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Abstract—We propose a visual event recognition framework for consumer videos by leveraging a large amount of loosely labeled web

videos (e.g., from YouTube). Observing that consumer videos generally contain large intraclass variations within the same type of

events, we first propose a new method, called Aligned Space-Time Pyramid Matching (ASTPM), to measure the distance between any

two video clips. Second, we propose a new transfer learning method, referred to as Adaptive Multiple Kernel Learning (A-MKL), in

order to 1) fuse the information from multiple pyramid levels and features (i.e., space-time features and static SIFT features) and

2) cope with the considerable variation in feature distributions between videos from two domains (i.e., web video domain and consumer

video domain). For each pyramid level and each type of local features, we first train a set of SVM classifiers based on the combined

training set from two domains by using multiple base kernels from different kernel types and parameters, which are then fused with

equal weights to obtain a prelearned average classifier. In A-MKL, for each event class we learn an adapted target classifier based on

multiple base kernels and the prelearned average classifiers from this event class or all the event classes by minimizing both the

structural risk functional and the mismatch between data distributions of two domains. Extensive experiments demonstrate the

effectiveness of our proposed framework that requires only a small number of labeled consumer videos by leveraging web data. We

also conduct an in-depth investigation on various aspects of the proposed method A-MKL, such as the analysis on the combination

coefficients on the prelearned classifiers, the convergence of the learning algorithm, and the performance variation by using different

proportions of labeled consumer videos. Moreover, we show that A-MKL using the prelearned classifiers from all the event classes

leads to better performance when compared with A-MKL using the prelearned classifiers only from each individual event class.

Index Terms—Event recognition, transfer learning, domain adaptation, cross-domain learning, adaptive MKL, aligned space-time

pyramid matching.

Ç

1 INTRODUCTION

IN recent years, digital cameras and mobile phone cameras
have become popular in our daily life. Consequently,

there is an increasingly urgent demand on indexing and
retrieving from a large amount of unconstrained consumer
videos. In particular, visual event recognition in consumer
videos has attracted growing attention. However, this is an
extremely challenging computer vision task due to two
main issues. First, consumer videos are generally captured
by amateurs using hand-held cameras of unstaged events
and thus contain considerable camera motion, occlusion,
cluttered background, and large intraclass variations within
the same type of events, making their visual cues highly
variable and thus less discriminant. Second, these users are
generally reluctant to annotate many consumer videos,
posing a great challenge to the traditional video event
recognition techniques that often cannot learn robust
classifiers from a limited number of labeled training videos.

While a large number of video event recognition
techniques have been proposed (see Section 2 for more
details), few of them [5], [16], [17], [28], [30] focused on event
recognition in the highly unconstrained consumer video
domain. Loui et al. [30] developed a consumer video data set
which was manually labeled for 25 concepts including
activities, occasions, static concepts like scenes and objects,
as well as sounds. Based on this data set, Chang et al. [5]
developed a multimodal consumer video classification
system by using visual features and audio features. In the
web video domain, Liu et al. [28] employed strategies
inspired by PageRank to effectively integrate both motion
features and static features for action recognition in YouTube
videos. In [16], action models were first learned from loosely
labeled web images and then used for identifying human
actions in YouTube videos. However, the work in [16] cannot
distinguish actions like “sitting_down” and “standing_up”
because it did not utilize temporal information in its image-
based model. Recently, Ikizler-Cinbis and Sclaroff [17]
proposed employing multiple instance learning to integrate
multiple features of the people, objects, and scenes for action
recognition in YouTube videos.

Most event recognition methods [5], [25], [28], [32], [41],
[43], [49] follow the conventional framework. First, a
sufficiently large corpus of training data is collected in which
the concept labels are generally obtained through expensive
human annotation. Next, robust classifiers (also called
models or concept detectors) are learned from the training
data. Finally, the classifiers are used to detect the presence of
the events in any test data. When sufficient and strong labeled
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training samples are provided, these event recognition
methods have achieved promising results. However, for
visual event recognition in consumer videos, it is time
consuming and expensive for users to annotate a large
number of consumer videos. It is also well known that the
learned classifiers from a limited number of labeled training
samples are usually not robust and do not generalize well.

In this paper, we propose a new event recognition
framework for consumer videos by leveraging a large
amount of loosely labeled YouTube videos. Our work is
based on the observation that a large amount of loosely
labeled YouTube videos can be readily obtained by using
keywords (also called tags) based search. However, the
quality of YouTube videos is generally lower than con-
sumer videos because YouTube videos are often down-
sampled and compressed by the web server. In addition,
YouTube videos may have been selected and edited to
attract attention, while consumer videos are in their
naturally captured state. In Fig. 1, we show four frames
from two events (i.e., “picnic” and “sports”) as examples to
illustrate the considerable appearance differences between
consumer videos and YouTube videos. Clearly, the visual
feature distributions of samples from the two domains (i.e.,
web video domain and consumer video domain) can
change considerably in terms of the statistical properties
(such as mean, intraclass, and interclass variance).

Our proposed framework is shown in Fig. 2 and consists
of two contributions. First, we extend the recent work on
pyramid matching [13], [25], [26], [48], [49] and present a new
matching method, called Aligned Space-Time Pyramid
Matching (ASTPM), to effectively measure the distances
between two video clips that may be from different domains.
Specifically, we divide each video clip into space-time
volumes over multiple levels. We calculate the pairwise
distances between any two volumes and further integrate the
information from different volumes with Integer-flow Earth

Mover’s Distance (EMD) to explicitly align the volumes. In
contrast to the fixed volume-to-volume matching used in
[25], the space-time volumes of two videos across different
space-time locations can be matched using our ASTPM
method, making it better at coping with the large intraclass
variations within the same type of events (e.g., moving
objects in consumer videos can appear at different space-
time locations, and the background within two different
videos, even captured from the same scene, may be shifted
due to considerable camera motion).

The second is our main contribution. In order to cope with
the considerable variation between feature distributions of
videos from the web video domain and consumer video
domain, we propose a new transfer learning method,
referred to as Adaptive Multiple Kernel Learning (A-MKL).
Specifically, we first obtain one prelearned classifier for each
event class at each pyramid level and with each type of local
feature, in which existing kernel methods (e.g., SVM) can be
readily employed. In this work, we adopt the prelearned
average classifier by equally fusing a set of SVM classifiers that
are prelearned based on a combined training set from two
domains by using multiple base kernels from different kernel
types and parameters. For each event class, we then learn an
adapted classifier based on multiple base kernels and the
prelearned average classifiers from this event class or all
event classes by minimizing both the structural risk func-
tional and mismatch between data distributions of two
domains. It is noteworthy that the utilization of the
prelearned average classifiers from all event classes in
A-MKL is based on the observation that some events may
share common motion patterns [47]. For example, the videos
from some events (such as “birthday,” “picnic,” and
“wedding”) usually contain a number of people talking with
each other. Therefore, it is beneficial to learn an adapted
classifier for “birthday” by leveraging the prelearned
classifiers from “picnic” and “wedding.”
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Fig. 1. Four sample frames from consumer videos and YouTube videos. Our work aims to recognize the events in consumer videos by using a

limited number of labeled consumer videos and a large number of YouTube videos. The examples from two events (i.e.,“picnic” and “sports”)

illustrate the considerable appearance differences between consumer videos and YouTube videos, which poses great challenges to conventional

learning schemes but can be effectively handled by our transfer learning method A-MKL.

