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Abstract— We propose a system for human-robot interaction
that learns both models for spatial prepositions and for object
recognition. Our system grounds the meaning of an input
sentence in terms of visual percepts coming from the robot’s
sensors in order to send an appropriate command to the PR2
or respond to spatial queries. To perform this grounding, the
system recognizes the objects in the scene, determines which
spatial relations hold between those objects, and semantically
parses the input sentence. The proposed system uses the visual
and spatial information in conjunction with the semantic parse
to interpret statements that refer to objects (nouns), their spatial
relationships (prepositions), and to execute commands (actions).
The semantic parse is inherently compositional, allowing the
robot to understand complex commands that refer to multiple
objects and relations such as: “Move the cup close to the robot
to the area in front of the plate and behind the tea box”. Our
system correctly parses 94% of the 210 online test sentences,
correctly interprets 91% of the correctly parsed sentences, and
correctly executes 89% of the correctly interpreted sentences.

I. INTRODUCTION

In this paper, we present a natural language interface for
interacting with a robot that allows users to issue commands
and ask queries about the spatial configuration of objects
in a shared environment. To accomplish this goal, the robot
must interpret the natural language sentence by grounding it
in the data streaming from its sensors. Upon understanding
the sentence, the robot then must produce an appropriate
response via action in the case of a command, or via natural
language in the case of a query.

For example, to correctly interpret and execute the
command “Pick up the cup that is close to the robot” (see
Fig. 1) the system must carry out the following steps: (i)
ground the nouns (e.g. “cup”) in the sentence to objects in the
environment via percepts generated by the robot’s sensors;
(ii) ground the prepositions (e.g. “close to”) in the sentence
to relations between objects in the robot’s environment; (iii)
combine the meanings of the nouns and prepositions to
determine the meaning of the command as a whole; and
(iv) robustly execute a set of movements (e.g. PICKUP) to
accomplish the given task.

In order for a robot to effectively interact with a human in
a shared environment, the robot must be able to recognize the
objects in the environment as well as be able to understand
the spatial relations that hold between these objects. The
importance of interpreting spatial relations is evidenced by
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Fig. 1. An example of the visual setting in which the PR2 robot is issued
commands and asked queries.

the long history of research in this area [1], [2], [3], [4],
[5]. However, most of the previous work builds models of
spatial relations by hand-coding the meanings of the spatial
relations rather than learning these meanings from data. One
of the conclusions presented in [6] is that a learned model of
prepositions can outperform one that is hand-coded. In the
present work, we extend the learned spatial relations models
presented in [6] to handle a broader range of natural language
(see Table I) and to run on a PR2 robot in a real environment
such as the one in Fig. 1.1

The spatial relations model presented in [6] had several
limitations that prevented it from being deployed on an actual
robot. First, the model assumed perfect visual information
consisting of a virtual 3D environment with perfect object
segmentation. Second, the model only allowed reference to
objects via object ID (e.g. O3) as opposed to the more natural
noun reference (“the cup”). Lastly, the grammar was small
and brittle, which caused the system to fail to parse on all
but a few carefully constructed expressions. In this work,
we extend the model in [6] to address these limitations by
building a system that runs on a PR2 robot and interacts
with physical objects in the real world.In order to interpret
the sentences in Table I, we have built the following modules:
• A vision module that provides grounding between visual
percepts and nouns (Section III-B)

• A spatial prepositions module capable of understanding
complex 3D spatial relationships between objects
(Section III-C)

1We will make available demo videos and the supplementary material at
http://rll.berkeley.edu/iros2013grounding



• A set of actions implemented on a PR2 robot to carry
out commands issued in natural language (Section III-D)
We have created an integrated architecture (see Fig. 2),

that combines and handles the flow of information of the
separate modules. The system is managed by an interface
where a user types sentences, and the robot replies either
by answering questions or executing commands (see Table
I and Figs. 1,3,7). Every sentence is semantically analyzed
to determine both the type of query or command as well
as the identity of all objects or locations referenced by the
sentence. The semantic interpretation depends on the vision
module to interpret the nouns and on the prepositions module
to interpret the spatial relations present in the sentence. If the
sentence issued by the user is interpreted as a command, then
the appropriate action and parameters are sent to the robot
module. The results from the queries and feedback from the
action’s execution are finally displayed on the user interface.

