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Abstract— We focus on the problem of scalable shortest path 
analytics for large social graphs in this paper. While shortest 
path distance problem has been investigated extensively, massive 
graphs on social networks such as Facebook and LinkedIn call 
for reinvestigation of the problem due to the requirements of 
scalability and suitability for distributed computing. We propose 
a core-net based approach to address the problem. In our new 
core-net algorithm, popular nodes are selected based on their 
node degrees. Since some of these popular nodes may not be 
connected, we further include bridge nodes, which connect two 
or more popular nodes and improve their connectivity, but are 
not popular nodes themselves. Breadth First Search (BFS) 
technique is then used to compute shortest paths between any 
pair of nodes on the core net. When the shortest path between 
two arbitrary vertices, u and v, is queried, we approximate it 
with triangulation. We present a graph calculus theory in which 
the estimated distance goes to the real shortest distance when the 
degree threshold goes to zero. Analysis and simulation results 
confirm the superiority of our design, which can easily scale to 
MapReduce. 

Keywords—shortest-path distance; breadth-first search; core 
network; graph calculus; 

I. INTRODUCTION  
Shortest path distance query has long been an interesting 

problem in computer science. Usually such queries need to find 
the shortest distance between any two vertices in a graph. In 
the past decade, the huge popularity of social networks such as 
Facebook, Twitter, and LinkedIn introduces new excitement in 
the research field. In such massive social networks, it is 
interesting to identify the number of hops (distance) through 
friends, friends of friends etc. and the path between two people.   

There have been many algorithms addressing the shortest 
path analytics. For example, both of Dijkstra’s algorithm and 
Bellman-Ford algorithm are efficient in searching for shortest 
paths on weighted and directed graphs. Breadth-First Search 
(BFS) has an O(V+E) complexity on unweighted graphs, 
where V and E are the number of vertices and the number of 
edges on the graph, respectively. A 2-hop labeling algorithm, 
TEDI, and a highway labeling algorithm have been proposed 
recently. These algorithms try to approximate the shortest-path 
queries in order to be more computationally efficient. In this 
work, we focus on the problem of shortest path distance query 
for unweighted and undirected graphs such as the massive 
Facebook graph.  

Extensive applications of such shortest-path analytics are 
naturally expected, in semantic web, biological networks. For 
instance, they can help to answer the questions such as how 
close two users are on social networks as well as how fast/far 

any interesting post from one user can reach other users. In 
biological networks, it might be possible to predict how likely 
two patients with the same disease share similar gene 
sequences. 

In this work, we propose a core-net based approach to 
address the problem. Based on the intuition that nodes with 
higher node degrees are more likely on the shortest paths, we 
first select the nodes whose degrees are above a user-selected 
threshold. We call these nodes Popular Nodes (PN). Since 
some of these popular nodes may not be connected by 
themselves, we further include Bridge Nodes (BN), which 
connect two or more popular nodes. These bridge nodes are 
chosen such that they connect those otherwise disconnected 
popular nodes. The graph containing the popular nodes,  the 
bridge nodes, and the corresponding edges connecting them are 
called Core Net. Breadth First Search (BFS) technique is then 
used to compute shortest paths between any pair of nodes on 
the core net. When the shortest path between two arbitrary 
vertices, u and v, is queried, we first search through the core 
net. If not found in the core net, we approximate it with 
triangulation, i.e., the shortest path from vertex u to core net, 
the shortest path inside core net, and the shortest path from 
core net to vertex v. We provide detailed analysis and extensive 
simulations to evaluate the performance of our design, which 
can easily scale to MapReduce. 

Our main contributions in this work are three-fold: 

1. We propose a new estimation algorithm based on the 
concept of core net. Different from other landmark algorithms, 
our BFS computation are only applied to the core net, making 
it possible to be executed by in-memory algorithm. This is in 
constrast to other schemes applying BFS to the entire huge 
input graphs. Our algorithm is two to three orders faster and 
feasible for large graphs with much better estimation accuracy. 

2. We present a foundation of a new theory of graph 
calculus where the estimated distance goes to the real shortest 
distance when the degree threshold goes to zero. This provides 
us a continuum of trade-off space between computing cost and 
accuracy. 

3. We give parallel strategies for our algorithms to fit in the  
cloud and distributed computing environment. We have also 
performed extensive simulations on different data sets to 
evaluate our scheme. 