Fig. 2. The flowchart of the proposed visual event recognition framework. It consists of an aligned space-time pyramid matching method that
effectively measures the distances between two video clips and a transfer learning method that effectively copes with the considerable variation in
feature distributions between the web videos and consumer videos.



The remainder of this paper is organized as follows:
Section 2 will provide brief reviews of event recognition. The
proposed methods ASTPM and A-MKL will be introduced in
Sections 3 and 4, respectively. Extensive experimental results
will be presented in Section 5, followed by conclusions and
future work in Section 6.

2 RELATED WORK ON EVENT RECOGNITION

Event recognition methods can be roughly categorized into
model-based methods and appearance-based techniques.
Model-based approaches relied on various models, includ-
ing HMM [35], coupled HMM [3], and Dynamic Bayesian
Network [33], to model the temporal evolution. The
relationships among different body parts and regions are
also modeled in [3], [35], in which object tracking needs to
be conducted at first before model learning.

Appearance-based approaches employed space-time
(ST) features extracted from volumetric regions that can
be densely sampled or from salient regions with significant
local variations in both spatial and temporal dimensions
[24], [32], [41]. In [19], Ke et al. employed boosting to learn a
cascade of filters based on space-time features for efficient
visual event detection. Laptev and Lindeberg [24] extended
the ideas of Harris interest point operators and Dollár et al.
[7] employed separable linear filters to detect the salient
volumetric regions. Statistical learning methods, including
SVM [41] and probabilistic Latent Semantic Analysis
(pLSA) [32], were then applied by using the aforementioned
space-time features to obtain the final classification.
Recently, Kovashka and Grauman [20] proposed a new
feature formation technique by exploiting multilevel voca-
bularies of space-time neighborhoods. Promising results
[12], [20], [27], [32], [41] have been reported on video data
sets under controlled conditions, such as Weizman [12] and
KTH [41] data sets. Interested readers may refer to [45] for a
recent survey.

Recently, researchers proposed new methods to address
the more challenging event recognition task on video data
sets captured under much less uncontrolled conditions,
including movies [25], [43] and broadcast news videos [49].
In [25], Laptev et al. integrated local space-time features
(i.e., Histograms of Oriented Gradient (HOG) and Histo-
grams of Optical Flow (HOF)), space-time pyramid match-
ing, and SVM for action classification in movies. In order to
locate the actions from movies, a new discriminative
clustering algorithm [11] was developed based on the
weakly labeled training data that can be readily obtained
from movie scripts without any cost of manual annotation.
Sun et al. [43] employed Multiple Kernel Learning (MKL) to
efficiently fuse three types of features, including a so-called
SIFT average descriptor and two trajectory-based features.
To recognize events in diverse broadcast news videos, Xu
and Chang [49] proposed a multilevel temporal matching
algorithm for measuring video similarity.

However, all these methods followed the conventional
learning framework by assuming that the training and test
samples are from the same domain and feature distribution.
When the total number of labeled training samples is
limited, the performances of these methods would be poor.
In contrast, the goal of our work is to propose an effective

event recognition framework for consumer videos by
leveraging a large amount of loosely labeled web videos,
where we must deal with the distribution mismatch
between videos from two domains (i.e., web video domain
and consumer video domain). As a result, our algorithm
can learn a robust classifier for event recognition requiring
only a small number of labeled consumer videos.

3 ALIGNED SPACE-TIME PYRAMID MATCHING

Recently, pyramid matching algorithms were proposed for
different applications, such as object recognition, scene
classification, and event recognition in movies and news
videos [13], [25], [26], [48], [49]. These methods involved
pyramidal binning in different domains (e.g., feature, spatial,
or temporal domain), and improved performances were
reported by fusing the information from multiple pyramid
levels. Spatial pyramid matching [26] and its space-time
extension [25] used fixed block-to-block matching and fixed
volume-to-volume matching (we refer to it as unaligned space-
time matching), respectively. In contrast, our proposed
Aligned Space-Time Pyramid Matching extends the methods
of Spatially Aligned Pyramid Matching (SAPM) [48] and
Temporally Aligned Pyramid Matching (TAPM) [49] from
either the spatial domain or the temporal domain to the joint
space-time domain, where the volumes across different
space and time locations can be matched.

Similarly to [25], we divide each video clip into
8l nonoverlapped space-time volumes over multiple levels,
l ¼ 0; . . . ; L� 1, where the volume size is set as 1=2l of the
original video in width, height, and temporal dimension.
Fig. 3 illustrates the partitions of two videos Vi and Vj at
level-1. Following [25], we extract the local space-time (ST)
features, including HOG and HOF, which are further
concatenated together to form lengthy feature vectors. We
also sample each video clip to extract image frames and then
extract static local SIFT features [31] from them.

Our method consists of two matching stages. In the first
matching stage, we calculate the pairwise distance Drc

between each two space-time volumes ViðrÞ and VjðcÞ,
where r; c ¼ 1; . . . ; R, with R being the total number of
volumes in a video. The space-time features are vector-
quantized into visual words and then each space-time
volume is represented as a token-frequency feature. As
suggested in [25], we use �2 distance to measure the
distance Drc. Noting that each space-time volume consists of
a set of image blocks, we also extract token-frequency
features from each image block by vector quantizing the
corresponding SIFT features into visual words. And based
on the token-frequency features, as suggested in [49], the
pairwise distance Drc between two volumes ViðrÞ and VjðcÞ
is calculated by using EMD [39] as follows:

Drc ¼
PH

u¼1

PI
v¼1

bfuvduvPH
u¼1

PI
v¼1

bfuv ;

where H; I are the numbers of image blocks in ViðrÞ; VjðcÞ,
respectively, duv is the distance between two image blocks
(euclidean distance is used in this work), and bfuv is the
optimal flow that can be obtained by solving the linear
programming problem as follows:
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bfuv ¼ arg min
fuv�0

XH
u¼1

XI
v¼1

fuvduv;

s:t:
XH
u¼1

XI
v¼1

fuv ¼ 1;
XI
v¼1

fuv �
1

H
; 8u;

XH
u¼1

fuv �
1

I
; 8v:

In the second stage, we further integrate the informa-
tion from different volumes by using integer-flow EMD to
explicitly align the volumes. We try to solve a flow
matrix bFrc containing binary elements which represent
unique matches between volumes ViðrÞ and VjðcÞ. As
suggested in [48], [49], such a binary solution can be
conveniently computed by using the standard Simplex
method for linear programming, which is presented in the
following theorem:

Theorem 1 ([18]). The linear programming problem,

bFrc ¼ arg min
Frc

XR
r¼1

XR
c¼1

FrcDrc;

s:t:
XR
c¼1

Frc ¼ 1; 8r;
XR
r¼1

Frc ¼ 1; 8c;

will always have an integer optimal solution when solved by
using the Simplex method.

Fig. 3 illustrates the matching results of two videos after
using our ASTPM method, indicating the reasonable match-
ing between similar scenes (i.e., the crowds, the playground,
and the Jumbotron TV screens in the two videos). It is also
worth mentioning that our ASTPM method can preserve the
space-time proximity relations between volumes from two
videos at level-1 when using the ST or SIFT features.
Specifically, the ST features (respectively, SIFT features) in
one volume can only be matched to the ST features
(respectively, SIFT features) within another volume at level-
1 in our ASTPM method rather than arbitrary ST features
(respectively, SIFT features) within the entire video as in the
classical bag-of-words model (e.g., ASTPM at level-0).