Input Action
“What is the object in front of PR2?” REPLY(“A tea box”)
“Which object is the cup?” REPLY(“It is O3”)
“Which object is behind the item that is to
the right of the cup?”

REPLY(“It is O7”)

“Which object is close to the item that is to
the left of the green works?”

REPLY(“It is O6”)

“Point at the area on the plate.” POINTAT([XYZ])
“Point to the object to the left of the tea box.” POINTTO(O3)
“Place the cup in the area behind the plate.” PLACEAT(O3, [XYZ])
“Place the pasta box in the area on the plate.” PLACEAT(O4, [XYZ])
“Pick up the cup that is far from the robot.” PICKUP(O6)
“Put down the cup in the area inside the
bowl.”

PLACEAT(O6, [XYZ])

“Pickup the tea box in front of the plate.” PICKUP(O2)
“Put down the object in the area near to the
green works and far from you.”

PLACEAT(O2, [XYZ])

“Move the object that is near to the robot to
the area far from the robot.”

MOVETO(O2, [XYZ])

“Move the cup close to the robot to the area
in front of the plate and behind the tea box.”

MOVETO(O3, [XYZ])

TABLE I
EXAMPLES OF SENTENCES HANDLED BY OUR SYSTEM AND THE

CORRESPONDING INTERPRETATION.

II. RELATED WORK

Natural language understanding and grounding has been
studied since the beginning of artificial intelligence research,
and there is a rich literature of related work. Recently, the
availability of robotic agents has opened new perspectives in
language acquisition and grounding. The seminal work by
Steels et. al [7] studied the emergence of language among
robots through games. While we retain some of the ideas
and concepts, the main difference between our approach and
Steels’ is that we provide the robot with the vocabulary,
whereas in [7] the perceptual categories arise from the agent
out of the game strategy. In a similar fashion Roy [8]
developed a model that could learn a basic syntax and ground
symbols to the sensory data.

Kuipers [9] introduced the idea of Spatial Semantic
Hierarchy (SSH), where the environment surrounding the
robot is represented at different levels, from geometric to
topological. An extension of this work is in [10], where

the authors develop a system that follows route instructions.
The main contribution is in the automatic synthesis of
implicit commands, which significantly improves the robot’s
performance. However, in contrast with this paper, they use
fixed rules rather than learning the spatial relationships from
data. In recent work [6], learning these relationships has been
shown to be beneficial.

A different approach is to teach language to robots as
they perceive their environment. For example, in [11] they
present an approach where robots ground lexical knowledge
through human-robot dialogues where a robot can ask
questions to reduce ambiguity. A more natural approach was
presented in [12], where the robot learns words for colors
and object instances through physical interaction with its
environment. Whereas the language used in [12] only allows
direct references, our approach uses complex language that
supports spatial reference between objects.

Given the relevance of spatial relations to human-robotic
interaction, various models of spatial semantics have been
proposed. However, many of these models were either
hand-coded [1], [3] or in the case of [2] use a histogram
of forces [13] for 2D spatial relations. In contrast, we build
models of 3D spatial relations learned from crowd-sourced
data by extending previous work [6].

Some studies consider dynamic spatial relations. In [14],
a robot must navigate through an office building, thereby
parsing sentences and labeling a map using a probabilistic
framework. In [15], a simulated robot must interpret a set
of commands to navigate throughout a maze. Our current
work focuses mainly on understanding complex spatial
relationship between static objects.