The rest of the paper is organized as follows. Section II 
surveys related work in the field and distinguishes our 
approach from others. Section III provides detailed description 
of our proposed algorithm. In Section IV, we present our graph 
calculus theory and parallelization strategies. Analysis and 



  

performance evaluation are presented in Section V, followed 
by Section VI summarizing the work. 

II. RELATED WORK 
The shortest path distance query problem is a well-studied 

problem in computer science. However, the unique features of 
such queries in massive social networks make it pertinent to be 
re-investigated. In the following, we survey several closely 
related techniques. We assume that in a general graph G(V, E), 
n=|V|, m=|E|. For any two nodes u and v, their shortest distance 
is denoted as δ(u, v) and their path is SP(u, v). 

Dijkstra’s algorithm [1] and Bellman-Ford algorithm  [2] 
are probably the most well-known algorithm in shortest path 
distance query. For instance, Dijkstra’s algorithm helps to 
identify an accurate shortest path in a weighted and directed 
graph G. The algorithm can be implemented with 
O(m+nlog(n)) time; therefore, it is efficient in sparsely 
connected networks. For unweighted graphs, the Breadth-First 
Search (BFS) [3] can be used with O(m+n) time. For all pair 
shortest path (APSP) problem, BFS can be repeatedly called, 
thus taking O(n(m+n)). To solve APSP problem in a densely-
connected graph, the Floyd-Warshall algorithm [4] takes O(n3) 
time. In summary, for an undirected, unweighted, and sparse 
graph such as the Facebook net, BFS will be best among these 
four classic algorithms. However, BFS cannot be directly 
applied to a large social graph with up to a billion nodes simply 
due to the storage issue (they are not stored in one machine) or 
computing costs. Furthermore, BFS is a global algorithm and, 
therefore, difficult to be parallelized.  

 Recent research on shortest path query focuses on 
approximation techniques. The 2-HOP labeling algorithm [5] is 
one of such techniques that require two steps in solving the 
problem. In the pre-processing step, it computes, for each node 
u, a list of intermediate vertices OUT(u) that represents all the 
vertices node u can reach with a shortest distance. Then for 
each node v, it computes a list of intermediate vertices IN(v) 
that represents all the vertices that can reach node v with a 
shortest distance. In the query processing step, when a directed 
path from node u to node v is needed, it only needs to compute 
a vertex p such that δ(u,p)+δ(p,v) is minimum for all p in 
OUT(u)∩IN(v). The algorithm is obviously an approximate. In 
addition, the pre-processing step is costly. A similar 3-HOP 
algorithm has also been developed [6].  

A local landmark algorithm is recently proposed by Qiao et 
al. [7]. In a shortest path tree rooted at a global landmark, a 
local landmark is the least common ancestor of the two query 
nodes. The local landmark is query dependent and can improve 
estimation accuracy. 

Wei developed an interesting TEDI algorithm [8]. Instead 
of depending on pre-computation of compressed BFS trees of 
the graph, TEDI decomposes the graph into a tree in which the 
node contains more than one vertex, i.e., super node. The 
shortest paths are stored in these nodes. The search of shortest 

paths for any given source and target vertices depends on a 
bottom-up approach based on the shortest paths stored on the 
nodes as well as the decomposed tree.  

Jin et al. proposed a highway-centric labeling approach 
specifically for sparsely connected graphs [9]. The strategy 
simulates the usage of highway systems in transportation 
networks. A highway is constructed with known distance 
between any two points. When the shortest distance is queried 
for two nodes u and v, it only needs to compute the distance 
from u to the highway and from highway to v. The labeling and 
construction of highway is the core issue in the algorithm. 
Instead, we observe that there are vertices with much higher 
degrees in social networks than others. In this work, we 
develop an efficient algorithm based on the usages of these 
vertices.  

