structure so that each
element is either 4, 8, or 16 bytes long, threads within the
same half warp access consecutive data elements, and the
starting address accessed by a half warp of threads is a mul-
tiple of 16 data elements size, these accesses are grouped
(coalesced) in one memory access instruction for the entire
half warp. If the last condition of address alignment is not
satisfied, on devices with compute capability 1.2 or higher,
at most two memory access instructions are issued for the
entire half warp, while in older devices, 16 memory access
instructions are issued. Fortunately, shared memory can
be used to significantly reduce the overhead of non-aligned
consecutive accesses on both old and new architectures. On
the other hand, accessing random array elements by threads
in the same warp can lead to launching a memory access
instruction for each thread in all devices, which leads to
a significant slow down. Other performance considerations
include fine grain parallelism, and minimizing thread diver-
gence and shared memory bank conflicts.

Taking these constraints into account is the key to achieving
good performance on CUDA devices. As you will see, using

Figure 1: CUDA Architecture.

a data structure that can easily be accessed in a way that re-
spects the global memory access rules can achieve significant
speedups.

4. REPRESENTATION OF GRAM MATRI-

CES ON GPUS
Since the Gram matrix often has a rapidly decaying eigen-
spectrum, as explained in Section 2, especially when using
kernel functions with compact support, it is customary to
assume that the matrix is approximately sparse and use
sparse matrix structures to store (and operate on) its sig-
nificant values. We are particularly seeking a sparse matrix
representation that is efficient to construct, has low space
overhead, and efficient to perform common matrix opera-
tions on when implemented on GPUs.

The Compressed Sparse Row (CSR) is a common sparse
matrix representation on GPUs [11]. It supports efficient
sparse matrix-vector multiplication, and other operations,
through efficient segmented scans [7]. A closely related rep-
resentation is the Coordinate (COO) representation [23] [2].
Despite the larger spatial complexity of COO compared to
CSR, COO exhibits a better memory access pattern on GPUs
for some operations. We use COO as a baseline represen-
tation in our experiments. Nevertheless, in the following
discussions, all our arguments about COO, except for the
space complexity issue, apply equally to CSR.

COO is a general sparse matrix representation that does not
assume any special structure for the matrix. As we will show
below, due to its generality, the COO representation has
several shortcomings in terms of its space overhead and the
memory access pattern exhibited with it in common matrix
operations on GPUs. To overcome these limitations, we aim
to find an approximation to the Gram matrix with a spe-
cial structure that can be represented efficiently on GPUs
in terms of space and computations. In our approach, this
special structure is the band matrix structure.

In the rest of this section, we first explain the COO represen-
tation and its limitations in Section 4.1. Then, we explain

Figure 2: Representation of an example general sparse ma-
trix using the Coordinate (COO) representation. The rep-
resentation consists of three arrays to store row indices, col-
umn indices, and values of non-zero elements. The arrays
can be sorted according to either the row indices or the col-
umn indices depending on whether we need to perform scan
over the rows or the columns of the matrix. If scanning is
performed on rows and columns interchangeably, a mapping
from one ordering to the other is retained with the struc-
ture. Finally flags arrays indicating the beginning of each
row and column is needed for the segmented scan operation.

the band matrix structure and its merits in Section 4.2. Fi-
nally, we explain how we obtain the band approximation of
the Gram matrix in our approach in Section 4.3.

4.1 General Sparse Matrix Representation Us-

ing COO
Consider the COO representation of a general sparse matrix,
as shown in Figure 2. In this representation, three arrays
are used to store the row index, column index, and the value
of each significant element in the matrix. For m significant
elements to store, we use the space of 3m elements, which

Figure 3: Representation of a band matrix using a 2D array.
Each diagonal of the matrix is stored in one row of the array.
Each row is stored in one column of the array. And each
column of the matrix is stored as a diagonal in the array.

is a significant overhead factor. Beside the space overhead
of this representation, when processing each element of the
matrix depends on its row and column indices, three arrays
need to be accessed in order to process all elements, which
results in a significant time overhead if the processing is not
compute intensive.