Tellex [16] explore language grounding in the context
of a robotic forklift that receives commands via natural
language. Their system learns parameters for interpreting
spatial descriptions, events, and object grounding. In their
model, these separate parameters are independent only when
conditioned on a semantic parse, and therefore training their
model requires annotators to label each sentence with a
complex semantic parse. In contrast, we assume a model
where the parameters for interpreting spatial descriptions are
independent from the object grounding parameters. Hence,
instead of requiring structured annotations as in [16], we train
on simple categorical annotations, such as the conventional
object-label data used in instance recognition settings, which
are easier to collect and to generalize.

III. SYSTEM DESCRIPTION

A. Language Module

The language module takes as input a textual, natural
language utterance U , which can contain instructions,
references to objects either by name or description (e.g.,
“plate” or “the cup close to the robot”), and descriptions
of spatial locations in relation to other objects (e.g., “area
behind the plate”). The output of the language module is a
command C to the robot containing the interpretation of the
utterance (e.g., PICKUP(O4)). Interpreting U into C happens
in three steps: template matching, which decides the coarse
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Fig. 2. The architecture of our system showing the interactions between the modules.

form of the sentence; broad syntactic parsing, which analyzes
the structure of the sentence; and deep semantic analysis
which interprets the linguistic sentence in terms of concepts
in the visual setting.

a) Template Matching: First, the utterance U is
matched against a list of manually constructed templates.
Each template specifies a set of keywords that must match
in U , as well as gaps which capture arbitrary text spans to
be analyzed in later steps (a subset are shown in Table I
with keywords shown in bold).2 Each template specifies the
query or command as well as which spans of U correspond
to the object descriptions referenced in that command. For
example, in the utterance “pick up the cup that is close to the
robot”, the template would match the keywords “pick up”
and triggers a PICKUP command to send to the robot. The
text spans that must be interpreted as object ids or locations
in the environment (such as “the cup that is close to the
robot” in our example) are passed to the second step for
deeper interpretation.

Although theoretically this template approach structurally
limits the supported commands and queries, the approach
still covers many of the phenomena present in our data.
During evaluation, the templates covered 98% of the tested
sentences (see Table III), despite the fact that the humans
who generated these sentences were not aware of the exact
form of the templates and only knew the general set of
actions supported by the robot. We employ the template
approach because it closely matches the pattern of language
that naturally arises when issuing commands to a robot
with a restricted scope of supported actions. Rather than
focusing on a broad range of linguistic coverage that extends
beyond the capabilities of the robot actions, we focus on
deep analysis. In the second and third steps of linguistic
interpretation (described below) our system does model
recursive descriptions (e.g., “the book on the left of the
table on the right of the box”), which are the main linguistic
complexity of interest.

b) Broad Syntactic Parsing: In order to robustly
support arbitrary references to objects and locations, we
parse these descriptions R with a broad-coverage syntactic
parser [17] and then use tree rewrite rules to project the

2These templates were constructed based only on the development data.

output syntactic parse onto our semantic grammar G:

[noun] N → plate | cup | · · ·
[preposition] P → close to | on | · · ·
[conjunction] NP → N PP∗

[relativization] PP → P NP

We apply the following tree rewrite rules to normalize the
resulting tree into G:3

• rename preposition-related POS tags (IN, TO, RB) to P
• crop all subtrees that fall outside G
• merge subtrees from multi-word prepositions into a
single node (e.g., “to the left of” into “left”)

