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Abstract—Due to the low communication overhead and robust-
ness to failures, distributed energy management is of paramount
importance in smart grids, especially in microgrids, which fea-
ture distributed generation (DG). Distributed economic dispatch
for a microgrid with renewable penetration and demand-side
management operating in the grid-connected mode is considered
in this paper. To address the challenge of intrinsically stochastic
availability of renewable energy sources (RES), a novel power
scheduling approach involving the actual renewable energy as
well as the energy traded with the main grid is introduced,
effecting the supply-demand balance. Its optimality amounts to
minimizing the microgrid net cost, which includes conventional
DG cost as well as worst-case transaction cost stemming from the
uncertainty in RES. Leveraging the dual decomposition, the op-
timization problem formulated is solved in a distributed fashion.
Numerical results are reported to corroborate the effectiveness
of the novel approach.

I. INTRODUCTION

Microgrids are power systems comprising distributed energy

resources (DERs) and electricity end-users, possibly with con-

trollable elastic loads, all deployed across a limited geographi-

cal area [1]. Depending on their origin, DERs can come either

from distributed generation (DG) or from distributed storage

(DS). DG refers to small-scale power generators which can use

fossil fuels, such as diesel generators and renewable energy

sources (RES), as in wind or photovoltaic generation. DS

paradigms include batteries, flywheels, and pumped storage.

Specifically, DG brings power closer to the point it is con-

sumed, thereby incurring fewer thermal losses and bypassing

limitations imposed by a congested transmission network.

Moreover, the increasing tendency towards high penetration

of RES stems from their environmental-friendly and price-

competitive advantage over conventional generation. Typical

microgrid loads include critical non-dispatchable types and

also elastic controllable ones.

Microgrids can also entail distribution networks with res-

idential or commercial end-users, in rural or urban areas. A

typical configuration is depicted in Fig. 1; see also [1]. The

microgrid energy manager (MGEM) coordinates the DERs

and the controllable loads. Each of the DERs and loads has

a local controller (LC), which coordinates with the MGEM

the scheduling of resources through the communications in-

frastructure. The microgrid can operate in two modes: either
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Fig. 1. Destributed control and computation architecture of a microgrid sys-
tem. The microgrid energy manager (MGEM) coordinates the local controllers
(LCs) of DERs and dispatchable loads.

connected or disconnected from the grid, the latter referred to

as island mode.

In this context, the present paper deals with optimal energy

management for both supply and demand of a microgrid

incorporating renewable energy. The microgrid is connected

to the main grid, while energy can be sold to or purchased

from the main grid. Decentralized algorithms are developed,

which are robust to the uncertainty of the available RES.

In addition to being computationally efficient, distributed

power scheduling through the communication infrastructure

connecting many DERs must also be resilient to communi-

cation outages or attacks. Furthermore, DER scheduling in

microgrids must account for the random and nondispatchable

nature of the RES.

Without incorporating the RES, energy management op-

timization problems including economic dispatch (ED), unit

commitment (UC), and demand-side management (DSM) are

outlined in e.g., [2]. Mixed integer programming problems

are formulated for microgrid scheduling and DSM in [3],

[4]. Based on deterministic RES models (e.g., those relating

wind power with wind speed), ED problems are investigated

in [5] and [6]. In all aforementioned works however, robust

formulations accounting for the RES randomness are not

pursued. Lyapunov stochastic optimization has been applied to

maximize the long-term profit of a RES facility in [7]. Stochas-
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tic programming is also used to cope with the variability of

RES. Single-period chance-constrained ED problems for RES

have been studied in [8], yielding probabilistic guarantees that

the load will be served. Direct coupling of uncertain renewable

energy supply with deferrable demand is advocated in [9]

using stochastic dynamic programming. Without DSM, robust

scheduling problems with penalty-based costs for uncertain

supply have been investigated in [10]. Recent works investigate

energy scheduling with DSM and RES using only centralized

algorithms [11], [12]. Game-theoretic approaches for micro-

grid distribution networks using cooperative and noncoopera-

tive games are introduced in [13]. Distributed algorithms are

developed in [14], but they only coordinate DERs to supply a

given load without considering the stochastic nature of RES.