Finally, the distance DlðVi; VjÞ between two video clips Vi
and Vj at level-l can be directly calculated by

DlðVi; VjÞ ¼
PR

r¼1

PR
c¼1

bFrcDrcPR
r¼1

PR
c¼1

bFrc :

In the next section, we will propose a new transfer learning
method to fuse the information from multiple pyramid
levels and different types of features.

4 ADAPTIVE MULTIPLE KERNEL LEARNING

Following the terminology from prior literature, we refer to
the web video domain as the auxiliary domainDA (a.k.a., source
domain) and the consumer video domain as the target domain
DT ¼ DTl [ DTu , where DTl and DTu represent the labeled and
unlabeled data in the target domain, respectively. In this
work, we denote In as the n� n identity matrix and 0n;1n 2
IRn as n� 1 column vectors of all zeros and all ones,
respectively. The inequality a ¼ ½a1; . . . ; an�0 � 0n means that
ai � 0 for i ¼ 1; . . . ; n. Moreover, the element-wise product
between vectors a and b is defined as a � b ¼ ½a1b1; . . . ; anbn�0.

4.1 Brief Review of Related Learning Work

Transfer learning (a.k.a., domain adaptation or cross-
domain learning) methods have been proposed for many
applications [6], [8], [9], [29], [50]. To take advantage of all
labeled patterns from both auxiliary and target domains,
Daumé [6] proposed Feature Replication (FR) by using
augmented features for SVM training. In Adaptive SVM (A-
SVM) [50], the target classifier fT ðxÞ is adapted from an
existing classifier fAðxÞ (referred to as auxiliary classifier)
trained based on the samples from the auxiliary domain.
Specifically, the target decision function is defined as
follows:

fT ðxÞ ¼ fAðxÞ þ�fðxÞ; ð1Þ

where �fðxÞ is called a perturbation function that is learned
by using the labeled data from the target domain only (i.e.,
DTl ). While A-SVM can also employ multiple auxiliary
classifiers, these auxiliary classifiers are fused with pre-
defined weights to obtain fAðxÞ [50]. Moreover, the target
classifier fT ðxÞ is learned based on only one kernel.
Recently, Duan et al. [8] proposed Domain Transfer SVM
(DTSVM) to simultaneously reduce the mismatch between
the distributions of two domains and learn a target decision
function. The mismatch was measured by Maximum Mean
Discrepancy (MMD) [2] based on the distance between the
means of the samples, respectively, from the auxiliary
domain DA and the target domain DT in a Reproducing
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Fig. 3. Illustration of the proposed Aligned Space-Time Pyramid Matching method at level-1: (a) Each video is divided into eight space-time volumes
along the width, height, and temporal dimensions. (b) The matching results are obtained by using our ASTPM method. Each pair of matched
volumes from two videos is highlighted in the same color. For better visualization, please see the colored PDF file.



Kernel Hilbert Space (RKHS) spanned by a kernel
function k, namely,

DISTkðDA;DT Þ ¼
1

nA

XnA
i¼1

’
�
xAi
�
� 1

nT

XnT
i¼1

’
�
xTi
������
�����
H

; ð2Þ

where xAi s and xTi s are the samples from the auxiliary and
target domains, respectively, and the kernel function k is
induced from the nonlinear feature mapping function ’ð�Þ,
i.e., kðxi;xjÞ ¼ ’ðxiÞ0’ðxjÞ. We define a column vector s
with N ¼ nA þ nT entries, in which the first nA entries are
set as 1=nA and the remaining entries are set as �1=nT ,
respectively. With the above notions, the square of MMD in
(2) can be simplified as follows [2], [8]:

DIST2
kðDA;DT Þ ¼ trðKSÞ; ð3Þ

where trðKSÞ represents the trace of KS, S ¼ ss0 2 IRN�N ,

and K ¼ ½KA;A KA;T

KT;A KT;T � 2 IRN�N , and KA;A 2 IRnA�nA , KT;T 2
IRnT�nT , and KA;T 2 IRnA�nT are the kernel matrices defined

for the auxiliary domain, the target domain, and the cross-

domain from the auxiliary domain to the target domain,

respectively.

4.2 Formulation of A-MKL

Motivated by A-SVM [50] and DTSVM [8], we propose a
new transfer learning method to learn a target classifier
adapted from a set of prelearned classifiers as well as a
perturbation function that is based on multiple base kernels
kms. The prelearned classifiers are used as prior for learning
a robust adapted target classifier. In A-MKL, the existing
machine learning methods (e.g., SVM, FR, and so on) using
different types of features (e.g., SIFT and ST features) can be
readily used to obtain the prelearned classifiers. Moreover,
in contrast to A-SVM [50], which uses the predefined
weights to combine the prelearned auxiliary classifiers, we
learn the linear combination coefficients �pjPp¼1 of the
prelearned classifiers fpðxÞjPp¼1 in this work, where P is the
total number of the prelearned classifiers. Specifically, we
use the average classifiers from one event class or all the
event classes as the prelearned classifiers (see Sections 5.3
and 5.6 for more details). We additionally employ multiple
predefined kernels to model the perturbation function in this
work, because the utilization of multiple base kernels kms
instead of a single kernel can further enhance the interpret-
ability of the decision function and improve performances
[23]. We refer to our transfer learning method based on
multiple base kernels as A-MKL because A-MKL can handle
the distribution mismatch between the web video domain
and the consumer video domain.

Following the traditional MKL assumption [23], the
kernel function k is represented as a linear combination of
multiple base kernels kms as follows:

k ¼
XM
m¼1

dmkm; ð4Þ

where dms are the linear combination coefficients, dm � 0 andPM
m¼1 dm ¼ 1; each base kernel function km is induced from

the nonlinear feature mapping function ’mð�Þ, i.e.,

kmðxi;xjÞ ¼ ’mðxiÞ0’mðxjÞ, and M is the total number of

base kernels. Inspired by semiparametric SVM [42], we define

the target decision function on any sample x as follows:

fT ðxÞ ¼
XP
p¼1

�pfpðxÞ þ
XM
m¼1

dmw0m’mðxÞ þ b|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�fðxÞ

; ð5Þ

where �fðxÞ ¼
PM

m¼1 dmw0m’mðxÞ þ b is the perturbation

function with b as the bias term. Note that multiple base

kernels are employed in �fðxÞ.
As in [8], we employ the MMD criterion to reduce the

mismatch between the data distributions of two domains in

this work. Let us define the linear combination coefficient

vector as d ¼ ½d1; . . . ; dM �0 and the feasible set of d as M¼
fd 2 IRM j10Md ¼ 1;d � 0Mg. With (4), (3) can be rewritten as

