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Abstract— We investigate adaptive modulation using the net- collection of links, generally of deterministic capacithiat
work utility maximization framework. We derive new crosslayer  can carry one or more flows. In this paper we consider
optimal power and rate adaptation policies for several pratical capacities that are functions of the channel state and vary

modulation schemes. The behavior of these crosslayer pdks is . L .
found to differ from policies based on physical-layer optiniza-  OV€r time. Conceptually, NUM and AM are symbiotic, with

tion only. The multiple flow single link case is analyzed and NUM modeling the upper layers of the protocol stack and
optimal power and rate policies found. The multiple interfering ~ AM the lower, as illustrated in figure 1.
link case is investigated and a numerical method presentecbt In this paper we study NUM/AM at several levels of in-
find optimal policies for this case. creasing complexity. A single link is initially consideradd
| INTRODUCTION a new, optimal_, closed form po_licy found for a general _class
of utility functions. The adaptive rate and power policies
Adaptive Modulation, AM, is a physical layer technique toare found to be very different than those of SE/AM for
maximize the performance of a single wireless link over flateveral practical modulation schemes. At the next level of
fading channels, subject to constraints on average traasm¢omplexity, multiple flows over a single link is investigdte
sion power. AM yields policies that adapt to changes in thand yields results similar to the single flow case. Finally,
channel condition. Spectral efficiency, the average trasismthe case of multiple interfering links is investigated, amnd
sion rate for a fixed bandwidth, is the metric generally usethethod to compute the jointly optimal NUM/AM rate and
to measure performance. We term this technique SE/AM fgrower policies for each link is described.
Spectrally Efficient Adaptive Modulation. SE/AM is opti- The remainder of this paper is organized as follows:
mized only for a single link and does not take into accourection Il describes the system model and a general class of
the demands of upper layer network protocols, creating wtility functions. Section Il formally presents the NUMM
possible mismatch between the optimum behavior expectedoblem and describes an analytical method for finding the
by the network and supplied by the link. To address thesslution. Section IV uses the general framework of section
limitations, we extend AM using the Network Utility Maxi- 1l to find optimal single link policies for the specific
mization, NUM, which we term NUM/AM. NUM/AM is a modulations of MQAM and MPSK. Section V considers
crosslayer technique to maximize network performance overultiple interfering links and describes a numerical metho
a set of possibly interfering links. Performance is measurefor finding the optimal NUM/AM strategies. Conclusions and
by utility functions, which model the metrics associatethwi future work are presented in Section VI.
network protocols or applications. NUM/AM balances the
demands of the network with what the links can supply. In
particular, NUM/AM policies optimally adjust individuank ~ A. Wreless Model
parameters to maximize overall network performance. In this section we present our system model and notation,
SE/AM has generated considerable research interest afodlowing that of [6]. The link model is illustrated in Figarl.
commercial activity [1], [2], [3], [4], [5], [6]. The funda- The channel scales the transmitted signal by the chanrel sta
mental concept is the real time adjustment of transmitterariableG and adds white Guassian noise with poineThe
parameters, such as rate, power, BER, coding rate, etchannel gains vary over time but are assumed to be stationary
under flat fading while meeting an average link budgeand ergodic with distributiorp(G). Let S be the average
constraint. SE/AM rate and power policies are greedy, akintransmit power ané the average channel gain. We &t 1
advantage of good channel conditions and budgeting little &y appropriately scaling The SNR before adaptationys=
no transmitter power to poor channel conditions. % There is a feedback channel from receiver to transmitter
NUM has been extensively studied in the context ofor sending channel estimates. These estimates are assumed
wireline networks and is a rapidly expanding area of researt¢o be instantaneous and error free.
in wireless networks [7], [8]. In NUM the goal is to maximize The system can adapt to changing channel conditions by
network performance as measured at an upper layer protoestimatingG and adapting its parameters such as transmit
or network application level. The network is modeled as powerS, transmit rateR, BER, etc. We consider the case of

Il. SYSTEM MODEL



continuous link rate adaptation subject to instantanedtiR B network, under constraints on the average power trangmitte
constraints, where the link rate and transmitter powerstdjuMathematically this objective is described as
simultaneously to changes in the channel. The instantaneou