This paper considers energy management of DERs and

dispatchable loads with the aim of minimizing the microgrid

net cost. The objective consists of costs for conventional DG,

utility of elastic loads, and a worst-case transaction cost. The

transaction cost stems from the ability of the microgrid to

sell excess renewable energy to the main grid, or to import

energy in case of shortage. A robust formulation accounting

for the worst-case amount of harvested RES is developed. A

novel model is introduced in order to maintain the supply-

demand balance arising from the intermittent RES. Moreover,

a transaction-price-based condition is established to ensure

convexity of the overall problem. The separable structure of

the resultant constrained problem is leveraged to develop a

low-overhead distributed algorithm based on dual decompo-

sition. The distributed implementation relies upon message

exchanges between the MGEM and LCs.

The rest of the paper is organized as follows. Section II

formulates the robust energy management problem, and Sec-

tion III develops the distributed algorithm. Numerical results

are reported in Section IV, while conclusions and research

outlook directions are provided in Section V.

II. ROBUST ENERGY MANAGEMENT FORMULATION

Consider a microgrid comprising M conventional (fossil

fuel) generators, N controllable (dispatchable) loads, and one

RES facility (see also Fig. 1). The scheduling horizon is

T := {1, 2, . . . , T } (e.g., one day ahead). Let P t
Gm

be the

power produced by the mth conventional generator, and P t
Dn

the power consumed by the nth dispatchable load at slot t,
where m ∈ M := {1, . . . ,M}, n ∈ N := {1, . . . , N}, and

t ∈ T . The committed energy from the RES delivered to the

microgrid at slot t, which possibly includes the energy traded

with the main grid in case of RES shortage, is denoted by

P t
R. The ensuing subsection details the RES uncertainty model

as well as the transaction mechanism between the microgrid

and the main grid. Subsection II-B formulates the microgrid

energy management problem, which boils down to optimally

scheduling the variables P t
Gm

, P t
Dn

, and P t
R for all t ∈ T .

A. Worst-case Transaction Cost

Let W t denote the actual renewable energy harvested at

time slot t. To capture the intrinsically stochastic and time-

varying availability of RES, it is postulated that {W t}Tt=1 is

unknown, but lies in a polyhedral uncertainty set

W :=

{

{W t}|W t ≤ W t ≤ W
t
,

Wmin
i ≤

∑

t∈Ti

W t ≤ Wmax
i , T =

I
⋃

i=1

Ti

}

where W t (W
t
) denotes the lower (upper) bound on W t.

Moreover, considering RES aggregation over multiple periods,

the time horizon T can be partitioned into consecutive but

non-overlapping “sub-horizons” Ti, i = 1, 2, . . . , I , with the

total wind power over the ith sub-horizon assumed bounded

by Wmin
i and Wmax

i ; see also [12]. This RES uncertainty

model is quite general and can take into account different

geographical and meteorological factors. The only information

it requires is these deterministic lower and upper bounds,

namely W t,W
t
,Wmin

i ,Wmax
i , ∀ i, which can be determined

via inference schemes based on historical data [15].
Supposing the microgrid operates in a grid-connected mode,

a transaction mechanism between the microgrid and the main
grid is postulated, whereby the microgrid can buy/sell energy
from/to the spot market. Specifically, the shortage between the
actual renewable energy produced and the one scheduled per

slot t is given by [P t
R −W t]

+
, while the surplus renewable

energy is [P t
R −W t]

−
, where [a]+ := max{a, 0}, [a]− :=

max{−a, 0}. The amount of shortage energy [P t
R −W t]

+
is

bought with known purchase price αt, while the surplus energy

[P t
R −W t]

−
is sold to the main grid with known selling price

βt. The worst-case net transaction cost is thus given by

G({P t

R}) := max
{W t}∈W

{

T
∑

t=1

(

α
t
[

P
t

R −W
t
]+

− β
t
[

P
t

R −W
t
]−

)

}

where {P t
R} collects P t

R for t = 1, 2, . . . , T .

B. Microgrid Net Cost Minimization

The cost of the mth conventional generator is given by a

strictly increasing and convex function Ct
m(P t

Gm
). Typically,

the chosen Ct
m(P t

Gm
) is either piecewise linear or smooth

quadratic. Moreover, the utility function of the nth dispatch-

able load, U t
n(P

t
Dn

), is selected to be strictly increasing and

concave. Similar to the generation cost, U t
n(P

t
Dn

) is chosen

either piecewise linear or smooth quadratic. Apart from dis-

patchable loads, there is also a fixed load demand from e.g.,

critical loads, denoted by Lt.