DIST2
kðDA;DT Þ ¼ �ðdÞ ¼ h0d; ð6Þ

where h ¼ ½trðK1SÞ; . . . ; trðKMSÞ�0, Km ¼ ½’mðxÞ0’mðxÞ� 2
IRN�N is the mth base kernel matrix defined on the

samples from both auxiliary and target domains. Let us

denote the labeled training samples from both the auxiliary

and target domains (i.e., DA [ DTl ) as ðxi; yiÞjni¼1, where n is

the total number of labeled training samples from the two

domains. The optimization problem in A-MKL is then

formulated as follows:

min
d2M

GðdÞ ¼ 1

2
�2ðdÞ þ �JðdÞ; ð7Þ

where

JðdÞ ¼ min
wm;�;b;�i

1

2

XM
m¼1

dmkwmk2 þ �k��k2

 !
þ C

Xn
i¼1

�i;

s:t: yif
T ðxiÞ � 1� �i; �i � 0;

ð8Þ

�� ¼ ½�1; . . . ; �P �0 is the vector of �ps, and �; C > 0 are the

regularization parameters. Denote ~wm ¼ ½w0m;
ffiffiffi
�
p

��0�0 and

~’mðxiÞ ¼ ½’mðxiÞ0; 1ffiffi
�
p fðxiÞ0�0, where fðxiÞ ¼ ½f1ðxiÞ; . . . ;

fP ðxiÞ�0. The optimization problem in (8) can then be

rewritten as follows:

JðdÞ ¼ min
~wm;b;�ii

1

2

XM
m¼1

dmk ~wmk2 þ C
Xn
i¼1

�i;

s:t: yi
XM
m¼1

dm ~w0m ~’mðxiÞ þ b
 !

� 1� �i; �i � 0:

ð9Þ

By defining ~vm ¼ dm ~wm, we rewrite the optimization

problem in (9) as a quadratic programming (QP) problem [37]:

JðdÞ ¼ min
~vm;b;�i

1

2

XM
m¼1

k~vmk2

dm
þ C

Xn
i¼1

�i;

s:t: yi
XM
m¼1

~v0m ~’mðxiÞ þ b
 !

� 1� �i; �i � 0:

ð10Þ

Theorem 2 ([8], [37]). The optimization problem in (7) is jointly

convex with respect to d, ~vm, b, and �i.

DUAN ET AL.: VISUAL EVENT RECOGNITION IN VIDEOS BY LEARNING FROM WEB DATA 1671



Proof. Note that the first term 1
2 �2ðdÞ of GðdÞ in (7) is a

quadratic term with respect to d. And other terms in (10)
are linear except the term 1

2

PM
m¼1

k~vmk2

dm
. As shown in [37],

this term is also jointly convex with respect to d and ~vm.
Therefore, the optimization problem in (7) is jointly convex
with respect to d, ~vm, b, and �i. tu

With Theorem 2, the objective in (7) can reach its global
minimum. By introducing the Lagrangian multiplier
���� ¼ ½�1; . . . ; �n�0, we solve the dual form of the optimization
problem in (10) as follows:

JðdÞ ¼ max
��2A

10n�����
1

2
ð���� � yÞ0

XM
m¼1

dm ~Km

 !
ð�� � yÞ; ð11Þ

where y ¼ ½y1; . . . ; yn�0 is the label vector of the training
samples, A ¼ f���� 2 IRnj����0y ¼ 0;0n � ���� � C1ng is the feasi-
ble set of the dual variable ����, ~Km ¼ ½~’mðxiÞ0 ~’mðxjÞ� 2 IRn�n

is defined by the labeled training data from both domains,
and ~’mðxiÞ0 ~’mðxjÞ ¼ ’mðxiÞ0’mðxjÞ þ 1

� ffffðxiÞ
0ffffðxjÞ. Recall

that ffffðxÞ is a vector of the predictions on x from the
prelearned classifiers fps, which resembles the label
information of x and can be used to construct the idealized
kernel [22]. Thus, the new kernel matrix ~Km can be viewed
as the integration of both the visual information (i.e., from
Km) and the label information, which can lead to better
discriminative power. Surprisingly, the optimization pro-
blem in (11) is in the same form as the dual of SVM with the
kernel matrix

PM
m¼1 dm

~Km. Thus, the optimization problem
can be solved by existing SVM solvers such as LIBSVM [4].

4.3 Learning Algorithm of A-MKL

In this work, we employ the reduced gradient descent
procedure proposed in [37] to iteratively update the linear
combination coefficient d and the dual variable ���� in (7).

Updating the dual variable ����. Given the linear combina-
tion coefficient d, we solve the optimization problem in (11) to
obtain the dual variable ���� by using LIBSVM [4].

Updating the linear combination coefficient d. Suppose
the dual variable ���� is fixed. With respect to d, the objective
function GðdÞ in (7) becomes

GðdÞ ¼ 1

2
d0hh0dþ � 10n�����

1

2
ð���� � yÞ0

XM
m¼1

dm ~Km

 !
ð���� � yÞ

 !

¼ 1

2
d0hh0d� �q0dþ const;

ð12Þ

where q ¼ ½12 ð���� � yÞ0K1ð���� � yÞ; . . . ; 1
2 ð���� � yÞ0KMð���� � yÞ�0 and

the last term is a constant term that is irrelevant to d,
namely, const ¼ �ð10n����� 1

2�

Pn
i;j¼1 �i�jyiyjffffðxiÞ

0ffffðxjÞÞ.
We adopt the second-order gradient descent method to

update the linear combination coefficient d at iteration
tþ 1 by

dtþ1 ¼ dt � �tgt; ð13Þ

where �t is the learning rate which can be obtained by using
a standard line search method [37], gt ¼ ðr2

tGÞ
�1rtG is the

updating direction, and rtG ¼ hh0dt � �q and r2
t G ¼ hh0

are the first-order and second-order derivatives of G in (12)
with respect to d at the tth iteration, respectively. Note that

hh0 is not of full rank, and therefore we replace hh0 by
hh0 þ 	IM to avoid numerical instability, where 	 is set as
10�5 in the experiments. Then, the updating function (13)
can be rewritten as follows:

dtþ1 ¼ ð1� �tÞdt þ �tdnew
t ; ð14Þ

where dnew
t ¼ �ðhh0 þ 	IMÞ�1q. Note that by replacing hh0

with hh0 þ 	IM , the solution to rtG ¼ hh0dt � �q ¼ 0M
becomes dnew

t . Given dt 2 M, we project dnew
t onto the

feasible set M to ensure dtþ1 2 M as well.
The whole optimization procedure is summarized in

Algorithm 1.1 We terminate the iterative updating proce-
dure once the objective in (7) converges or the number of
iterations reaches Tmax. We set the tolerance parameter 
 ¼
10�5 and Tmax ¼ 15 in the experiments.

Algorithm 1. Adaptive Multiple Kernel Learning

1: Input: labeled training samples ðxi; yiÞjni¼1, prelearned
classifiers fpðxÞ

��P
p¼1

and predefined base kernel

functions kmjMm¼1

2: Initialization: t 1 and dt  1
M 1M

3: Solve for the dual variables �t in (11) by using SVM.

4: While t < Tmax Do

5: qt  ½12 ð��t � yÞ0K1ð��t � yÞ; . . . ; 1
2 ð��t � yÞ0KMð��t � yÞ�0

6: dnew
t  �ðhh0 þ 	IMÞ�1qt and project dnew

t onto the

feasible set M.
7: Update the base kernel combination coefficients

dtþ1 by using (14) with standard line search.

8: Solve for the dual variables ����tþ1 in (11) by using

SVM.