To perform a scan operation on the rows of the matrix ef-
ficiently in parallel, the three arrays need to be sorted ac-
cording to the row index values. Having arrays sorted in
such a way, a segmented scan operation can be used to per-
form the scan operation in parallel. Fortunately, there are
efficient algorithms for segmented scans [28] [7]. However,
the segmented scan operation requires as input an array of
flags, whose elements designate the beginning of each row of
the matrix. This is on top of the internal arrays used by the
operation itself. Therefore, the operation can be performed
efficiently on a GPU with the usage of extra space. Simi-
larly, if we are to perform a scan operation on the columns of
the matrix, we need to have the arrays sorted according to
column indices, and an array of flags to mark the beginning
of each column. Figure 2 shows the COO representations of
a sample sparse matrix with using row-based ordering and
column based ordering.

Another shortcoming of this representation arises when we
need to perform the scan operation on both rows and columns
interchangeably. In this case, the COO representation must
be extended. One solution is to keep the arrays sorted ac-
cording to the row indices, for example, and two extra ar-
rays: one to store the mapping from the row-index-based
order to the column-index-based order of the arrays, Fig-
ure 2, and the other is the flags array of the column-based
ordering. When we need to perform a scan operation over
the columns, we use the mapping array to reorder the val-
ues and perform a segmented scan on the reordered array.
Note that we need an extra array to temporarily store the
reordered values. Finally, the mapping from one order to the
other requires random device memory access during write,
which does not respect the conditions for coalescing, as dis-
cussed in Section 3.

4.2 Band Matrix Representation
Consider an N×N band matrix with a bandwidth k, i.e. the
non-zero (or significant) elements are confined to at most k

diagonals. A simple representation of such a matrix on the
GPU is a 2D array, where each diagonal of the matrix is
stored as a row of the array, and each row of the matrix

is stored as a column of the array [2], as shown in Fig-
ure 3. To perform a parallel scan operation on the rows
of the matrix, we can assign each thread to a column of the
representation array. Each thread loops over the elements
of its assigned column and performs the operation. Hence,
consecutive threads in a block of threads read consecutive el-
ements in memory. Furthermore, if the array is allocated so
that each row starts at a properly aligned memory address,
and the block width is selected appropriately, all conditions
for memory access coalescing are satisfied, and hence the
read operation is performed efficiently.

Note that in our 2D array representation, columns of the
matrix are stored in diagonals of the array, as shown in Fig-
ure 3. If we need to perform a scan operation on the columns
of the matrix rather than the rows, we can still assign each
thread to a column in the matrix. Each thread loops over
the elements of its assigned column. Consecutive threads
still read consecutive memory addresses. However, since
columns of the matrix are stored as diagonals in the repre-
sentation arrays, looping over elements in a column require
non-aligned memory access. Fortunately, as we mentioned
in Section 3.3, consecutive accesses, even if the addresses
are not properly aligned, can always be made to satisfy co-
alescing requirements either directly through the hardware
in latest models, or through software by making good use of
the shared memory space.

As we have shown, we can efficiently perform simple scan
operations on the rows or columns of a band matrix repre-
sented as a 2D array. Another advantage of this represen-
tation is that the row and column indices of each element
can be calculated instead of being read from separate ar-
rays, which saves a lot of time in memory bound processing.
The space overhead of the band representation depends on
the location of the significant diagonals with respect to the
main diagonal. Suppose that the bandwidth k = 2h + 1, so
that the bandwidth is divided as the main diagonal, and h

diagonals below it and h diagonals above it. In this case,
we use a space sufficient for kN elements to actually store

kN−h2−h elements. Therefore the space overhead is h2+h
kN

.
Note that the space overhead is always smaller than 1. The
scan operations do not require any extra space in the device
memory.

4.3 Band Approximation of Gram Matrices
We have shown the advantages of the simple representation
for band matrices over the COO representation for general
sparse matrices in terms of the space overhead and the effi-
ciency of the memory access pattern for performing simple
scan operations over the rows and columns of the matrix.
To exploit these advantages for sparse kernel matrices, we
need to find an ordering of the rows and columns that puts
most of the significant elements within a fixed number of
diagonals and use a band matrix representation for the re-
sulting matrix. If the scan operations to be performed are
both commutative and associative, changing the order of
the rows and columns will not affect the results. We refer
to this approach by BAG, for Band Approximation of Gram
matrices.