The energy management problem amounts to minimizing

the microgrid social net cost; that is, the cost of conventional

generation (ED) as well as the worst-case transaction cost (due

to the volatility of RES) minus the load utility:

(P1) min
{P t

Gm
,P t

Dn
,P t

R
}

{ T
∑

t=1

(

M
∑

m=1

Ct
m(P t

Gm
)−

N
∑

n=1

U t
n(P

t
Dn

)

)

+G({P t
R})

}

(1a)

subject to:
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Pmin
Gm

≤ P t
Gm

≤ Pmax
Gm

, ∀ m ∈ M, ∀ t ∈ T (1b)

P t
Gm

− P t−1

Gm
≤ Rm,up, ∀ m ∈ M, ∀ t ∈ T (1c)

P t−1

Gm
− P t

Gm
≤ Rm,down, ∀ m ∈ M, ∀ t ∈ T (1d)

M
∑

m=1

(Pmax
Gm

− P t
Gm

) ≥ St, ∀ t ∈ T (1e)

Pmin
Dn

≤ P t
Dn

≤ Pmax
Dn

, ∀ n ∈ N , ∀ t ∈ T (1f)

Pmin
R ≤ P t

R ≤ Pmax
R , ∀ t ∈ T (1g)

M
∑

m=1

P t
Gm

+ P t
R =

N
∑

n=1

P t
Dn

+ Lt, ∀ t ∈ T . (1h)

Constraints (1b)-(1e) stand for the minimum/maximum power

output, ramping up/down limits, and spinning reserves, re-

spectively, which capture the typical physical requirements of

a power generation system. Constraints (1f) and (1g) corre-

spond to the minimum/maximum power of the flexible load

demand and committed energy. Constraint (1h) is the power

supply-demand balance equation ensuring the total demand is

satisfied by the power generation at any time.

Note that constraints (1b)-(1h) are linear, while Ct
m(·)

and −U t
n(·) are convex (possibly non-differentiable or non-

strictly convex) functions. Consequently, the convexity of (P1)
depends on that of G({P t

R}), which is established in the

following proposition.

Proposition 1. If the selling price βt does not exceed the

purchase price αt for any t ∈ T , then the worst-case

transaction cost G({P t
R}) is convex in {P t

R}.

Proof: Using that [a]++[a]− = |a|, and [a]+− [a]− = a,

G({P t
R}) can be re-written as

G({P t
R}) = max

{W t}∈W

{

T
∑

t=1

(

δt|P t
R −W t|+ γt(P t

R −W t)
)

}

with δt := (αt − βt)/2, and γt := (αt + βt)/2. Since

the absolute value function is convex, and the operations

of nonnegative weighted summation and pointwise maximum

(over an infinite set) preserve convexity [16, Sec. 3.2], the

claim follows readily.

An immediate corollary of Proposition 1 is that the energy

management problem (P1) is convex if βt ≤ αt for all t.
The next section focuses on this case, and designs an efficient

decentralized solver for (P1).

III. DISTRIBUTED ALGORITHM

Problem (P1) is clearly separable, meaning that its cost

and constraints are sums of terms, with each term dependent

on different variables, namely {P t
Gm

}, {P t
Dn

}, and {P t
R}.

Note further that since the primal problem is convex, strong

duality holds; hence, Lagrangian relaxation and the dual

decomposition approach are applicable to yield a decentralized

algorithm, as explained next. Coordinated by dual variables,

the dual approach decomposes the original problem into

several separate subproblems that can be solved parallelly by

the LCs.

A. Dual Decomposition

Constraints (1e) and (1h) couple variables across different

generators, loads, and the RES. Let {µt} and {λt} denote

Lagrange multipliers associated with (1e) and (1h), respec-

tively. Keeping the remaining constraints implicit, the partial

Lagrangian is given by

L({P t
Gm

, P t
Dn

, P t
R, µ

t, λt})

=

T
∑

t=1

(

M
∑

m=1

Ct
m(P t

Gm
)−

N
∑

n=1

U t
n(P

t
Dn

)

)

+G({P t
R})

+

T
∑

t=1

{

µt

(

St −
M
∑

m=1

(Pmax
Gm

− P t
Gm

)

)

− λt

(

M
∑

m=1

P t
Gm

+ P t
R −

N
∑

n=1

P t
Dn

− Lt

)

}

. (2)

Then, the dual function can be written as

D({µt},{λt}) = min
{P t

Gm
,P t

Dn
,P t

R
}

s.t. (1b)−(1d),(1f),(1g)