9: If jGðdtþ1Þ �GðdtÞj � 
 then break

10: t tþ 1

11: End While

12: Output: dt and ����t

Note that by setting the derivative of the Lagrangian
obtained from (9) with respect to ~wm to zero, we obtain
~wm ¼

Pn
i¼1 �iyi ~’mðxiÞ. Recall that

ffiffiffi
�
p

� and 1ffiffi
�
p fðxiÞ are the

last P entries of ~wm and ~’mðxiÞ, respectively. Therefore,
the linear combination coefficient � of the prelearned
classifiers can be obtained as follows:

� ¼ 1

�

Xn
i¼1

�iyiffffðxiÞ:

With the optimal dual variables ���� and linear combina-
tion coefficients d, the target decision function (5) of our
method A-MKL can be rewritten as follows:

fT ðxÞ ¼
Xn
i¼1

�iyi
XM
m¼1

dmKmðxi;xÞ þ
1

�
ffffðxiÞ0ffffðxÞ

 !
þ b:

4.4 Differences from Related Learning Work

A-SVM [50] assumes that the target classifier fT ðxÞ is
adapted from existing auxiliary classifiers fAp ðxÞs. However,
our proposed method A-MKL is different from A-SVM in
several aspects:
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1. In A-SVM, the auxiliary classifiers are learned by
using only the training samples from the auxiliary
domain. In contrast, the prelearned classifiers used
in A-MKL can be learned by using the training
samples either from the auxiliary domain or from
both domains.

2. In A-SVM, the auxiliary classifiers are fused with
predefined weights �ps in the target classifier, i.e.,
fT ðxÞ ¼

PP
p¼1 �pf

A
p ðxÞ þ�fðxÞ. In contrast, A-MKL

learns the optimal combination coefficients �ps in (5).
3. In A-SVM, the perturbation function �fðxÞ is based

on one single kernel, i.e., �fðxÞ ¼ w0’ðxÞ þ b.
However, in A-MKL, the perturbation function
�fðxÞ ¼

PM
m¼1 dmw0m’mðxÞ þ b in (5) is based on

multiple kernels, and the optimal kernel combina-
tion is automatically determined during the learning
process.

4. A-SVM cannot utilize the unlabeled data in the
target domain.

On the contrary, the valuable unlabeled data in the target
domain are used in the MMD criterion of A-MKL for
measuring the data distribution mismatch between two
domains.

Our work is also different from the prior work
DTSVM [8], where the target decision function fT ðxÞ ¼PM

m¼1 dmw0m’mðxÞ þ b is only based on multiple base
kernels. In contrast, in A-MKL, we use a set of prelearned
classifiers fpðxÞs as the parametric functions, and model the
perturbation function �fðxÞ based on multiple base kernels
in order to better fit the target decision function. To fuse
multiple prelearned classifiers, we also learn the optimal
linear combination coefficients �ps. As shown in the
experiments, our A-MKL is more robust in real applications
by utilizing optimally combined classifiers as the prior.

MKL methods [23], [37] utilize the training data and the
test data drawn from the same domain. When they come
from different distributions, MKL methods may fail to learn
the optimal kernel. This would degrade the classification
performance in the target domain. On the contrary, A-MKL
can better make use of the data from two domains to improve
the classification performance.

5 EXPERIMENTS

In this section, we first evaluate the effectiveness of the
proposed method ASTPM. We then compare our proposed
method A-MKL with the baseline SVM, and three existing
transfer learning algorithms: FR [6], A-SVM [50], and
DTSVM [8], as well as an MKL method discussed in [8].
We also analyze the learned combination coefficients �ps of
the prelearned classifiers, illustrate the convergence of the
learning algorithm of A-MKL and investigate the perfor-
mance variations of A-MKL using different proportions of
labeled consumer videos. Moreover, we show that A-MKL
using the prelearned classifiers from all event classes is
better than A-MKL using the prelearned classifiers from
one event class.

For all methods, we train one-versus-all classifiers with a
fixed regularization parameter C ¼ 1. For performance
evaluation, we use the noninterpolated Average Precision
(AP) as in [25], [49], which corresponds to the multipoint

average precision value of a precision-recall curve and
incorporates the effect of recall. Mean Average Precision
(MAP) is the mean of APs over all the event classes.

5.1 Data Set Description and Features

In our data set, part of the consumer videos are derived
(under a usage agreement) from the Kodak Consumer
Video Benchmark Data Set [30] which was collected by
Kodak from about 100 real users over the period of one
year. There are 1,358 consumer video clips in the Kodak
data set. A second part of the Kodak data set contains web
videos from YouTube collected using keywords-based
search. After removing TV commercial videos and low-
quality videos, there are 1,873 YouTube video clips in total.
An ontology of 25 semantic concepts was defined and
keyframe-based annotation was performed by students at
Columbia University to assign binary labels (presence or
absence) for each visual concept for both sets of videos (see
[30] for more details).

In this work, six events, “birthday,” “picnic,” “parade,”
“show,” “sports,” and “wedding,” are chosen for experi-
ments. We additionally collected new consumer video clips
from real users on our own. Similarly to [30], we also
downloaded new YouTube videos from the website. More-
over, we also annotated the consumer videos to determine
whether a specific event occurred by asking an annotator,
who is not involved in the algorithmic design, to watch each
video clip rather than just look at the key frames, as done in
[30]. For video clips in the Kodak consumer data set [30], only
the video clips receiving positive labels in their keyframe-
based annotation are reexamined. We do not additionally
annotate the YouTube videos2 collected by ourselves and
Kodak because in a real scenario we can only obtain loosely
labeled YouTube videos and cannot use any further manual
annotation. It should be clear that our consumer video set
comes from two sources—the Kodak consumer video data
set and our additional collection of personal videos, and our
web video set is a combined set of YouTube videos as well.
We confirm that the quality of YouTube videos is much
lower than that of consumer videos directly collected from
real users. Therefore, our data set is quite challenging for
transfer learning algorithms. The total numbers of consumer
videos and YouTube videos are 195 and 906, respectively.
Note that our data set is a single-label data set, i.e., each video
belongs to only one event.

In real-world applications, the labeled samples in the
target domain (i.e., consumer video domain) are usually
much fewer than those in the auxiliary domain (i.e., web
video domain). In this work, all 906 loosely labeled
YouTube videos are used as labeled training data in the
auxiliary domain. We randomly sample three consumer
videos from each event (18 videos in total) as the labeled
training videos in the target domain, and the remaining
videos in the target domain are used as the test data. We
sample the labeled target training videos five times and
report the means and standard deviations of MAPs or per-
event APs for each method.
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For all the videos in the data sets, we extract two types of
features. The first one is the local ST feature [25], in which
72D HOG and 90D HOF are extracted by using the online
tool.3 After that, they are concatenated together to form a
162D feature vector. We also sample each video clip at a rate
of 2 frames per second to extract image frames from each
video clip (we have 65 frames per video on average). For each
frame, we extract 128D SIFT features from salient regions,
which are detected by Difference-of-Gaussian (DoG) interest
point detector [31]. On average, we have 1,385 ST features
and 4,144 SIFT features per video. Then, we build visual
vocabularies by using k-means to group the ST features and
SIFT features into 1,000 and 2,500 clusters, respectively.