. . . l "
link rate is given byR(S(y)), and the instantaneous system maximize - fime. fr U (r)dt

power policy is given byS(y). The instantaneous SNR after st Loq = 3)
Sy lim ¢+ [7Sdt =S
adaptation is=".
Under the assumptions of channel stationarity and ergydici
the problem can be formulated as
maximize E[U(r)]
Upper Upper S(y)>0
Layer Layer
s.t. _ (4)
T il E[S(y)=S
s N r=R(S(y))
™ © O > where E is the expectation operator and the optimization

is over functionsS(y). The functionsR(S(y)) and S(y) are
policies in the sense that given only the current channgd sta
Cramne Fesdback y, they return values that maximize average performance
and meet the average power constraint. Knowledge of the
systems’ prior transmission powers and rates is not reguire
When R(S(y)) is concave, (4) is a convex optimization
B. Utility Functions problem and a globally optimal policy exists. The following

Utility functions are a key component of NUM, since Eul_er-Lagra_lnge equation gives necessary conditions fr th
they are used as the core metric of network performan@®timal policy:

[91, _[10]_. Utility functions can model net\_/vork p_rotocols, Osy) (URS(Y))+A(Sy) -9 =0, (5)
applications, or user preferences. TCP in particular [11] _ ) )

has been modeled in this way. Each flow in a network ijwhereA is determined by the power constraint and the under-
associated with a utility functioh (r), wherer is the flow 1Ying channel state probability distribution. When solleab
rate. EachU(r) is generally assumed to be continuouslyn® result is an analytical expression for the polici&g)
differentiable, nondecreasing, and strictly concaveicyr andR(S(y)). More generally, (4) can be solved numerically,
concave utility functions exhibit diminishing returns wit €xpressing the policies in look-up table form. Methods of
rate, that is, as rate increases the incremental utilityvgro finding A on-line, without prior knowledge op(y), remain

Fig. 1. System Model

by smaller amounts. an open problem. o .
In this paper we consider the following general class of !t is worth noting by Jensen’s inequality that
utility functions often used in the literature: E[U(R(y))] < U(E[R(Y)]) (6)
u(r) = rlljg a>0 a#l 1) and that th_e utility of an average rate overe_stimates the
In(r) a=1 average utility of the network. In this sense fading not only

reduces channel capacity but also reduces utility, for any

The parametera corresponds to different properties Ofconcave utility function.

the utility function. Fora = 1 the utility function has
the property of proportional fairness, and far= 2 the IV. SINGLE LINK CASE

utility function has the property of minimum potential dgla  |n this section we determine NUM/AM policies to maxi-
fairness. The case af =0 corresponds to maximizing the mjze the utility of a single link. Two cases are investigated
rate. The first case considers practical modulation schemes con-
C. Lambert W Function strained to meet instantaneous BER rates. The second case

) ~generalizes the first to multiple flows sharing a single link.
We make use of the Lambert W function [12] to find-

closed form adaptive modulation policies. The Lambert WA. BER Constrained Network Utility Maximization
function, 7 (x), satisfies the equation In this section we consider NUM/AM under the instanta-
. neous BER constrainBER. Instantaneous BER thresholds
X=¥ (X)exp(#(x)) 2) are appropriate for many data networks, where packet exror i
for x > —%3. It is positive forx > 0 and is strictly concave. a factor. In this section optimal adaptive rate and trartemit
power policies are found that maximize average utility.lBot
[, NETWORKUTILITY MAXIMIZATION AND ADAPTIVE MQAM and MPSK are modeled parametrically.
MODULATION We use the BER approximations of [13], [6] which are
The objective of NUM/AM is to find adaptive rate andtight (to within 1.5 dB) for BER< 10 3. The BER ap-
power policies that maximize the time average utility of theoroximation applies to different modulation schemes tigitou



different parameterizations. In particular, MQAM is moeldl “water-filling” in time, and our analysis shows that utility

forc=1 and MPSK forc=0orc= -1 as maximization for utility functions of the form in (1) leads t
S a very different optimal adaptation than water-filling.
BER(S(y), y,R) = exp—75-] For the case of MPSK; = 0, the system does not transmit
(7)  when channel conditions fall below a threshaid Above
f(ry=2'0_c. this threshold the utility and rate increase, while power
Under the instantaneous BER constraintfjecreases with improving channel conditions. Here
BER(S(y),y,R) = BER, (7) implicitly defines the link Sy) -1 (16)
rate function: S [a¥ (@)2SA’
R(S(y)) =log(c+ Ky@) so transmitter power grows rapidly for small and decreasing
(8) values ofy. The system stops transmitting belgwto meet
K= ﬁ, the average power constraint. This is also in contrast tp [6]

where the transmitter either transmits at a constant power o
simply does not transmit.