L({P t
Gm

, P t
Dn

, P t
R, µ

t, λt})

and the dual problem is given by

max D({µt}, {λt}) (3a)

s.t. µt ≥ 0, λt ∈ R, ∀ t ∈ T . (3b)

The subgradient method will be employed to obtain optimal

multipliers and power schedules. The iterative process is

described next, followed by its distributed implementation.
1) Subgradient Iterations: The subgradient method

amounts to running the recursions [17, Sec. 6.3]

µt(k + 1) = [µt(k) + agµt(k)]+ (4a)

λt(k + 1) = λt(k) + agλt(k) (4b)

where k is the iteration index; a > 0 is a constant stepsize;

while gµt and gλt denote the subgradients of the dual function

with respect to µt(k) and λt(k), respectively. These subgra-

dients can be expressed in the following simple forms

gµt(k) = St −
M
∑

m=1

(Pmax
Gm

− P t
Gm

(k)) (5a)

gλt(k) = Lt +

N
∑

n=1

P t
Dn

(k)−
M
∑

m=1

P t
Gm

(k)− P t
R(k) (5b)

where

P t
Gm

(k) ∈ argmin
{P t

Gm
}

s.t. (1b)−(1d)

{

T
∑

t=1

[Ct
m(P t

Gm
) + (µt(k)− λt(k))P t

Gm
]

}

(6)

P t
Dn

(k) ∈ argmin
{Pmin

Dn
≤P t

Dn
≤Pmax

Dn
}

{

T
∑

t=1

[λt(k)P t
Dn

− U t
n(P

t
Dn

)]

}

(7)

P t
R(k) ∈ argmin

{Pmin

R
≤P t

R
≤Pmax

R
}

{

G({P t
R})−

T
∑

t=1

λt(k)P t
R

}

.

(8)
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Fig. 2. Decomposition and message exchange.

Iterations are initialized with arbitrary λt(0) ∈ R and µt(0) ≥
0. The iterates are guaranteed to converge to a neighborhood

of the optimal multipliers [17, Sec. 6.3]. The size of the

neighborhood is proportional to the stepsize, and can therefore

be controlled by the stepsize.

The optimal power schedules are given by running averages

of the iterates P t
Gm

(k), P t
Dn

(k), and P t
R(k) as

P̄ t
Gm

(k) =
1

k

k−1
∑

j=0

P t
Gm

(j) (9)

and likewise for P̄ t
Dn

(k) and P̄ t
R(k). The running averages are

also guaranteed to converge to a neighborhood of the optimal

solution [18].

2) Distributed Implementation: The form of the subgradi-

ent iterations easily lends itself to a distributed implementation

utilizing the control and communication capabilities of a

typical microgrid.

Specifically, the MGEM maintains and updates the La-

grange multipliers via (4). The LCs of conventional genera-

tion, dispatchable loads, and RES solve subproblems (6), (7),

and (8), respectively. These subproblems can be solved if the

MGEM sends the current multiplier iterates µt(k) and λt(k)
to the LCs. The LCs send back to the MGEM the quantities
∑M

m=1
P t
Gm

(k),
∑N

n=1
P t
Dn

(k), and P t
R(k), which are in turn

used to form the subgradients according to (5). This interactive

process of message passing is illustrated in Fig. 2.

B. Solving the LC Subproblems

This subsection shows how to solve each subproblem (6)-

(8). Specifically, Ct
m(·) and −U t

n(·) are chosen either convex

piece-wise linear or smooth convex quadratic. Correspond-

ingly, the first two subproblems (6) and (7) are essentially

linear programs (LPs) or quadratic programs (QPs), which are

easy to solve efficiently.

However, subproblem (8) is a convex nondifferentiable

problem, which can be challenging to solve. Nondifferentia-

bility comes from the absolute value operator, and also from

the maximization with respect to {W t} in the definition of

G({P t
R}). The bundle method is a state-of-the-art technique

for convex nondifferentiable optimization problems [19], [17,

Ch. 6], and is employed to solve (8).

Let G̃({P t
R}) :=

{

G({P t
R})−

∑T

t=1
λtP t

R

}

denote the

cost in (8). By the generalization of Danskin’s Theorem [17,

Sec. 6.3], the subgradient of G̃({P t
R}) with respect to P t

R,

which is needed for the bundle method, can be obtained as

∂G̃({P t
R}) =

{

αt − λt, if P t
R ≥ W t

∗

βt − λt, if P t
R < W t

∗
(10)

where for given {P t
R} it holds that

{W t
∗} ∈ argmax

{W t}T

t=1
∈W

{

T
∑

t=1

(

δt|P t
R −W t|+ γt(P t

R −W t)
)

}

.