• to handle typos in the input, we replace unknown
prepositions and nouns with those from the lexicons
contained in the preposition and vision modules that are
closest in edit-distance, provided the distance does not
exceed 2

c) Deep Semantic Analysis: The last step of
interpretation takes as input a tree T from our semantic
grammar that either refers to a specific object in the robot’s
environment or a specific 3D location. The deep semantic
analysis returns the corresponding object id or a list of 3D
points. For example, in the case of object reference, this
step would take the description “the cup that is close to the
robot” and return object id O4 (see Fig. 7). We follow the
method of probabilistic compositional semantics introduced
in [6] to compute a distribution over objects p(o|R) and
return the object id that maximizes argmaxo p(o|R).
Concretely, T is recursively interpreted to construct a
probability distribution over objects. We follow the semantic
composition rules presented in [6] at all subtrees except
those rooted at N. If the subtree is rooted at N with noun
child w, we attain a distribution over objects by leveraging
object recognition model (section III-B). We use Bayesian
inversion with the uniform prior to transform the object
recognition distribution p(w|o) into a distribution over
objects given the noun: p(o|w). If the subtree is rooted
at PP with children P and NP, the interpretation calls out
to the prepositions module (section III-C) to attain the
distribution over objects (or 3D points, in the case of a
location reference) that are in relation P to each of the
objects in the recursively computed distribution NP.

3These rules were manually generated by analyzing the development data.



Fig. 3. View of scene in Fig. 1 from the camera perspective. Segmented
objects are enframed, corresponding point cloud points are depicted, and
object labels are shown.

B. Vision Module

The role of the vision module is twofold: (i) segment the
visual input captured by a 3D Asus Xtion RGB image and
point cloud and (ii) assign a classification score between a
noun N and an object id that corresponds to how well the
noun describes the object.

1) Training: We trained our object classifier with 50
objects, mainly kitchen and office objects. To obtain training
images, we placed the object on a turning table and collected
images at a frequency of about 10◦ per image, collecting
around 80 images per object class. Following the idea
of [18], we introduced jittering effects to the objects to
make the classifier robust against view and perspective
changes. Specifically, after we cropped the object inside the
bounding box, we randomly transposed, rotated, and scaled
the bounding boxes.

2) Segmentation: The 3D point cloud captured by the
camera is voxelized at a resolution of 1mm to reduce the
number of points. The points generated from voxelization
are transformed from the camera into the robot frame of
reference, using the kinematic chain data from the PR2 robot.
We fit the plane of the tabletop by applying RANSAC.
We constrained the RANSAC by assuming that the table
is almost parallel to the ground. All the points that do not
belong to the table are clustered to segment out tabletop
objects. Noise is reduced by assuming that each object must
have a minimum size of 3cm. The point cloud clusters
are subsequently projected into the image to identify image
regions to send to the classification module. Fig. 3 shows a
segmentation example as described above.

3) Classification: Often, the segmentation component
produces well-centered object bounding boxes, allowing us
to directly perform object classification on bounding boxes
instead of performing object detection, e.g., with a slower
sliding window based approach. We apply a state-of-the-art
image classification algorithm that use features extracted by
a two-level pipeline, (i) the coding level densely extracts
local image descriptors, and encodes them into a sparse
high-dimensional representation, and (ii) the pooling level
aggregates statistics in specific regular grids to provide

:

coding pooling

:
f( ) = “pasta box”

Fig. 4. The classification pipeline adopted to train object classifiers.

invariance to small displacement and distortions. We use a
linear SVM to learn the parameters and perform the final
classification.

Specifically, we perform feature extraction using the
pipeline proposed in [19]. This method has been shown to
perform well with small to medium image resolutions,4 and it
is able to use color information (which empirically serves as
an important clue in instance recognition). Additionally, the
feature extraction pipeline runs at high speed because most
of its operations only involve feed-forward, convolution-type
operations. To compute features, we resized each bounding
box to 32×32 pixels, and densely extracted 6×6 local color
patches. We encoded these patches with ZCA whitening
followed by a threshold encoding α = 0.25 and a codebook
of size 200 learned with Orthogonal Matching Pursuit
(OMP). The encoded features are max pooled over a 4 × 4
regular grid, and then fed to a linear SVM to predict the
final label of the object. Feature extraction has been carried
out in an unsupervised fashion, allowing us to perform easy
retraining, should new objects need to be recognized. Fig. 4
illustrates the key components of our pipeline, and we defer
to [19] for a detailed description.