Each element of a Gram matrix is the value of a kernel func-
tion on two points. We assume that the data points lie in a

Cartesian space and the kernel value between pairs of points
is inversely proportional to the distance between the points
in the Cartesian space. These assumptions are satisfied by a
variety of kernel functions, including the most popular RBF
kernel. A typical kernel function choice in Affinity Prop-
agation is the negative sum of squared differences, which
satisfies these assumption too.

In order to obtain a band kernel matrix of bandwidth k, the
problem is to find an ordering of the points such that nearby
points in the Cartesian space are at most k elements apart
in that ordering. This ordering may not optimally exist.
Therefore, we need an ordering that satisfies this property
for most of the elements. We can formulate the problem of
finding such ordering as an optimization problem. This is
basically the idea of band reduction techniques for sparse
matrices [5]. However, band reduction techniques require
the construction of the sparse matrix first, and are complex
to parallelize as we explained in Section 2.

We use Space Filling Curves (SFC) [24] to obtain the desired
reordering. A space filling curve is a path through the points
of a discrete Cartesian space that passes through each point
exactly once. There are many types of SFCs. Typically,
an SFC is more likely to connect points that are close to
one another in the space than to connect points that are far
away in the space. However, this locality preserving property
varies from one type of curves to another. The family of
Hilbert curves [3] is known to have good locality preserving
properties. However, they are complex to construct. A much
simpler curve to construct is the Z-curve [16]. Despite being
inferior to the Hilbert curves in locality preserving, it is good
enough in many applications. As we will show, it works
remarkably well for kernel matrix reordering with the affinity
propagation algorithm.

The construction of the space filling curve is performed im-
plicitly (i.e. we need not know how exactly the curve looks
like.) Given a set of points in a Cartesian space, all what we
need to know is their ordering along the curve, i.e. in which
order the points are encountered upon traversing the curve
from its starting to its ending points. For the Z-curve, this
ordering is known as the z-order, or the Morton code. The z-
order can be computed very efficiently using bit interleaving
of the point coordinates in the Cartesian space [24]. For real
valued data, we first map the points to the unit hypercube.
Then, we discretize the coordinates by mapping each point
to the closest cell of a discrete grid over the unit hypercube
. Morton codes are computed using the discrete coordinates
of the assigned grid cells, and the points are sorted by their
ascending or descending Morton code values. Figure 4 shows
an illustration of these steps for a simple 2D example. In
our implementation, we use the bitonic sort algorithm [13]
to sort the codes. Although the complexity of bitonic sort is
O(N log2 N), the time to compute the codes and sort them
is negligible with respect to the rest of the computations.

5. AFFINITY PROPAGATION ON GPUS
To illustrate the effectiveness of our band approximation of
the Gram matrix, we use Affinity Propagation (AP) as an
example of kernel methods. In this section, we briefly ex-
plain the AP algorithm, and describe our GPU implemen-
tation.

a

b
c

d

e

f

g

h

b a d c g e h f

Mapping of points to

unit square

Discretization of

 coordinates

Mapping of points to the

space filling curve

Ordering points according

to their location on the

curve and using a fixed

neighborhood for

computing similarities

Figure 4: An illustration of the construction of the similarity
matrix using space filling curves. The Z-curve is used in this
illustration, and in our implementation.

5.1 Affinity Propagation
AP is an unsupervised data clustering algorithm introduced
by Frey and Dueck [9][10]. There are two main advantage
of data clustering using AP: First, the number of clusters
K need not be a priori specified. Second, AP operates on
pair-wise similarity values which can be computed on non-
Euclidean manifolds. For completeness, we briefly describe
Affinity Propagation clustering.