5.2 Aligned Space-Time Pyramid Matching versus
Unaligned Space-Time Pyramid Matching
(USTPM)

We compare our proposed Aligned Space-Time Pyramid
Matching (ASTPM) discussed in Section 3 with the fixed
volume-to-volume matching method, referred to as the
Unaligned Space-Time Pyramid Matching (USTPM) meth-
od, used in [25]. In [25], the space-time volumes of one video
clip are matched with the volumes of the other video at the
same spatial and temporal locations at each level. In other
words, the second matching stage based on integer-flow
EMD is not applied, and the distance between two video
clips is equal to the sum of diagonal elements of the distance
matrix, i.e.,

PR
r¼1 Drr. For computational efficiency, we set

the total number of levels L ¼ 2 in this work. Therefore, we
have two ways of partitions in which one video clip is
divided into 1� 1� 1 and 2� 2� 2 space-time volumes,
respectively.

We use the baseline SVM classifier learned by using the
combined training data set from two domains. We test the
performances with four types of kernels: Gaussian kernel
(i.e., Kði; jÞ ¼ expð��D2ðVi; VjÞÞ), Laplacian kernel (i.e.,
Kði; jÞ ¼ expð� ffiffiffi

�
p

DðVi; VjÞÞ), inverse square distance (ISD)
kernel (i.e., Kði; jÞ ¼ 1

�D2ðVi;VjÞþ1 ), and inverse distance (ID)
kernel (i.e., Kði; jÞ ¼ 1ffiffi

�
p

DðVi;VjÞþ1 ), where DðVi; VjÞ represents
the distance between video Vi and Vj, and � is the kernel
parameter. We use the default kernel parameter � ¼ �0 ¼ 1

A ,
where A is the mean value of the square distances between
all training samples as suggested in [25].

Tables 1 and 2 show the MAPs of the baseline SVM over
six events for SIFT and ST features at different levels
according to different types of kernels with the default
kernel parameter. Based on the means of MAPs, we have
the following three observations: 1) In all cases, the results
at level-1 using aligned matching are better than those at
level-0 based on SIFT features, which demonstrates the

effectiveness of space-time partition and it is also consistent
with the findings for prior pyramid matching methods [25],
[26], [48], [49]. 2) At level-1, our proposed ASTPM outper-
forms USTPM used in [25], thanks to the additional
alignment of space-time volumes. 3) The results from
space-time features are not as good as those from static
SIFT features. As also reported in [15], a possible explana-
tion is that the extracted ST features may fall on cluttered
backgrounds because the consumer videos are generally
captured by amateurs with hand-held cameras.

5.3 Performance Comparisons of Transfer Learning
Methods

We compare our method A-MKL with other methods,
including the baseline SVM, FR, A-SVM, MKL, and
DTSVM. For the baseline SVM, we report the results of
SVM_AT and SVM_T, in which the labeled training
samples are from two domains (i.e., the auxiliary domain
and the target domain) and only from the target domain,
respectively. Specifically, the aforementioned four types of
kernels (i.e., Gaussian kernel, Laplacian kernel, ISD kernel,
and ID kernel) are adopted. Note that in our initial
conference version [10] of this paper, we have demon-
strated that A-MKL outperforms other methods by setting
the kernel parameter as � ¼ 2l�0, where l 2 L ¼ f�6;
�4; . . . ; 2g. In this work, we test A-MKL by using another
set of kernel parameters, i.e., L ¼ f�3;�2; . . . ; 1g. Note that
the total number of base kernels is 16jLj from two pyramid
levels and two types of local features, four types of kernels,
and jLj kernel parameters, where jLj is the cardinality of L.

All methods are compared in three cases: a) classifiers
learned based on SIFT features, b) classifiers learned based on
ST features, c) classifiers learned based on both SIFT and ST
features. For both SVM_AT and FR (respectively, SVM_T), we
train 4jLj independent classifiers with the corresponding 4jLj
base kernels for each pyramid level and each type of local
features using the training samples from two domains
(respectively, the training samples from target domain).
And we further fuse the 4jLj independent classifiers with
equal weights to obtain the average classifier fSIFTl or fSTl ,
where l ¼ 0 and 1. For SVM_T, SVM_AT, and FR, the final
classifier is obtained by fusing average classifiers with equal
weights (e.g., 1

2 ðfSIFT0 þ fSIFT1 Þ for case a, 1
2 ðfST0 þ fST1 Þ for

case b, and 1
4 ðfSIFT0 þ fSIFT1 þ fST0 þ fST1 Þ for case c). For

A-SVM, we learn 4jLj independent auxiliary classifiers for
each pyramid level and each type of local features using the
training data from the auxiliary domain and the correspond-
ing 4jLj base kernels, and then we independently learn four
adapted target classifies from two pyramid levels and two
types of features by using the labeled training data from the
target domain based on Gaussian kernel with the default
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TABLE 1
Means and Standard Deviations (Percent) of MAPs

over Six Events at Different Levels Using SVM
with the Default Kernel Parameter for SIFT Features

TABLE 2
Means and Standard Deviations (Percent) of MAPs

over Six Events at Different Levels Using SVM
with the Default Kernel Parameter for ST Features



kernel parameter [50]. Similarly to SVM_T, SVM_AT, and FR,

the final A-SVM classifier is obtained by fusing two

(respectively, four) adapted target classifiers for cases a and

b (respectively, case c). For MKL and DTSVM, we

simultaneously learn the linear combination coefficients

of 8jLj base kernels (for cases a or b) or 16jLj base kernels

(for case c) by using the combined training samples from

both domains. Recall that for our method A-MKL, we make

use of prelearned classifiers as well as multiple base kernels

(see (5) in Section 4.2). In the experiment, we consider each

average classifier as one prelearned classifier and learn the

target decision function of A-MKL based on two average

classifiers fSIFTl j1l¼0 or fSTl j
1
l¼0 for cases a or b (respectively,

all the four average classifiers for case c) as well as 8jLj base

kernels based on SIFT or ST features for cases a or b

(respectively, 16jLj base kernels based on both types of

features for case c). For A-MKL, we empirically fix � ¼ 10�5

and set � ¼ 20 for all three cases. Considering that DTSVM

and A-MKL can take advantage of both labeled and

unlabeled data by using the MMD criterion to measure

the mismatch in data distributions between two domains,

we use semi-supervised setting in this work. More

specifically, all the samples (including test samples) from

the target domain and auxiliary domain are used to

calculate h in (6). Note that all test samples are used as

unlabeled data during the learning process.
Table 3 reports the means and standard deviations of

MAPs over all six events in three cases for all methods.

From Tables 3, we have the following observations based on

the means of MAPs:

1. The best result of SVM_T is worse than that of
SVM_AT, which demonstrates that the learned SVM
classifiers based on a limited number of training
samples from the target domain are not robust. We
also observe that SVM_T is always better than
SVM_AT for cases b and c. A possible explanation is
that the ST features of video samples from the
auxiliary and target domains distribute sparsely in
the ST feature space, which makes the ST feature not
robust and thus it is more likely that the data from the
auxiliary domain may degrade the event recognition
performances in the target domain for cases b and c.

2. In this application, A-SVM achieves the worst results
in cases a and c in terms of the mean of MAPs,
possibly because the limited number of labeled
training samples (e.g., three positive samples per
event) in the target domain are not sufficient for A-
SVM to robustly learn an adapted target classifier
which is based on only one kernel.