C. Spatial Prepositions Module

Given a preposition and landmark object, the prepositions
module outputs a distribution over the target objects and 3D
points that are located in the given preposition in relation to
the given landmark object from the robot’s point of view.5

Following [6], in this work we have focused on
the following 11 common spatial prepositions: {above,
behind, below, close to, far from, in front of,
inside of, on, to the left of, to the right of,
under}. We model the meaning of these spatial prepositions
using multi-class logistic regression that predicts the identity
of a target object (or 3D point) g conditioned on a
preposition, w, and landmark object, o. The results in [6]
suggest that a trained model of spatial prepositions performs
better than one that is hard-coded, and so we closely followed
the procedure presented therein although we expand the set
of features used and propose an hybrid model that choose
the appropriate set of features for each spatial preposition.

1) Data Collection: We use the spatial prepositions
dataset collected via Amazon’s Mechanical Turk (MTK) and
introduced in [6]. In this dataset, each annotator is presented
with a GoogleSketchup6 3D model of a room containing a
variety of objects arranged in a natural configuration. The
annotator is prompted with a preposition w and landmark

4Our RGB+depth images have resolution 640× 480.
5We only consider the robot’s point of view for all spatial references.
6http://sketchup.google.com/3dwarehouse/



object o and must select the target object g that satisfies the
relation.

2) Learning the Grounding of Spatial Prepositions: To
learn an appropriate model of these prepositions we trained
a multi-class logistic regression model with various sets of
spatial features computed between the bounding boxes (BBs)
of the landmark and target objects. Our model takes the form
p(g|w, o; θ) ∝ exp θT f(g, w, o). We learn the parameters θ
by maximizing the log-likelihood of the training data.

Our model includes the following sets of features (inspired
by [6], [20], [21], and [22]):
• Simple Features are functions only of the center of mass

(CM) of the bounding boxes, and are comprised of: the
Euclidean distance between the center of mass (CM) and
the offsets in X, Y, Z between the CMs.

• Complex Features are functions of the relation between
the bounding boxes (BBs) and are comprised of: the
percentage of overlap of the BBs, the percentage that
the target BB is inside the landmark BB, the minimum
distance between the BB, and whether or not the target
BB is in contact with the landmark BB.

• Psycholinguistic Features extend those presented in [21]
to 3D objects and to all projective prepositions.7

Using these sets of features we defined the following
models (see Fig. 8 for results):
• Simple Model uses simple features.
• Complex Model uses simple and complex features.
• Psycholinguistic Model uses simple and psycholinguistic

features.
• Combined Model uses all the features.

To adapt the models learned in the virtual environment to the
real-world domain, we used the development set collected
with the robot to define a Hybrid Model which, for each
preposition, selects the best performing model from the four
above. Empirically, we found that this method of model
selection performed better than others (see section IV-C).

3) Interpreting Object References: The relativization rule
in the grammar G relies on the Hybrid Model of spatial
prepositions in order to refer to objects by their physical
locations. For example, to interpret the sentence “Pick up
the cup that is close to the robot” the language module
prompts the prepositions module for a distribution over
objects p(g|close to,Orobot), where Orobot corresponds to
the object id assigned to the robot (O1 in Fig. 7).

4) Interpreting Location References: To interpret
references to locations like “the area on plate” or “the
area in front of the plate and behind the tea box” the
system returns a distribution over 3D points that fall in the
described areas.

We simulate placing the target object BB in 1,000 random
positions within the boundaries of the table and compute
the likelihood of each position given the set of spatial
relations expressed in the location reference. We return the
best 50 locations, to be filtered by the robot planner to avoid
collisions.

7above, behind, below, in front of, on, to the left of, to the right of, under
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Fig. 5. “on the plate”
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Fig. 6. “behind the plate”
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Fig. 7. “in front of the plate and behind the tea box”
3D points satisfying various spatial relations with regards to the
tea box (O2), and plate (O7) in the scene depicted in Fig. 1.