Let X = {xi; i = 1, 2, . . . , N} be a set of data points (i.e.
observations vectors) with unknown cluster structure and
X ⊂ Rd. The objective is to find a subset Xe = {xk; k =
1, 2, . . . , K} ⊂ X of cluster exemplars where K � N . This
problem is classically handled using the K-center algorithm
in which K points are selected at random from X and the
subset is iteratively refined by minimizing the distance be-
tween the data points and the exemplars. The procedure is
usually repeated more than once in order to converge to the
best solution. AP, on the other hand, considers all points
to be possible exemplars. Based on similarity (as opposed
to distance) s(i, j) between xi and xj . Self similarity values
s(k, k) are referred to as the preference values. The higher
the preference given to a sample point, the more likely it can
be selected as an exemplar by the algorithm.

AP operates by iteratively exchanging two types of messages
between data points – availabilities and responsibilities. Re-
sponsibility r(i, k) indicates the desire of point i to belong
to a cluster for which point k is the exemplar. Availability
a(i, k) indicates the willingness of point k to serve as the
exemplar of the cluster to which point i belongs. All avail-
abilities are initialized to zeros. Responsibilities are updated
as soft assignments using Equation 1.

r(i, k)←

{

s(i, k) − max
k′ s.t. k′ 6=k

(

a(i, k′) + s(i, k′)
)

}

(1)

This responsibility update ensures that all potential exem-
plars compete for data points. Availabilities are updated
using Equation 2.

a(i, k)←min







0, r(k, k) +
∑

i′ s.t. i′ /∈{i,k}

max (0, r(i′, k))







and i 6= k

(2)

The self-availability a(k, k) is updated differently in order
to reflect the evidence that point k can be an exemplar, as
shown in Equation 3.

a(k, k)←
∑

i′ s.t. i′ 6=k

max (0, r(i′, k)) (3)

The algorithm proceeds by iterating over the responsibil-
ity and availability update steps in Equations 1, 2, and 3
until convergence or the maximum number of iterations is
reached [10].

5.2 GPU Implementation
The dense matrix implementation of AP is O(N2) in both
computational and memory requirements. In practice, the
similarity values sij can be thresholded so that small values
are ignored and the pairwise similarity values can be stored
in a sparse matrix. Using the massive parallelism available in
modern GPUs, we can effectively address the computational
complexity problem.

For simplicity of presentation let’s assume that full matrices
are used to implement AP. To store the similarity values
s(i, j), and the preference values s(k, k), we need an N ×N

array S. To store the availability and responsibility messages
sent from one point to another, we need another two arrays
of the same size, A and R, respectively. From equation 1,
to update the responsibility values, we need to scan rows of
the A and S arrays. Specifically, we need two passes over
each row. In the first pass, we compute the maximum two
a(i, k) + s(i, k) values in each row. In the second pass, we
compute the updated responsibility value for each element
in the row, using the two maximums computed in the first
pass. From equation 2, to update the availability values, we
need to scan the columns of the R array twice as well. In the
first scan pass, we compute the sum of all positive elements
in the column excluding the self responsibility values. In the
second pass, we update the availability value of each element
using the sums computed in the first pass. Implementing row
and column scans on full matrices on the GPU is straight
forward and efficient. However, we cannot store full matrices
in memory even for moderately large problems. Therefore,
we must use a sparse structure.

Both the COO and BAG representations support row and
column scan operations which we need to perform inter-
changeably in AP. We will show that the COO represen-
tation will be highly inefficient for this purpose compared to
the BAG representation. The COO structure is constructed
by first sampling random pairs of points and computing sim-
ilarity values between them. Then, we select a threshold
below which similarity values are discarded. The thresh-
old is selected based on the random sample and based on

a pre-specified limit on the final storage size. Note that to
construct the COO structure, we need to compute the simi-
larity values between all pairs of points in order to threshold
them and keep the significant ones only. Also, recall from
Section 4.1 in order to support both row and column scans
in this structure, we need to keep a mapping from an or-
dering based on row indices to an ordering based on column
indices. In our implementation, we construct the structure
first ordered by row indices, then use bitonic sort to obtain
the ordering based on column indices, and retain the map-
ping between the two orderings. After constructing the S

matrix using this representation, the A and R arrays are
represented only as values arrays. They share the row and
column indices arrays with the structure for S. In our im-
plementation, we compute a row of the full similarity matrix
at a time. Then, we threshold the values and use a compact
operation to move the significant elements to the the COO
structure.