The Lagrangian of (4) is
Whenc = —1 the power relationship
Sy -1 1

Juttpmaya ( [smpvdr-5). @
S . (17)

The Lagrange multiplierd, captures the trade-off between S [a? (9)|°SA Ky
power and utility. Increasing the average power constiajnt
AS will result in AU = —AAS improvement in utility. It can
be shown tha < 0. Applying (5) yields

is positive for ally and decreases with improving channel
conditions. As in the =0 MPSK case the transmitter power
grows quickly with decreasing. To meet the average power
oU SOR 2 (10) constraint, the transmitter ceases to transmit below althre
ORJS(y) old value. Intuitively, the power threshold marks a “balanc

point” between the benefit of increasing marginal utility

The result is valid for any continuous distribution of SNR. h | giti d th ‘g icall
For the class of utility functions considered here, we cafit poorer channel con itions and t e _COSt of dramatically
reducing power at other channel conditions.

solve (10) forS(y) by expressing it in two ways and applying

the Lambert W function. Rewriting (10) as B. Multiple Flows Over a Single Link
1 % Y 11 In this section we consider multiple flows over a single
@(1+yg1)) - (11) link. The goal is to find the best rate adaptation policy
_ S and to optimally allocate the links’ capacity to the diffete
gives flows. As channel conditions change, the allocations may
) = -1 _¢ (12) also change. Each floiv=1...N has rater; = Bi(y)R(S(y)),
S RISA Ky wheref3; is the percentage of the links capacity allocated to
and L flow i, and has utility functiorlJ (r;). The performance of
BexpER —6 6- - &1 (13) the link is given by the sum of these utility functions. The
_ e a o simplest approach is to separately find the best link raven fr
Equation (13) is in the form of equation (2), yielding the previous section, and then to allocate it optimally ® th
R(y) = a ¥ (6). (14) different flo-vvs. The optimal aI-Iocat|on occurs when
and Ui(Bi(Y)R(S(Y))) = Uj(Bi (Y)R(S(¥))) (18)
Sy -1 ¢ (15) YiBi(y) =1 (19)

S  [aZ(@"Sh Ky bt th il dentical. Acch X
The behavior Of the SyStem strongly depends on thT at IS,t e marglna utilities are identical. A(S: angest e

alue of c. For MQAM, ¢ =1, system transmitter power &ilocations wil generally also change.
vaiue otc. 0= S . ! pow An alternative is to allow approximate flow buffering. In
is positive for any channel condition. This can be seen b

noting that (15) is positive iff#'(x) < x for all positive this approachy; f5(y) need not equal one for every channel

T . state, but only on average. This problem can be written as
X, which is true for the Lambert W function. The average y 9 P

power constraint can always be met fat sufficiently small. maximize E[;Ui(ri)]
As channel conditions improve, utility and rate improve, Sts(y)ﬁy

but power decreases. This is in contrast to SE/AM where
the performance metric is spectral efficiency, as analymed i E[s, 8] =1 B >0
[6], where the system ceases to transmit below a channel O =

threshold, and above this threshold increases both rate and i = Bi(Y)RESY))

power with improving channel conditions. The adaptation ofvhere the optimization is over the set of possible power
[6] to maximize spectral efficiency is often referred to apoliciesS(y) and link capacity allocations. Since the link rate

E[S(y) =S sy >0 (20



function is given here, the optimal rate functionR§S(y)). Increasinga moves the crossover point, and enhances this
Applying the Euler-Lagrange approach to the Lagrangian effect. This is indicated by the arrow shown in the figure. In

S this sense, NUM/AM policies seek to better “equalize” the
L A, A = E[T;Ui(r;) +A -S
(S(y):A1,22) +[)\Z.(z|.([f3|.)_+1)]1(s(y) ) (21) links’ rate over a wider range of channel states. In economic
_ _ _ 2 H - terms utility curves are conservative; they forgo a portibn
yields the following optimality conditions the upside for greater certainty on the downside.
Ui = U (22)
RZ UiBi(y) = —A1 (23) * e
! - iracos
URSY)) = ~Ao (24) ot s