For example, “on the plate” refers to the area on O7 (see
Fig. 5) and “behind the plate” refers to the area behind O7

(see Fig. 6). While the description “in front of the plate and
behind the tea box” refers to the intersection of the area in
front of O7 and behind O2 (see Fig. 7).

D. Robotic Module
Our robotic platform is a mobile manipulator PR2 robot

manufactured by Willow Garage.8 It is two-armed with an
omni-directional driving system. Each arm has 7 degrees of
freedom. The torso has an additional degree of freedom as
it can move vertically. The PR2 has a variety of sensors,
among them a tilting laser mounted in the upper body and
a 3D Asus Xtion camera over a pan-tilt head. During our
experiments we used the tilting laser to create a static 3D
map of the robot’s surroundings, and we used the Asus
camera to segment and recognize the objects. For planning
and executing a collision-free trajectories with the 7DOF
arms [23], we used a compact 3D map [24].

The supported robot actions include:
• PICKUP(O): Pick up object O using the algorithm
presented in [25].

• POINTTO(O): Point to object O.
• POINTAT([XYZ]): Point at location [XYZ].
• PLACEAT([XYZ]): Place down a grasped object in
location [XYZ].

• MOVETO(O,[XYZ]): Move object O into location
[XYZ].
PICKUP was implemented by using the object’s 3D point

cloud to compute a good grasping position and by planning a
collision-free trajectory to position the gripper for grasping.

8http://www.willowgarage.com



POINTTO was implemented by moving the robot’s gripper
so that its tool frame points at the centroid of the
object’s point cloud. Several candidate gripper positions are
uniformly sampled from spheres of various radii around the
object. The gripper orientation is chosen to be an orthogonal
basis of the pointing vector. The first candidate gripper pose
that has a collision-free trajectory is selected for execution.

The PLACEAT action takes as input a candidate list
of scored 3D points generated by the spatial prepositions
module III-C, and places an object held in the gripper at
one of these 3D points. The robot executes the PLACEAT
action using the highest scoring candidate PLACEAT point
that yields a collision-free trajectory for the gripper.9 The
exact location for placing takes into account the gripper
shape and the object height.

The MOVETO action is implemented by combining
PICKUP and PLACEAT.

IV. EXPERIMENTAL RESULTS

A. Experimental Scenario

In our experiments we have collected 290 utterances
during development and 210 utterances during the online test.
Each utterance is either a command or query issued to the
robot by the user in a shared visual setting. As mentioned
in section III, we use the development set to design
the templates in the language module and perform model
selection in the spatial prepositions module. We additionally
have collected separate offline datasets in order to train our
object classification and preposition models. To train the
preposition model, we use the 3D virtual environment dataset
collected in [6] composed by 43 rooms and consisting of
2,860 tuples of the form (virtual environment, target object,
preposition, reference object). However the model presented
in this paper uses an expanded set of features and choose
the appropriate set of features for each spatial preposition.
This new model adapts better to the real environment of the
robot.

To train the object classification model, we collect a
dataset of 80 pairs of (image, instance label) for each of
the 50 possible objects, totalling 4,000 labelled images, that
appear in our visual settings. Parameter selection for the
remaining components was done using the development set
of command/query and visual setting. The result of the
robot’s execution in response to a command, or linguistic
answer in response to a query are evaluated to be either
correct or incorrect. We report the performance of each
independently trained module (either coverage or accuracy)
as well as the accuracy of the overall system on the online
test set.

A typical testing scenario is shown in Fig. 1. The dominant
feature of the robot’s environment is a flat tabletop covered
with a set of objects with which the robot will interact.
Although we used a white sheet to cover the table, none of
our modules depend on a specific background color. Since

9To support stacking objects or placing one inside another, we allowed
collisions between the gripper-held object and the environment.

the objects are segmented using 3D point clouds, we assume
they are placed at least 2cm apart. We further assume all
objects are visible by the robot without changing its pan-tilt
head configuration, and are reachable by at least one arm
without having to move the holonomic base.