To implement the BAG structure, the data points are mapped
to the unit hypercube, discretized, converted to Morton
codes, and sorted based on such codes. Then, the similarity
matrix is constructed to include only similarity values be-
tween points that are at most h elements apart on the final
SFC order, where h is 128 in our implementation. We refer
to the value 2h as the neighborhood size. The similarity
matrix S is represented as a 2D array with 2h + 1 rows and
N columns, as shown in Figure 5. Column i of the matrix
contains similarity values between element i and elements
from i − h to i + h in order. The hth row of the matrix
contains the preference values. The responsibility and avail-
ability matrices, R and A, are constructed to have the same
size and structure of the similarity matrix S.

6. EXPERIMENTAL RESULTS
We implemented the Affinity Propagation on CUDA using
both the COO representation and our BAG representation,
for the similarity matrix. We also implemented a version
for the CPU based on the COO representation. We con-
ducted our experiments on randomly generated point sets.
The number of points in these sets ranged from 1K to 512K.
We used an NVIDIA Tesla C1060 compute card, which has
240 core processors and 4GB RAM, installed on an Intel
Xeon 3.2 GHz workstation with 3GB RAM running 32-bit
Windows XP with SP3. We used CUDA version 2.2 for
our experiments. We used the CUDA Parallel Primitives
Library (CUDPP) [1] in all scan and segmented scan oper-
ations.

Due to the limit on grid dimensions, we were not able to ex-
periment with more than 128K points with the COO-GPU
implementation. This problem arises only with the COO
representation since we use scan operations in its implemen-
tation. The scan operation in CUDPP creates one thread
for every 4 elements of the input array (the similarity ma-
trix values in this case), which results in too many threads
required to process the 256K points case and beyond. While
this issue can be fixed by modifying the kernel functions for
segmented scans in CUDPP, we cannot run this implemen-
tation with more than 256K points anyways because of the
memory requirement of the COO representation exceeds the
size of the device memory in this case. For the CPU repre-
sentation, we were not able to run the experiment beyond

1 · · · i · · · N

−h s(h−1)i

... ...
−1

0 · · · sii · · ·
1

......

h s(h+1)i

Figure 5: The layout of the similarity matrix, S, used in AP’s implementation with the BAG method. Each column of
the matrix contains similarities to neighbors ranging from −k to k apart from the column’s index. The responsibilities and
availabilities matrices, R and A, use the same structure. elements in row index 0 represent preference, self-responsibility, and
self-availability values, in the S, R, and A matrices, respectively.

500 1000 1500 2000
0

500

1000

1500

2000

2500

Number of Exemplars

A
v

e
ra

g
e

 S
q

u
a

re
d

 E
rr

o
r

Number of Exempars Vs. Error on Clustering 16K Points

COO
BAG

Figure 6: This plot compares the average squared error (dis-
tance between each point and its assigned exemplar), of the
clustering obtained by affinity propagation on the COO and
BAG representations, as a function of the number of ex-
emplars. In both cases, the number of points is fixed at
16K. The plot shows how the usage of the approximate BAG
sparse representation does not affect the clustering perfor-
mance of affinity propagation.

128K points either due to the extremely long time it re-
quires. We used the negative sum of squared differences as
the kernel (here similarity) function. The preference value
was set to the mean similarity over the elements kept in the
matrix representation in use. We set the maximum num-
ber of iteration for the AP to 2000. The neighborhood size
was fixed at 256 for the BAG representation, which means
the bandwidth of the resulting band matrix is 257. For the
COO representation, we retain values above some threshold.
To have a fair comparison, we select the threshold value to
obtain approximately the same number of elements in the
BAG representation. We compute this threshold based on a
random selection of one million pairs of points.

6.1 Error Versus Number of Exemplars
The BAG representation is an approximation to the sparse
kernel matrix, which is in turn an approximation to the full
matrix. In this experiment, we want to assess how much the
performance of the affinity propagation is affected by using
the BAG representation, rather than the COO representa-
tion, in terms of the clustering error. We do not compare to
the performance using the full matrix representation since

the size of such a matrix is prohibitively huge and comput-
ing its elements upon need is prohibitively computationally
expensive.