Most algorithms of computing shortest distance queries are 
based on first choosing landmarks that are used to estimate the 
distances based on triangulation. Potamias et al. gave a proof 
that the optimal selection of the landmarks is a NP-hard 
problem [10]. They proposed two heuristics for choosing the 
landmarks. The first is based on constraint degrees where the 
large-degree node is chosen first. However, the second largest-
degree node may not be chosen if it is too close to the first 
chosen node (e.g. next to each other). The landmarks are 
selected in a greedy fashion until the number of landmarks 
reaches a threshold. The idea behind the unique selection 
process is that the popular nodes should not be close to each 
other so that they are more spread with better representations 
of concentration. The second strategy to choose landmarks is 
based on global centrality. First, a random sample of nodes is 
selected as seeds. The one with the smallest average distance to 
all nodes is selected. The node with next smallest average 
distance is chosen up to a threshold number of landmarks. 
When these landmarks are computed, each makes a BFS call to 
compute the shortest distances to all other nodes to be used to 
estimate distances. Our algorithm differs from these methods in 
that we apply BFS only on our core nodes but most of these 
methods compute the shortest distance to all nodes in the input 
graph. Our algorithm can also return accurate distances if the 
queried nodes are close. 

MapReduce [11, 12] is probably the most popular 
framework to process large data sets with parallel and 
distributed algorithms on a cluster of computers. It contains 
two major procedures: a Map()  procedure that filters/sorts a 
subset of the data; and a Reduce() procedure that summarizes 
the results from Map() and produce the final result. Hadoop is 
an open source implementation of MapReduce[13]. On a 
similar trend, cloud computing [14] allows users of different 
computer systems to rely on only the servers from cloud 
service providers, data processing, storage, even virtual 
computers can be provided by such cloud service providers. 
Algorithms on large data sets should be converted to 
MapReduce and can be deployed in a cloud computing 
environment.  



  

 
Figure 1, Illustration of a social graph with some popular 
nodes and bridge nodes. The red-dotted nodes are popular 
nodes. Node 11 is a bridge node. 

Algorithm 3.2  dist_matrix (G) 
Input: graph G, |V| the number of nodes in G 
Output: dist[i][j]), shortest distance from i to j in V 

1. for i = 1 to |V| do 
2.   di = bfs (i), di is the distances from i to 

other nodes 
3.   For j = 1 to |V| dist[i][j] = di[j] 

Algorithm 3.1 Popular_net 
Input: the input graph linked lists ig[i], i=1..|V|; 
threshold ϑ,  
Output: the sub graph that only contains popular 
nodes and edges connecting themselves. The 
original popular node IDs are stored in array pn and 
the link lists are stored in cg[i], the original 
neighbor IDs of the ith popular node. Cn_map is 
used to map the original input node IDs to the 
compact new IDs in 1..|pn| 

1. k = 0; 
2. for i=1, |V| 
3.        If deg(i) > ϑ 
4.   pn.add(i) 
5.   cn_map.put(i, k++) 
6. for i=1..|pn| 
7.   cg[i] = ig[pn[i]] ∩ pn 
8. return cg; 

III. THE CORE-NET ALGORITHM 
In this section, we present the details of our proposed 

algorithm and explain it with an example graph. 

A. Popular Net 
Our algorithm is first based on the well-known Small 

World assumption, which is also called Six-Degrees of 
Separation theory. In this theory, it is claimed that any two 
people can be connected through friends by at most 6 steps. 
More recently, it has been identified that the degree of 
separation is actually 4 [15] in Facebook, meaning that any two 
nodes in the Facebook graph G(V, E) are connected through a 
shortest path of at most 4 hops most of the times. Based on this 
fact, most of times we just need to directly compute the 
shortest distances between two given nodes online exactly and 
locally. Our scalable algorithm takes advantage of such an 
observation. 

Another important observation in graph G(V, E) is that 
some of the nodes have much higher node degrees than others 
(popularity). With the large number of edges connecting to 
these popular nodes, it is quite likely that many of the shortest-
path queries can be answered by these nodes if the distance is 
more than four. While there may exist some pair nodes whose 
shortest paths between them do not contain popular nodes, a) 
the chance of this happening is small; b) the neighbors of the 
queried nodes may be among the core nodes.  

In our algorithm, if a node’s degree is no less than a 
threshold, ϑ, it is designated as a popular node. We denote the 
set of popular nodes as PN  and with their connections as a 
popular net  graph (PG). For example, in Figure 1, nodes 1, 2, 
8, and 12 are popular nodes if the threshold ϑ is 4.  

The algorithm to identify the popular net is presented in 
Algorithm 3.1. The runtime complexity is O(n). The space 
complexity of cg is O(|EPG|), a small fraction of ig. 