B. Vision Results

The object classifier is able to recognize the objects at a
high accuracy. In our offline testing, the classifier achieves a
99.8% one-vs-all 10-fold cross validation accuracy over the
training set.

In the online testing experiments, the robot was using
real data, looking from a 70◦ angle at the objects on
the table. We measured two different accuracies, first the
accuracy of the object segmentation, which has to find the
patches in the images that contain the objects, and second
the classification of the segmented image patch. The object
segmentation achieves an accuracy of 94% when we evaluate
the segmentation over the objects contained in the online
testing. Wrong object segmentations were usually caused
by reflective object surfaces, e.g., reflective pans. Here, the
Asus camera did not perceive 3D-points in larger areas of
the objects. Typically, in these cases the object segmentation
identified more than one object.

The object classification achieved an accuracy of 91.7%
during online testing. Only correctly segmented object areas
were considered for this classification experiment. However,
in this work we are more interested in a selection task than
in a classification one. In the selection task, the goal is
to select the target object ow described by some words w:
ow = argmaxo(p(o|w)), while in the classification task the
goal is to label wo a given object o: wo = argmaxw(p(w|o)).
When the task is to select one object among the ones on the
table, the selection accuracy is 97%. The selection accuracy
is higher that the classification accuracy mainly because the
model has to choose between 5-6 objects, while for the
classification the model has to choose between 50 labels.

Segmentation Classification Selection
94% 91.7% 97%

TABLE II
VISION RESULTS IN THE ONLINE TEST

C. Spatial Prepositions Results

In this section we present the results of testing the
spatial preposition module independently of the rest of the
architecture.

Given a landmark and a spatial preposition, the module
predicts a target object. We reported how often the predicted
object matches human judgment for the same task. We
extracted 300 (landmark, spatial prepositions)-pairs from our
online test set, and asked 3 different people to select the set
of valid targets and pick a “best answer” from among that
set. The ground truth is defined by majority vote.

As can be seen in Fig. 8, the random baseline for selecting
the best answer is 14%, while the inter-annotator accuracy
(“humans”) is 85%. Human agreement is below 100% due to



the inherent difficulty in selecting the best answer for some
ambiguous prepositions (e.g. close to, far from).

During our experiments we have found that the intrinsic
ambiguity of some of the queries is a significant source of
errors. For example, reaching a consensus on the answer to
“which object is far from the robot” in Fig. 3 is challenging.
However, if we allow more than one answer to be correct
(e.g. all the objects in the second row are considered far from
the robot) then the spatial prepositions module’s error rate
reduces greatly (as can be seen in Fig. 8).
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20%
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60%
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Fig. 8. Spatial Prepositions results

The best results for the spatial preposition module were
obtained with the Hybrid Model, which independently
chooses the best model (among Simple, Complex,
Psycholinguistic, and Combined) for each preposition
based on a validation set of 100 triples (landmark, spatial
preposition, target) extracted from the development set.

D. Overall Results and Error Analysis

To evaluate the performance of the whole system we
measured the accuracy of each of the needed steps to
correctly interpret and answer/execute a question/command
given in natural language by the user. The results for each
of these steps on the online test set (210 sentences) are
presented in Table III:10

• Template Matching: Percentage of sentences that match
one of the predefined templates. In this case the main
source of errors is the user misspelling of words (a).

• Grammar Coverage: Percentage of sentences that the
Language Module can parse after the template matching
succeed. In this case the main source of errors are failures
in the tree normalization process (b,c).

• Noun Interpretation: Percentage of nouns that the
language module can generate a valid answer using the
classification results from the vision module. In this case
the main source of errors is the wrong segmentation (d,e).