Equation (22) states that the marginal utility of each of the
flows must be equal for every channel stgteAs channel
conditions change the relative allocations may also change
WhenU; = U; the system divides the link capacity equally

N
a
1

Power S(G) in dB
N
S

for every channel state. 15¢
Our analysis can be considered in economic terms by
interpreting the Lagrange multipliers as prices. Spedifica Y e e 1w @ w w

Channel State G in dB

Aj is the price, in utility units, of deviating from the average
power constraint for any channel state. Similadly, is the
price of deviating from a non-zero buffer state. Further,
A1 relates the change in average utility when the power
constraint is adjusted\E[S U] = —A1AS, and A, can be
similarly interpreted. 15
The optimal rate and power policies are similar to those of
the single flow case, but adjusted by the Lagrange multiplier

Fig. 2. Power Performance
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A2 and ¥ Bi(y). The optimal policies are given by st
Sy) -1 c L
—— == — T 25 P
S " aFOFS y (29) !
where °l shhecos
[_ VAZ(E iBi(y) ]% ol —::a:p:aig.e
g— - S (26) e
a s ‘ ‘ ‘ ‘ ‘ ‘
which are identical to the single link case when Channel Sate G in 0B

(A23iBi(y)) = 1.
C. Comparing SE/AM and NUM/AM

In this section we compare SE/AM and NUM/AM with
a numerical example. We consider MQAM modulation with V. MULTIPLE INTERFERINGLINKS
S=20 dB, E[G] = 0 dB with flat Rayleigh fadingN =0
dB anda taking on the four values 0.0, 0.5, 0.9, 2.0. In the In this section we consider multiple interfering links. To
single link case, SE/AM corresponds to (1) with= 0. This  simplify the exposition, each link carries exactly one flow.
is not correct for the multiple link case. The goal is to find a set of policies that maximize the
Figure 2 graphsS(y), the optimal power policy as a performance of the network over randomly changing channel
function of channel stat&s. For SE/AM, transmit power conditions. The performance of the network is taken as the
improves with improving channel state. This is not necessasum of the performance of each individual ling,U(r)
ily the case for NUM/AM. Whena = 0.5 and the channel | =1,...L. The links can interfere with each other, effecting
is poor, transmitter power increases, and then decreast throughput of a given link through its SIR and link rate
For a = 2, the transmitter power decreases with improvindunctions.
channel conditions for all values @ shown. In general,  The channel is modeled as a random channel state (gain)
the SE/AM and NUM/AM power curves cross at a pointmatrix G, whereG;j is the power gain from the transmitter
determined byS p(G) and a. Below this point NUM/AM  on link j to the receiver on link andG ~ p(G). We assume
expends more power and above this point SE/AM does. the channel state is estimated without error and is known at
Figure 3 shows the optimal rate policy for SE/AM andthe set of transmitters. The vector of transmitter powers is
NUM/AM. The behavior is similar, with NUM/AM im- given by §(G). Because of interference, the channel stte
proving link rate performance at poor channel conditions explicitly considered, rather than the SNRused in the
at the expense of performance at good channel condition®evious section. The link rate function is assumed to be of

Fig. 3. Rate Performance



the form
GiiS )
YinGiS+N/’
so a change in the transmitter power of one link is imme-
diately expressed as changes in the other links SIR’s and
rates.
Mathematically the goal is to find the best rd®éS(G))

and powelS(G) policies that maximize system performance.
This can be expressed as

R(S(G)) = log <1+ 27)

maximize E[y;Ui(r{]
S(y)
subject to

E[TS(y)] =S S(y)>0
n=R(S(Y)

where the power constraint limits the average power used
by the network toS. This constraint allows the network an
additional degree of freedom. It can allocate power between
links, not just over channel states as in the single link case
It is worth noting that whero = 0 for all utility functions,
(28) maximizes the sum of the rates on all of links in the
network.