B. Bridge Nodes and Core Net 
Though the popular nodes are naturally better connected, 

and therefore helpful in the estimation of other distances, PG is 
not necessarily a connected graph. The common friend of the 
celebrities will then play the role of a “bridge.” A node that 
connects two popular nodes is called a bridge node (BN).  It 
may increase the connectivity of the popular net which is 
otherwise separated or their distances would be larger. So we 
also add these bridge nodes and their edges connecting the 
popular nodes (called bridge edges) into PG. The expanded 
graph is called core graph (CG). Calculate the pair-wise 
distance matrix for CG using Algorithm dist_matrix 
(Algorithm 3.2). The matrix will be used in distance query 
evaluations. 

To compute the bridge nodes, we first calculate all the 
candidate bridge nodes cn (line 2-6 in Algorithm 3.3). These 
non-popular nodes should directly connect at least two popular 
nodes (their indices are stored in array p, line 4 in Algorithm 
3.3). We implement it using a bubble algorithm in which the 
nodes with smallest IDs are repeatedly deleted from a min 
heap. In Figure 1, for instance, nodes 3, 6, 9, and 11 are the 
candidate bridge nodes because they are directly connected to 
two or more popular nodes. Node  6 connects two popular 
nodes 2, and 8 directly. So does node 11, which will be chosen 
as a bridge node eventually.  

After the candidates are identified, we first compute the 
distance matrix of the poplar nodes by calling dist_matrix 
(cg). If adding a candidate node k can improve the 



  

Algorithm 3.3 select_bridges 
Input: original lists ig[i], for each i in pn 
Output: selected bridge nodes stored in array bn 
 

1. // find all the candidate bridge nodes cn 
2. Initialize |pn| queues q[i] = ig[pn[i]], i=1..|pn| 
3. Using a min heap to find the smallest node m 

among the head notes of queues, delete m from 
heap 

4. If any, find all the other head nodes that are equal 
to m (stored their queue indexes in p[m] for m), 
deque those lists, and insert the corresponding 
next nodes in queues into heap after deleting each 
min 

5. if m ∉pn and m is shared by pn nodes, cn.add(m) 
6. Repeatedly perform step 3 to 5 until the queues 

are empty 
 
7. // select bridge nodes bn 
8. for k =0 to |cn| do 
9.  for each pair i, j∈  p[k],  

if dist[i][j] >2 then  
dist[i][j] = 2 and   bn.add(k) 

10. Return bn 

Algorithm 3.4 Neighbor-of-neighbor 
Input: input graph lists ig, a node u 
Output: the neighbor–of-neighbor set Nu

2 of u 
1. for i= 1..|Nu| 
2.   Nu

2 = Nu
2 ∪ Ni 

3. Sort Nu
2  

4. Eliminate duplicates in Nu
2 

5. Return Nu
2 

connectivity among neighboring popular nodes in p[k], k will 
be selected as a bridge node while updating the improved 
distances (lines 8-9 in Algorithm 3.3).  Among the candidates, 
we first try those with largest degrees. Adding node 3 does not 
improve the distance between its neighboring popular node 1 
and 2, so it is not chosen. Adding node 11’s connections to 
nodes 2 and 8 will shorten their distance from ∞ to 2, so it is 
chosen. Nodes 6 and 9 are discarded because they do not 
shorten the distances of popular nodes after node 11 is already 
selected. 

To compute the expanded core graph, all these newly 
selected bridge nodes are added to pn and the lists of bn are 
added to cg.  In our example in Figure 1, the nodes 1, 2, 8, and 
10 are popular nodes and node 11 is a bridge node. The 
original input lists for newly expanded pn are cleaned to a new 
cg, so that these lists only contain the popular and bridge 
nodes. The distance matrix for cg is re-computed for  
answering queries. CG graph will serve as the intermediates to 
estimate the distance: δ(u, v) ≤ δ(u, p)+ δ (p, q)+ δ (q, v), 
where both p and q are in CG. The time and space complexity 
of computing the candidates are O(|pn| *MG), where MG is the 
maximum degree of input graph G. This complexity is linear 
to the core graph size. The selection of bridge nodes takes 
O(|cn| * |pn|2), |cn| is the number of candidates generated in 
lines 2-6. 