The clustering error is measured as the average square dis-
tance between each point and its assigned exemplar, 1

N

∑

i s(i, ei),
where ei is the index of the exemplar assigned to point i. The
closer a point on average to its exemplar the better the clus-
tering. However, we cannot use this measure without refer-
ring to the number of exemplars since increasing the number
of exemplars reduces this measure. In Figure 6, we show the
clustering error with changing the number of exemplars. In
this experiment, we fix the number of points to 16K and
change the preference value to obtain different points on the
curve. We compare between the two sparse matrix represen-
tations. The plot clearly shows that the difference between
the two representations is negligible in terms of clustering
error. Therefore, the approximation introduced by the BAG
representation does not have any negative effect on the AP
algorithm.

6.2 Time Versus Number of Points
In this set of experiments, we measure the computational
time versus the number of points. We vary the number of
points from 1K to 512K, except with the COO represen-
tation on both CPU and the GPU where the maximum is
128K. Figure 7 compares between the three implementa-
tions based on the convergence time of AP clustering. The
time complexity of the three implementations grow almost
linearly with the number of points. Since we fix the neigh-
borhood size, this is consistent with the theoretical com-
plexity of the algorithm, which is linear in the number of
similarity values used (quadratic in the number of points for
a full matrix representation). Most of the time all the im-
plementations run until the maximum number of iterations,
2000. The few exceptions for this are the points that sig-
nificantly deviate from the linear trend in the plots, which
are the 1K and 4K points on the BAG-GPU curve and the
1K point on the COO-CPU curve. Excluding these points,
the two GPU implementations consistently outperform the
CPU implementation, with up to 18x speedup for the COO
representation and up to 114x speedup for the BAG repre-
sentation. Figure 8 shows the times to construct the similar-
ity matrix representations for the same set of experiments.
Since in the COO representation we need to compute all
elements of the similarity matrix to compare them to the

1 2 4 8 16 32 64 128 256 512

10
0

10
1

10
2

10
3

10
4

Number of Points

A
P

 T
im

e
 (

S
e

c
o

n
d

s
)

Number of Points vs. Affinity Propagation Processing Time

COO−CPU

COO−GPU

BAG−GPU

Figure 7: This plot compares the running times of affinity
propagation, using the COO and the BAG representations
on the GPU and the COO representation on the CPU, as
a function of the number of input points. The number of
points shown is in units of K (1024). The times shown do
not include the time to construct the similarity matrix from
the input points. Neither the COO-GPU nor COO-CPU
implementations handles more than 128K points. The COO-
GPU version achieves up to 18x speedup, while the BAG-
GPU version achieves up to 114x speedup over the CPU
implementation.

1 2 4 8 16 32 64 128 256 512

10
0

10
2

10
4

Number of Points

S
im

il
a

ri
ty

 M
a

tr
ix

 C
o

n
s

tr
u

c
ti

o
n

T
im

e
 (

S
e

c
o

n
d

s
)

Number of Points vs. Similarity Matrix Construction Time

COO−CPU

COO−GPU

BAG−GPU

Figure 8: This plot compares the times of constructing the
similarity matrix, using the COO and the BAG representa-
tions on the GPU and the COO representation on the CPU,
as a function of the number of input points. The number of
points shown is in units of K (1024). Neither the COO-GPU
nor COO-CPU implementations handles more than 128K
points. The COO-GPU implementation achieves up to 300x
speedup, while the BAG-GPU implementation achieves up
to 1700x speedup.

32 64 128 256 512
10

−2

10
0

10
2

10
4

10
6

Number of Dimensions

S
im

il
a

ri
ty

 M
a

tr
ix

 C
o

n
s

tr
u

c
ti

o
n

T

im
e

 (
S

e
c

o
n

d
s

)

Dimentionality vs. Similarity Matrix Construction Time

COO−CPU

COO−GPU

BAG−GPU

Figure 9: This plot compares the times of constructing the
similarity matrix, using the COO and the BAG representa-
tions on the GPU and the COO representation on the CPU,
as a function of the points dimensionality. As the dimension-
ality grows, the two GPU implementations achieve around
1000x speedup compared to the CPU implementation.

threshold, the construction of the similarity matrix on the
CPU becomes the computational bottleneck as the number
of points increase, while the GPU implementations are less
affected due to parallelism. The GPU implementations score
larger speedups in this part of the computation than the AP
part, with the COO achieving up to 300x speedup, and the
BAG achieving up to 1700x speedup. The simplicity of the
BAG representation is the key to this tremendous speedup.