3. DTSVM is generally better than MKL in terms of the
mean of MAPs. This is consistent with [8].

4. For all methods, the MAPs based on SIFT features are
better that those based on ST features. In practice, the
simple ensemble method, SVM_AT, achieves good
performances when only using the SIFT features in
case a. It indicates that SIFT features are more effective
for event recognition in consumer videos. However,
the MAPs of SVM_AT, FR and A-SVM in case c are
much worse compared with case a. It suggests that the
simple late fusion methods using equal weights are
not robust for integrating strong features and weak
features. In contrast, for DTSVM and our method
A-MKL, the results in case c are improved by learning
optimal linear combination coefficients to effectively
fuse two types of features.

5. For each of three cases, our proposed method
A-MKL achieves the best performance by effectively
fusing average classifiers (from two pyramid levels
and two types of local features) and multiple base
kernels as well as reducing the mismatch in the data
distributions between two domains. We also believe
the utilization of multiple base kernels and pre-
learned average classifiers can also well cope with
YouTube videos with noisy labels. In Table 3,
compared with the best means of MAPs of SVM_T
(42.32 percent), SVM_AT (53.93 percent), FR (49.98
percent), A-SVM (38.42 percent), MKL (47.19 per-
cent), and DTSVM (53.78 percent), the relative
improvements of our best result (58.20 percent)
are 37.52, 7.92, 16.54, 51.48, 23.33, and 8.22 percent,
respectively.

In Fig. 4, we plot the means and standard deviations of
per-event APs for all methods. Our method achieves the
best performances in three out of six events in case c and
some concepts enjoy large performance gains according to
the means of per-event APs, e.g., the AP of “parade”
significantly increases from 65.96 percent (DTSVM) to
75.21 percent (A-MKL).

5.4 Analysis on the Combination Coefficients �ps of
the Prelearned Classifiers

Recall that we learn the linear combination coefficients �ps
of the prelearned classifiers fps in A-MKL. And the absolute
value of each �p reflects the importance of the correspond-
ing prelearned classifier. Specifically, the larger j�pj is, the
more fp contributes in the target decision function. For
better representation, let us denote the corresponding
average classifiers fSIFT0 , fSIFT1 , fST0 , and fST1 as f1, f2, f3,
and f4, respectively.

Taking one round of training/test data split in the target
domain, for example, we draw the combination coefficients
�ps of the four prelearned classifiers fps for all events in
Fig. 5. In this experiment, we again set L ¼ f�3;�2; . . . ; 1g.
We observe that the absolute values of �1 and �2 are always
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much larger than those of �3 and �4, which shows that the

prelearned classifiers (i.e., f1 and f2) based on SIFT features

play dominant roles among all the prelearned classifiers.

This is not surprising because SIFT features are much more

robust than ST features, as demonstrated in Section 5.3.

From Fig. 5, we also observe that the values of �3 and �4 are

generally not close to zero, which demonstrates that A-MKL

can further improve the event recognition performance by

effectively integrating strong and weak features. Recall that

A-MKL using both types of features outperforms A-MKL

with only SIFT features (see Table 3). We have similar

observations for other rounds of experiments.

5.5 Convergence of A-MKL Learning Algorithm

Recall that we iteratively update the dual variable ���� and the

linear combination coefficient d in A-MKL (see Section 4.3).

We take one round of training/test data split as an example

to discuss the convergence of the iterative algorithm of

A-MKL in which we also set L as f�3;�2; . . . ; 1g and we

use both types of features. In Fig. 6, we plot the change of

the objective value of A-MKL with respect to the number of

iterations. We observe that A-MKL converges after about

eight iterations for all events. We have similar observations

for other rounds of experiments.

5.6 Utilization of Additional Prelearned Classifiers
from Other Event Classes

In the previous experiments, for a specific event class, we

only utilize the prelearned classifiers (i.e., average classifiers

fSIFTl j1l¼0 and fSTl j
1
l¼0) from this event class. As a general

learning method, A-MKL can readily incorporate additional

prelearned classifiers. In our event recognition application,

we observe that some events may share common motion

patterns [47]. For example, the videos from some events

(like “birthday,” “picnic,” and “wedding”) usually contain

a number of people talking with each other. Thus, it is

beneficial to learn an adapted classifier for “birthday” by
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Fig. 4. Means and standard deviations of per-event APs of six events for all methods.

Fig. 5. Illustration of the combination coefficients �ps of the prelearned
classifiers for all events.

Fig. 6. Illustration of the convergence of the A-MKL learning algorithm
for all events.



leveraging the prelearned classifiers from “picnic” and

“wedding.” Based on this observation, for each event, we

make use of the prelearned classifiers from all event classes

for the learning of the adapted classifier in A-MKL.

Therefore, the total number of the prelearned classifiers is

24 for each event when using both types of features. For

better representation, we refer to A-MKL with four

prelearned average classifiers discussed in Sections 5.3,

5.4, and 5.5 (respectively, A-MKL with all 24 prelearned

average classifiers) as A-MKL_4 (respectively, A-MKL_24).
In Sections 5.3, 5.4, and 5.5, the same kernel parameter

set (i.e., L ¼ f�3;�2; . . . ; 1g) is used for the base kernels

and also employed to obtain the prelearned average

classifiers in A-MKL. In this experiment, we also use the

same set of kernel parameters (i.e., L ¼ f�3;�2; . . . ; 1g) for

the base kernels, but we additionally vary the set of kernel

parameters (denoted as H for better representation) to

obtain the prelearned average classifiers for A-MKL_4 and

A-MKL_24. Specifically, for each pyramid level and each

type of feature, we learn 4jHj independent SVM classifiers

from the parameter set H and four types of kernels (i.e.,

Gaussian kernel, Laplacian kernel, ISD kernel, and ID

kernel) by using the training samples from both the

auxiliary and target domains, which are further averaged

to obtain one prelearned classifier (i.e., fSIFTl j1l¼0 or fSTl j
1
l¼0).

In Table 4, we compare the results of A-MKL_4 and

A-MKL_24 when using

1. H ¼ f�3;�2; . . . ; 1g,
2. H ¼ f�4;�3; . . . ; 1g,
3. H ¼ f�5;�4; . . . ; 1g, and
4. H ¼ f�6;�5; . . . ; 1g.

From Table 4, we observe that while the performances of

A-MKL_4 and A-MKL_24 change when using different H,

A-MKL_24 is consistently better than A-MKL_4 in terms of

the mean of MAPs. It clearly demonstrates that A-MKL can

learn a more robust target classifier by effectively lever-

aging the prelearned average classifiers from all the event

classes. The performance of A-MKL_24 is the best when

setting H ¼ f�6;�5; . . . ; 1g. Compared with the other

methods such as SVM_T, SVM_AT, FR, A-SVM, MKL,

and DTSVM in terms of the mean of per-event APs for

case c, A-MKL_24 achieves the best performances in four

out of six events. The relative improvements of the best

mean of MAPs from A-MKL_24 (59.28 percent) over those

from SVM_AT (53.93 percent) and DTSVM (53.78 percent)

in Table 3 are 9.92 and 10.23 percent, respectively.