C. Query Evaluation and Estimation 
Once the core graph and its distance matrix are computed, 

we are ready to answer distance queries online. Given two 
nodes u and v, we first compute their neighbor sets Nu and Nv, 
and neighbor-of-neighbor set Nu

2, Nv
2. The computation of Nu

2 

and Nv
2 are shown in Algorithm 3.4.  Through the intersections 

of these sets, we can precisely compute the shortest distance 
from u to v directly if the distance is no larger than 4. The 
algorithm is shown in Algorithm 3.5. Both algorithms 3.4 and 
the lines 1-5 in 3.5 take O(|Nu

2 |+ | Nv
2|), i.e. the total number of 

the circles (friends of friends) of u and v. 

If the shortest distance path between two vertices, u and v, 
is longer than 4, two popular nodes1, p and q, will be found 
such that the distance on the path u-p-q-v is the shortest. While 
there may exist shortest paths between a pair of vertices u and 
v that may not include any popular nodes, the chance of such 
event happening is rather small. We evaluate the accuracy of 
our algorithm in Section V. The estimate time of lines 6-23 in 
algorithm 3.5 is O(|Nu

2 |+ | Nv
2|+|pn|) since the distance within 

the core net is constant through pre-computation. 

IV. GRAPH CALCULUS THEORY AND PARALELIZATION 
STRATEGIES USING MAP-REDUCE 

In the context of core net CG as an approximation of the 
original graph, we develop the following definitions and 
theorem to form the foundation of a potentially new theoretic 
field, which we dubbed Graph Calculus. 

DEFINITION 1. (Graph Function f) f: Θ → Sϑ. Degree 
threshold ϑ is the argument (or input variable). Its domain Θ 
={0, 1, … MG}, where MG is the max degree of the input graph 
G(V, E). For each ϑ in Θ, its image is a core graph Gϑ (Vϑ, Eϑ), 
a subset of G(V, E) such that Vϑ = {v|v in V, deg(v) ≥ ϑ} and Eϑ 
= {e=(i,j)|e in E and i, j in Vϑ}. The co-domain is the graph 
space Sϑ induced by ϑ, which is defined as the following. 

DEFINITION 2. (Graph Space Sϑ) Graph space induced by  
ϑ is Sϑ = {Gϑ | ϑ in Θ}.  

DEFINITION 3. (Graph Limit) When ϑ→0, Gϑ→G, i.e., 
||Gϑ-G0||→0. The distance function || . || is defined by users. 

 
DEFINITION 4. (Shortest Distance Estimate) δϑ(u, v) is the 

shortest distance between u and v computed by our algorithm 
based on Gϑ (Vϑ, Eϑ). 

 
 
THEREOM 1. (GRAPH CENTRAL LIMIT THEOREM) As 

variable ϑ approaches 0, the core graph Gϑ induced by ϑ 
approaches the original graph G(V, E): 
 

limϑ→0 Gϑ = G   (1) 
 

                                                             
1 Strictly speaking, these two popular nodes can be the same node. 



  

 
Algorithm 3.5, distance (u, v) 
Input: two nodes u and v, input graph ig lists, core nodes 
pn, distance matrix dist of core graph cg. 
Output: exact or estimate of u to v distance 
// directly and exactly compute the distance of no more 
than 4 
1. Compute Nu and Nv i.e. the ig[u], and ig[v] 
2. if  ( v ∈  Nu)       return 1;  // u - v 
3. if  (Nu  ∩  Nv φ≠ )   return 2;   
 // u - x – v, x is common neighbor of u and v 
4. if  (Nu

2  ∩  Nv φ≠ )   return 3;  // u - u1 - x - v 
5. if  (Nu

2  ∩  Nv
2

 φ≠ )  return 4; // u - u1 - x - v1 - v 
 
// estimate the distance between u and v 
6. // both in core  U --- V,  
 upper case: in core,  --- : shortest u to v path  
7. if (u ∈pn  && v ∈pn)  
            return dist[cn_map.get(u)][cn_map.get(v)];   
8. if (u∉pn) u1 = Nu  ∩  pn 
9. if (v∉pn)  v1 = Nv  ∩  pn 
//u - U1 --- V, u- U1: u directly connects u1 in core (U1) 
10. if ( u1 φ≠  && v ∈pn )  
11.     return 1+ dist[cn_map.get(u1)][ cn_map.get(v)]; 
// U --- V1 – v: 
12. if ( v1 φ≠  && u ∈pn )  
13.   return 1+ dist[cn_map.get(u)][ cn_map.get(v1)]; 
// u - U1 --- V1 – v: 
14. if ( u1 φ≠  && v1 φ≠  )  
15.  return 2+ dist[cn_map.get(u1)][ cn_map.get(v1)]; 
16. if (u1 = φ ) u2 = Nu