(11)

Remark 1. (Complexity of solving (11)). In order to obtain

{W t
∗}, the convex nondifferentiable function (11) should be

maximized over W . This is generally an NP-hard convex

maximization problem, meaning the global optimal solution

{W t
∗} can not be obtained in polynomial time. However, for

the specific problem here, the global solution is attained on

the boundary of the feasible set [20, Ch. 3]. Therefore, the

objective can be evaluated at all vertices of W to obtain

the global solution. This straightforward approach still incurs

exponential complexity. But if the cardinality of each sub-

horizon Ti is not very large (e.g., when 24 hours are partitioned

into 4 sub-horizons each comprising 6 time slots), then the

complexity is affordable. Most importantly, the vertices of W
need only be listed once, before the optimization.

The bundle method is described next. For notational brevity,

let p := [P 1
R, . . . , P

T
R ], pmin := Pmin

R · 1, pmax := Pmax
R · 1,

where 1 is the all-ones vector. A sequence {pℓ} will be

generated with guaranteed convergence to the optimal solution

set [19], [17, Ch. 6]. The iterate pℓ+1 is obtained by minimiz-

ing the polyhedral approximation of G̃(p) and a quadratic

proximal regularization as follows

pℓ+1 := argmin
pmin�p�pmax

{

Ĝℓ(p) +
ρℓ
2
‖p− yℓ‖

2

}

(12)

where Ĝℓ(p) := max{G̃(p0) + g′
0(p − p0), . . . , G̃(pℓ) +

g′
ℓ(p − pℓ)}; gℓ is the subgradient of G̃(p) evaluated at the

point p = pℓ, which is calculated according to (10); a′ denotes

the transpose of a; proximity weight ρℓ is to control stability

of the iterates; and the proximal center yℓ is updated according

to a query for descent

yℓ+1 =

{

pℓ+1, if G̃(yℓ)− G̃(pℓ+1) ≥ θηℓ
yℓ, otherwise

(13)

where ηℓ = G̃(yℓ) −
(

Ĝℓ(pℓ+1) +
ρℓ

2
‖pℓ+1 − yℓ‖2

)

, θ ∈

(0, 1). By introducing an auxiliary variable, (12) can be re-

written as a QP, which is efficiently solvable.

IV. NUMERICAL TESTS

In this section, preliminary numerical tests are carried out

to verify the performance of the novel design for a microgrid

consisting of M = 2 conventional generators, N = 2
dispatchable loads, and one RES scheduled over T = 8
hours. The generation costs and utilities of the elastic loads

are set to be time-invariant as C1(PG1
) = 0.4P 2

G1
+ 40PG1

,

C2(PG2
) = 0.3P 2

G2
+30PG2

, U1(PD1
) = −0.6P 2

D1
+60PD1

,

and U2(PD2
) = −0.5P 2

D2
+ 55PD2

(with units ¢). The
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TABLE I
LOWER/UPPER LIMITS OF VARIABLES AND PARAMETERS

PG1
PG2

PD1
PD2

PR W

Min (kWh) 10 8 5 8 0 52

Max (kWh) 50 45 35 40 35 139

TABLE II
DEMAND OF FIXED LOADS AND LIMITS OF ACTUAL RES

Slot 1 2 3 4 5 6 7 8

Lt (kWh) 25 30 45 58 70 67 50 42

W t (kWh) 1 3 2.5 6 5 3.5 4 2

W
t

(kWh) 15 18 20 30 25 19 27 20

simulation parameters are listed in Tables I–III (similar to [3]),

while I = 1 is considered for the uncertainty set W .

The optimal power schedules for the microgrid are depicted

in Figs. 3 and 4 for the two selling price profiles in Table III,

where P t
G := P t

G1
+ P t

G2
, P t

D = P t
D1

+ P t
D2

, and P t
R, denote

the total conventional power generation, total elastic demand,

and the committed RES, respectively, which are the optimal

solutions of (P1). The meaning of W t
worst (the worst-case RES

at slot t) will be explained shortly.