5.7 Performance Variations of A-MKL Using
Different Proportions of Labeled Consumer
Videos

We also investigate the performance variations of A-MKL
when using different proportions of labeled training samples
from the target domain. Specifically, we randomly choose a
proportion (i.e., r) of positive samples from the target
domain for each event class. All the randomly chosen
samples are considered as the labeled training data from
the target domain, while the remainder of samples in the
target domain are used as the test data. Again, we sample the
labeled target training videos five times and report the means
and standard deviations of MAPs. Considering that the users
are reluctant to annotate a large number of consumer videos,
we set r as 5, 10, 20, and 30 percent. By using both the SIFT
and ST features (i.e., case c), we compare our methods
A-MKL_4 and A-MKL_24 with the baseline method SVM_T
and the existing transfer learning method DTSVM that
achieves the second best results in case c (see Table 3). For
DTSVM, A-MKL_4, and A-MKL_24, we use the same
settings as in Section 5.6 by setting the kernel parameter set
L for the base kernels as f�3;�2; . . . ; 1g. For A-MKL_4, we
set the kernel parameter set H for the prelearned average
classifiers as f�3;�2; . . . ; 1g, and for A-MKL_24, H is set as
f�6;�5; . . . ; 1g, with which A-MKL_24 achieves the best
result (see Table 4).

From Fig. 7, we have the following observations based
on the mean of MAPs: First, the results of all methods
generally increase when using more labeled training
samples from the target domain. Second, the transfer
learning methods DTSVM, A-MKL_4, and A-MKL_24
consistently outperform the baseline method SVM_T. Third,
our methods A-MKL_4 and A-MKL_24 consistently per-
form better than DTSVM, which shows the effectiveness of
the utilization of prelearned average classifiers. Finally,
A-MKL_24 is consistently better than A-MKL_4, which
demonstrates that the information from other event classes
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TABLE 4
Means and Standard Deviations (Percent) of MAPs of A-MKL (Referred to as A-MKL_4)

Using the Prelearned Average Classifiers from the Same Event Class and
A-MKL (Referred to as A-MKL_24) Using the Prelearned Average Classifiers from All Six Event Classes

Different sets of kernel parameters (i.e., H) are employed to obtain the prelearned average classifiers.

Fig. 7. Means and standard deviations of MAPs over six events for

SVM_T, DTSVM, A-MKL_4, and A-MKL_24 when using different

proportions (i.e., r) of labeled training consumer videos.



is helpful for improving the event recognition performance
for an individual class.

5.8 Running Time and Memory Usage

Finally, we report the running time and memory usage of
our proposed framework. All the experiments are con-
ducted on a server machine with Intel Xeon 3.33 GHz CPUs
and 32 GB RAM by using a single thread. The main costs in
running time and memory usage are from feature extraction
and our proposed ASTPM method. Specifically, on the
average it takes about 63.3 seconds (respectively, 246.5 sec-
onds) to extract the SIFT features (respectively, ST features)
from a one-minute-long video. For each video, its SIFT
features (respectively, ST features) occupy 41.7 megabytes
(respectively, 17.9 megabytes) on average. In this work,
each type of features is vector-quantized into visual words
by using k-means. Considering the quantization process for
the SIFT and ST features from training videos can be
conducted in an offline manner and the quantization
process for the SIFT and ST features from a test video is
very fast, we do not count the running time of this process.
For our ASTPM using the SIFT and ST features, it, takes
about 20.9 and 0.1 milliseconds (respectively, 1,213.6 and 0.4
milliseconds) to calculate the distance between a pair of
videos at level-0 (respectively, level-1) on average. For each
event class, on average it takes about 68.4 seconds to learn
one A-MKL classifier, which includes 7.1 seconds for
obtaining the prelearned average classifiers. The average
prediction time for each test video is only about 11
milliseconds. To accelerate our framework for a median or
large scale video event recognition task, we can extract the
SIFT and ST features by using multiple threads in a parallel
fashion and employ the fast EMD algorithm [34] in ASTPM.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we propose a new event recognition frame-
work for consumer videos by leveraging a large amount of
loosely labeled YouTube videos. Specifically, we propose a
new pyramid matching method called ASTPM and a novel
transfer learning method, referred to as A-MKL, to better
fuse the information from multiple pyramid levels and
different types of local features and to cope with the
mismatch between the feature distributions of consumer
videos and web videos. Experiments clearly demonstrate
the effectiveness of our framework. To the best of our
knowledge, our work is the first to perform event
recognition in consumer videos by incorporating cost-
effective transfer learning.

To put it in a larger perspective, our work falls into the
recent research trend of “Internet Vision,” where the massive
web data including images and videos together with rich and
valuable contextual information (e.g., tags, categories, and
captions) are employed for various computer vision and
computer graphics applications such as image annotation
[44], [46], image retrieval [29], scene completion [14], and so
on. By treating the “web data as the king,” these methods [14],
[44] have achieved promising results by adopting the
simplistic learning methods such as the kNN classifier. In
this work, we have demonstrated that it is beneficial to learn
from web data by developing more advanced machine learning
methods (specifically the cross-domain learning method
A-MKL in this work) to further improve the classification

performances. A possible future research direction is to
develop effective methods to select more useful videos
from a large number of low-quality YouTube videos to
construct the auxiliary domain.

While transfer learning (a.k.a., domain adaptation or
cross-domain learning) has been studied for years in other
fields (e.g., natural language processing [1], [6]), it is still an
emerging research topic in computer vision [40]. In some
vision applications, there is an existing domain (i.e.,
auxiliary domain) with a large number of labeled data,
but we want to recognize the images or videos in another
domain of interest (i.e., target domain) with very few
labeled samples. Besides the adaption between the web
domain and consumer domain studied in this work and
[29], other examples that vision researchers have recently
been working on include the adaptation of cross-category
knowledge to a new category domain [36], knowledge
transfer by mining semantic relatedness [38], and adaption
between two domains with different feature representations
[21], [40]. In the future, we will extend our A-MKL for those
interesting vision applications.

ACKNOWLEDGMENTS

This work is supported by Singapore A*STAR SERC Grant
(082 101 0018).

REFERENCES

[1] J. Blitzer, R. McDonald, and F. Pereira, “Domain Adaptation with
Structural Correspondence Learning,” Proc. Conf. Empirical Meth-
ods in Natural Language, pp. 120-128, 2006.

[2] K.M. Borgwardt, A. Gretton, M.J. Rasch, H.-P. Kriegel, B.
Schölkopf, and A.J. Smola, “Integrating Structured Biological
Data by Kernel Maximum Mean Discrepancy,” Bioinformatics,
vol. 22, no. 4, pp. e49-e57, 2006.

[3] M. Brand, N. Oliver, and A. Pentland, “Coupled Hidden Markov
Models for Complex Action Recognition,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition, pp. 994-999, 1997.

[4] C.-C. Chang and C.-J. Lin, “LIBSVM: A Library for Support Vector
Machines,” software available at http://www.csie.ntu.edu.tw/
cjlin/libsvm, 2001.

[5] S.-F. Chang, D. Ellis, W. Jiang, K. Lee, A. Yanagawa, A.C. Loui,
and J. Luo, “Large-Scale Multimodal Semantic Concept Detection
for Consumer Video,” Proc. ACM Int’l Workshop Multimedia
Information Retrieval, pp. 255-264, 2007.
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