6.3 Time Versus Dimensionality
In this experiment, we study the effect of point dimensional-
ity on the time to construct the kernel matrix representation.
We fix the number of points at 16K points. We change the
point dimensionality from 32 to 512. Figure 9 shows the
results of this experiment. The advantage of using the GPU
becomes more evident when the dimensionality increases.
At 512 dimensions, both GPU implementations are about
1000 times faster than the CPU. The BAG representation
is at least two times faster than the COO representation on
the GPU. This again emphasizes the advantage of having
a simple representation, such as the BAG over a complex
representation such as the COO.

7. CONCLUSION
We presented a novel method to construct a band approxi-
mation to Gram matrices, based on space filling curves. The
proposed method is very simple to construct and efficient to
work with on modern graphics processing units than the
conventional Coordinate (COO) representation. We applied
the new representation to Affinity Propagation, a recently
introduced unsupervised clustering algorithm. Our results
show a significant speedup, of up to 114x, when using our al-
gorithm on the GPU compared to the CPU implementation,
compare to 18x speedup when using the COO representa-
tion. If we include the time to construct the sparse matrix
structure, the speedup jumps up to 330x. This speedup does
not come at any expense in terms of the clustering perfor-
mance of the AP algorithm.

There are many interesting experiments to be conducted on

our work, such as studying the effect of neighborhood size
on the time and clustering performance of the algorithm,
and studying the approximation error to the kernel matrix
incurred by our representation compared to the COO repre-
sentation. Nevertheless, enabling large scale clustering via
an effective algorithm such as Affinity Propagation is by it-
self an important achievement. We are planning on apply
this method to real world large scale machine learning ap-
plications. Given the success on AP, we are encouraged to
investigate the applicability of our approach to other kernel
methods, such as SVMs. We are also investigating other
types of codes that can be used to order input points other
than space filling curves.

8. ACKNOWLEDGMENT
This research was supported by the US Government under
the CTA project.

9. REFERENCES
[1] CUDPP: CUDA Data-Parallel Primitives Library.

[2] N. Bell and M. Garland. Efficient sparse matrix-vector
multiplication on CUDA. Technical Report
NVR-2008-004, NVIDIA, December 2008.

[3] A. R. Butz. Alternative algorithm for hilbert space
filling curve. IEEE Trans. on Computers, 20:424–42,
April 1971.

[4] B. Catanzaro, N. Sundaram, and K. Keutzer. Fast
support vector machine training and classification on
graphics processors. In ICML, 2008.

[5] E. Cuthill and J. McKee. Reducing the bandwidth of
sparse symmetric matrices. In Proceedings of the 24th
national conference, 1969.

[6] L. M. Delves and J. Walsh, editors. Numerical Solution
of Integral Equations. Oxford University Press, 1974.

[7] Y. Dotsenko, N. K. Govindaraju, P.-P. Sloan, C. Boyd,
and J. Manferdelli. Fast scan algorithms on graphics
processors. In ICS ’08: Proceedings of the 22nd annual
international conference on Supercomputing, 2008.

[8] P. Drineas and M. W. Mahoney. Approximating a
gram matrix for improved kernel-based learning. In in
Proceedings of the 18th Annual Conference on
Learning Theory, 2005, pages 323–337, 2005.

[9] B. Frey and D. Dueck. Mixture modeling by affinity
propagation. In Y. Weiss, B. Schölkopf, and J. Platt,
editors, Advances in Neural Information Processing
Systems 18, pages 379–386. MIT Press, Cambridge,
MA, 2006.

[10] B. J. Frey and D. Dueck. Clustering by Passing
Messages Between Data Points. Science, 315:972–976,
2007.

[11] M. Garland. Sparse matrix computations on manycore
GPU’s. In Annual ACM IEEE Design Automation
Conference, 2008.