• Preposition Interpretation: Percentage of spatial
prepositions that the language module can generate a
valid answer using the predictions results from the spatial
preposition module. In this case the main source of error

10In parentheses we have included references to examples of errors from
Table IV.

Template Matching 98%
Grammar Coverage 94%
Noun Interpretation 97%

Preposition Interpretation 95%
Sentence Interpretation 91%

Valid Execution 89%

TABLE III
OVERALL RESULTS IN THE ONLINE TEST

is the ambiguity of the target referred by the spatial
prepositions model (f,g).

• Sentence Interpretation: Percentage of parsed sentences
that the system can correctly interpret by combining
the results from the noun and preposition interpretations
according to the syntactically normalized tree. In this case
the main source of error is the inability of the system to
choose the best answer within the valid set of answers
(e,g,h).

• Execution: Percentage of interpreted sentences that
the robot can execute correctly (when the input is a
command). The main sources of errors are non-reachable
poses in the robot’s configuration space and collisions
during placing (i,j).

(a) Poit the left of the bowl (Template)
(b) Which object is behind the item which is to the left of the cup?

(Grammar)
(c) Pickup the cup near to PR2 (Grammar)
(d) What is to the left of the pan (Nouns)
(e) Place the tea box in the area near to the coffe mate (Nouns)
(f) Point at the object on the left of the green works (Prepositions)
(g) Point to the object to the left of the tea box (Prepositions)
(h) Which object is to the left of the mug and to the right of the cup?

(Sentence)
(i) Pick up the pan (Execution)
(j) Move the cup in front of the pan into the area on the clock (Execution)

TABLE IV
EXAMPLES OF FAILED SENTENCES

V. DISCUSSION AND CONCLUSIONS

The contribution of this paper is an extension of [6]
to a real robotic system with sensor-driven perception for
grounding nouns and spatial relations. It is noteworthy that,
while the data used for training the spatial prepositions
module has been acquired via a virtual world, the model
has proven general enough to yield acceptable performance
in a real robotics scenario.

Our results in Table III show that the overall system is
capable of executing complex commands issued in natural
language that grounds into robotic percepts. Although the
modules in our system are trained in isolation, a correct
interpretation requires that they all work together.

Our results suggest that stronger integration between
modules is a fruitful avenue for reducing interpretation
errors. For instance, the combination of the noun
interpretation with preposition interpretation helps to reduce
ambiguity in the descriptions. For example, in Fig. 3 there are
two cups and three objects close to the robot, and therefore
the commands “pick up the cup” and “pick up the object
close to the robot” are ambiguous. However, the command
“pick up the cup close to the robot” helps determine the



relevant cup. This capability could be used to enable multiple
grounding sources for the objects. For example, assertions
like “the object in front of the plate is a tea box” or “the
green works is the object behind the pasta box” can be used
to teach the system new labels and spatial relations via
linguistic input.

Stronger integration between components within a single
module can also help reduce errors. Currently, the language
interpretation module works in a feed-forward, pipelined
approach: first templates are used for coarse language
matching, next text spans are parsed and projected into
a small semantic grammar, and then the semantic trees
are interpreted. A failure in one layer will propagate to
subsequent layers. In future work, we plan to refactor our
model to remove this limitation by performing joint inference
so that decisions are made using information from all steps
of the process. We eventually plan to extend the joint model
to incorporate the computer vision and spatial prepositions
module, so that all components share information more
directly in order to help each other make decisions.

Our system correctly interprets many of the input
sentences; therefore, in addition to reducing the errors, we
are interested in extending the system to handle increased
complexity. We are working towards enabling the robot to
understand and execute more complex sentences, including
actions that will require a degree of planning or actions that
unfold over long periods of time. Moreover, we are working
to grow the lexicon beyond our initial set of nouns and
prepositions. We are additionally working on enabling the
robot to operate in more generic, non-tabletop scenarios.
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