Unfortunately (28) is not a convex problem and global
policies may not exist. It can be made convex by assuming
SR >> 1, moderate SIR’s, and transforming the variables
S =expx), Gij = exp(gij), N = exp(n), wherex g;; and
n are proportional to transmitter power, channel gain, and
noise in dB. The link rate model can now be expressed as

RI(G,S(G)) = —In(el %81 (3 ;€ *9) ). (29)

(28)

channel state

Fig. 4. Multi-Link Rate Performance

channel state

Fig. 5. Multi-Link Power Performance

tending to make rates more equal over changing channel

conditions. A similar behavior is exhibited for the multki.

Applying Euler-Lagrange yields the necessary optimality
conditions
e(]ijer

U"%“k[m]:”

which, unfortunately, are difficult to solve analytically.

Equation (28) can, however, be solved numerically. Figurql]
4 shows the rate behavior of a six link interfering network.
Average total network power is constrained to 20 dB. The
y-axis are the link rates, and the x-axis is the channel statg]
ordered by increasing rate. Twenty representative channel
states were selected. As in the single link case, rates wapro [3]
with improving channel state. Figure 5 shows the transmitte
powers. The network allocates more power to poorer channel
conditions deemphasizing rate performance at good channél
states, to improve performance at poorer ones. Further, t
network allocates relatively more power to links with sreall
link rates, seeking to balance the marginal utility of eath o
the flows.

(30)

(6]

VI. CONCLUSION

NUM/AM extends SE/AM from isolated links to general
networks, optimizing metrics that model the behavior of
higher level protocols. In the single link case, the optimall8l
policies for NUM/AM are very different from the otimal
“water filling in time” policies of SE/AM, with NUM/AM

(7]

Future research directions include developing on-line al-
gorithms for the multi-link case and modeling buffering in
the system. A second area is investigating adaptive coding
or elastic symbol periods in the NUM/AN framework.

REFERENCES

R. Hoefel and C. de Almeida, “Performance of ieee 80Dbaed
networks with link level adaptive techniques/ghicular Technology
Conference, VTC2004-Fall. 2004 |EEE 60th, vol. 2, 2004.

F. Peng, J. Zhang, and W. E. Ryan, “Adaptive modulatiod ending
for ieee 802.11n,"IEEE Wreless Communications and Networking
Conference, 2007.WCNC, 2007.

K.-B. Song, A. S. T. C. Ekbal, and J. Cioffi, “Adaptive mdétion
and coding (amc) for bit-interleaved coded ofdm (bic-ofdmEEE
Communications, 2004 |IEEE International Conference on, vol. 6,
no. 11, 2004.

X. Qiu and K. Chawla, “On the performance of adaptive matan
in cellular systems,|EEE Trans. Comm., pp. 884-895, June 1999.

h[g] A. Goldsmith, “The capacity of downlink fading channeisth vari-

able rate and powerXehicular Technology, |IEEE Transactions on,
vol. 46, no. 3, 1997.

S. Chung and A. J. Goldsmith, “Degrees of freedom in adapt
modulation: A unified approach,IEEE Trans. Commun., vol. 49,
2001.

J.-W. Lee, M. Chiang, and A. R. Calderbank, “Price-badedributed
algorithms for rate-reliability tradeoff in network utyi maximiza-
tion,” IEEE Journal on Selected Areas in Communications, vol. 24,
no. 5, 2006.

M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doylea$/ering
as optimization decomposition: A mathematical theory ofwoek
architectures’,"Proceedings of the IEEE, vol. 95, pp. 255-312, January
2007.



El
[10]

[11]
[12]

[13]

R. Srikant, Ed.,The Mathematics of Internet Congestion Control.

Boston: Birkhauser, 2003.

F. Kelly, A. Maulloo, and D. Tan, “Rate control in commuations
networks: Shadow prices, proportional fairness and stabilournal

of Operations Research Society, vol. 49, pp. 237-252, Nov. 1998.

S. Low, L. Peterson, and L. Wang, “Understanding vegastuality
model,” Journal of ACM, vol. 49(2), pp. 207-235, Mar. 2002.

R. Gosper and J. William, “The solutions of ye y2 = x andyye Xx,”

ACM SIGSAM Bulletin, vol. 32, no. 1, 1998.

G. J. Foschini and J. Salz, “Digital communications rofagling radio
channels,’Bell Syst. Tech. J., pp. 429-456, Feb. 1983.