A common observation for Figs. 3 and 4 is that the total

conventional power generation P t
G varies with the same trend

across t as the fixed load demand Lt. Moreover, the optimal

P t
D and P t

R in the first two time slots are larger than all

other slots. This is because the demand for fixed loads is

low during the first two slots, allowing the elastic loads

power consumption to become larger in order to increase

the utility. As a result, more committed energy P t
R must be

delivered to the microgrid to keep the power balance. The

increased P t
R for the first two slots is consistent with the

corresponding lower purchase price. Moreover, Fig. 3 reveals

that the committed energy P t
R from slot 3 up to and including

slot 6 is low. This is justifiable because the purchase price αt

as well as the selling price βt are high during this interval,

making it more economical to sell the renewable energy to

the main grid, than to allocate it to the microgrid. Finally,

the combination of reduced committed energy P t
R with an

increased load demand Lt between slots 3 and 6 causes a

reduction of the dispatchable loads consumption P t
D in these

slots. Corresponding statements can be made for the low

selling price case of Fig. 4.

Furthermore, by comparing Fig. 3 with Fig. 4, it is inter-

esting to illustrate the worst-case transaction mechanism as

follows. Consider first the schedule for slots 3 to 6. Since

selling prices of Case 2 are much smaller than the ones of Case

1, the weaker motivation to sell makes the P t
R’s in Fig. 4 larger

than the ones in Fig. 3. Meanwhile, by solving (11) using the

optimal {P t
R}, the optimal W t

worst becomes smaller than the

corresponding P t
R in Case 2. This means that the microgrid net

cost increases due to purchase transactions. In Case 1 on the

other hand, the P t
R’s are already smaller than the lower bounds

of W t as shown in Fig. 3, which amounts to selling instead

of purchasing energy. Moreover, the relative change of W t
worst

TABLE III
PURCHASE AND SELLING PRICES FROM SPOT MARKET. THE UNITS OF αt

AND βt ARE ¢/KWH.

Slot 1 2 3 4 5 6 7 8

αt 15 20 57 65 80 77 50 45

Case 1: βt 13.5 18 51.3 58.5 72 69.3 45 40.5

Case 2: βt 1.5 2 5.7 6.5 8 7.7 5 4.5
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Fig. 3. Optimal power schedule (Case 1: high selling prices).
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Fig. 4. Optimal power schedule (Case 2: low selling prices).

from Fig. 3 to Fig. 4 from slot 1 to 3 can also be explained

by the effect of transaction prices and the uncertainty model.

Specifically, the desire to increase the transaction cost, by the

definition of function G({P t
R}), can be realized by smaller

worst-case RES, i.e., with reduced W 1
worst and W 2

worst from

Case 1 to Case 2. In order to keep the {W t
worst} feasible for

W (i.e.,
∑

t∈T W t ≥ Wmin must be satisfied), the reduction

of W 1
worst and W 2

worst from Case 1 to Case 2 causes an increase

in W 3
worst. This makes the selling transaction happen in slot 3

in Case 2. However, the resultant revenue can not compensate

for the extra cost due to the increased amount of purchased
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energy in slots 1 and 2, which is determined by solving (11).

Fig. 5 shows the effect of different transaction prices on the

microgrid net cost, where three times of the purchase price αt

in III is used. It can be clearly seen that the net cost decreases

with the increase of the selling-to-purchase-price ratio βt/αt.

When this ratio increases, the microgrid has a higher margin

for revenue from the transaction mechanism. Obviously, if

more renewable energy is sold rather than used within the

microgrid, then the cost due to conventional generation may

increase in order to supply the microgrid loads. Therefore, as

depicted in Fig. 5, the microgrid net cost can be reduced as

long as the obtained profit from the transaction is larger than

the extra conventional generation cost.

V. CONCLUSIONS AND FUTURE WORK

A distributed energy management approach was developed

in this paper tailored to microgrids with high penetration of

renewable energy sources. By introducing the notion of energy

traded with the main grid, a novel model was introduced to

deal with the challenging constraint of the supply-demand

balance raised by the intermittent nature of renewable energy

sources. Not only the conventional generation costs and utility

of the adjustable loads are considered, but also the worst-

case transaction cost is included in the objective. To schedule

power in a distributed fashion, the dual decomposition method

was utilized to decompose the original problem into smaller

subproblems solved by the LCs of conventional generators,

dispatchable loads, and the RES.

A number of interesting research directions open up towards

extending the model and approach proposed in this paper.

Specifically, distributed storage is a key feature that should be

considered in future works. In addition, optimal power flow

and the unit commitment problems are worth re-investigating

with the envisaged growth of RES usage in microgrids.
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