[12] B. Heisele, P. Ho, and T. Poggio. Face recognition
with support vector machines: global versus
component-based approach. In In Proc. 8th
International Conference on Computer Vision, pages
688–694, 2001.

[13] P. Kipfer and R. Westermann. Improved GPU sorting.
In M. Pharr, editor, GPU Gems2, pages 733–746.
Addison Wesley, 2005.

[14] M. Lieberman, J. Sankaranarayanan, and H. Samet. A
fast similarity join algorithm using graphics processing
units. In IEEE International Conference on Data
Engineering, 2008.

[15] J. Lu, K. Plataniotis, and A. Venetsanopoulos. Face
recognition using kernel direct discriminant analysis
algorithms. Neural Networks, IEEE Transactions on,
14(1):117–126, Jan 2003.

[16] G. M. Morton. A computer oriented geodetic data
base; and a new technique in file sequencing. Technical
report, IBM Ltd., 1966.

[17] S. Munder and D. M. Gavrila. An experimental study
on pedestrian classification. IEEE Trans. Pattern
Anal. Machine Intell., 28(11):1863–1868, November
2006.

[18] J. Nickolls, I. Buck, M. Garland, and K. Skadron.
Scalable parallel programming with CUDA. Queue,
6(2):40–53, 2008.

[19] NVIDIA. NVIDIA CUDA Programming Guide
Version 2.2, April 2009.

[20] NVIDIA Corporation. NVIDIA CUDA C
Programming Best Practices Guide, July 2009.

[21] J. Ohmer, F. Maire, and R. Brown. Implementation of
kernel methods on the GPU. In DICTA ’05:
Proceedings of the Digital Image Computing on
Techniques and Applications, page 78, Washington,
DC, USA, 2005. IEEE Computer Society.

[22] J. C. Platt. Fast training of support vector machines
using sequential minimal optimization. In
B. Schölkopf, C. J. C. Burges, and A. J. Smola,
editors, Advances in kernel methods: support vector
learning, pages 185–208. MIT Press, Cambridge, MA,
USA, 1999.

[23] Y. Saad. SPARSKIT: A basic tool kit for sparse
computations, June 1994.

[24] H. Samet. Foundations of Multidimensional and
Metric Data Structures. The Morgan Kaufmann Series
in Computer Graphics, 2006.

[25] B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear
component analysis as a kernel eigenvalue problem.
Neural Computation, 10(5):1299–1319, 1998.

[26] M. Seeger. Bayesian model selection for support vector
machines, Gaussian processes and other kernel
classifiers. In S. A. Solla, , T. K. Leen, and K. R.
Müller, editors, NIPS, pages 603–609. MIT Press,
2000.

[27] M. Seeger. Gaussian processes for machine learning.
International Journal of Neural Systems, 14(2), 2004.

[28] S. Sengupta, M. Harris, Y. Zhang, and J. Owens. Scan
primitives for GPU computing. In ACM
SIGGRAPH/EUROGRAPHICS Symposium on
Graphics Hardware, 2007.

[29] A. Smola. Regression estimation with support vector
learning machines. Master’s thesis, Technische
Universitat Munchen, 1996.

[30] A. J. Smola and B. Schökopf. Sparse greedy matrix
approximation for machine learning. In ICML ’00:
Proceedings of the Seventeenth International
Conference on Machine Learning, pages 911–918, San
Francisco, CA, USA, 2000. Morgan Kaufmann
Publishers Inc.

[31] A. Torralba, R. Fergus, and Y. Weiss. Small codes and
large image databases for recognition. In IEEE Conf.
on Computer Vision and Pattern Recognition, pages
1–8, Anchorage, AK, June 2008.

[32] V. Vapnik. The nature of Statistical Learning Theory.
Springer-Verlag, 1995.

[33] C. K. I. Williams and M. Seeger. The effect of the
input density distribution on kernel-based classifiers.
In International Conference on Machine Learning,
2000.

[34] C. K. I. Williams and M. Seeger. Using nystrom
method to speed up kernel machines. In T. K. Leen,
T. G. Diettrich, and V. Tresp, editors, NIPS,
volume 13. MIT Press, 2001.