2 ∩ pn 
17. if (v1 = φ ) v2 = Nv

2   ∩  pn 
// u - u1 - U2 --- V1 – v 
18. if (u2 φ≠  && v1 φ≠ )  
19.     return 3+ dist[cn_map.get(u2)][ cn_map.get(v1)]; 
// u - U1 --- V2 - v1 - v 
20. if (u1 φ≠  && v2 φ≠ )  
21.    return 3+ dist[cn_map.get(u1)][ cn_map.get(v2)]; 
// u - u1 - U2 --- V2 - v1 - v 
22. if (u2 φ≠  && v2 φ≠ )  
23.    return 4+ dist[cn_map.get(u2)][ cn_map.get(v2)]; 

      COROLLARY 1. (SHORTEST-DISTANCE CENTRAL LIMIT 
THEOREM) As ϑ approaches 0, the shortest distance estimate 
approaches the true shortest distance in G, i.e. 
 

limϑ→0 δϑ(u, v) = δ(u, v)   (2) 

 
The theorem and corollary are self-explaining.  Although 

as the threshold goes to zero (i.e. choosing more and more 

popular nodes and bridge nodes) the estimate distance goes to 
real distance overall, that approaching is by no means 
monotonous because the graph is of a discrete nature. 
Furthermore, when the core graph grows the computing cost 
grows as well. 

Our algorithms are not just simple, effective, and easy to 
implement, their main appeal however is their practicality due 
to their mostly straightforward ways of parallelization using 
the MapReduce framework in a cloud computing environment. 
Due to the sheer sizes of large social graphs, being able to be 
parallelized in a distributed cloud computation for the web 
analytics has become a mandate.  

Paralelization of offline core construction. The first step is 
to find the popular nodes (Algorithm 3.1). Given a threshold, 
the distributed data and computers can independently check the 
degrees and perform lines 3-4, 6-7; line 5 however needs a 
global computer to create unique ids for each popular node. 
Computing the candidates and selecting bridge nodes from 
them (Algorithm 3.2) is more difficult to parallelize. We can 
achieve it by an algorithm similar to parallel merging. After the 
candidates and their popular neighbor arrays p are distributed, 
the selection of bridge nodes (lines 8-9) can be done in parallel 
as well as cleaning the lists of the core nodes to remove non-
core nodes in the lists. For distance matrix computation 
(Algorithm 3.3), each computing node just independently 
performs a BFS with its assigned starting node on the core lists 
which is in the memory of a computing node due to its much 
smaller size than the input graph. 

Paralelization of online query evaluation. It is 
straightforward to parallelize the computation of the neighbor 
sets Nu and Nv, and neighbor-of-neighbor set Nu

2, Nv
2 

(Algorithm 3.4). So is the local accurate distance computation 
(Lines 1-5 in Algorithm 3.5) as long as the query node IDs are 
assigned to the corresponding computing nodes. Again, since 
the number of core nodes is small, the core node IDs with the 
mapping function cn_map are broadcast to each computing 
nodes. Lines 6-21 are inherently parallel as long as the pre-
computed core distance matrix is distributed or handled by a 
global distance oracle on the core net. 

 

V. SIMULATION RESULTS 
We used an 8-core Linux server with 64G memory in our 

simulations. The CPU speed is 3.5 GHz. We implement the 
algorithms using Java 1.6. 

Our first data set is provided by Stanford SNAP [16]. Data 
set Ego-Facebook contains undirected, unweighted Facebook 
graph obtained through survey participants. The graph has 
4,040 nodes and 88,234 edges. The largest degree of the nodes 
is 293 and average degree is 41. The input is stored in 10 files, 
with a total of 170,174 lines. There are 81 singleton nodes and 
8 2-node components. Other larger components and the 
statistics are shown in Table I. There are total 94 components, 
with the largest one containing 3,927 nodes. Its diameter is 17, 
meaning that some of the nodes in it are quite far away even if 
most are close to each other. The pair-wise actual shortest 
distances among all the nodes were calculated for statistical 
purposes. Their frequencies are shown in Figure 2. From it we 



  

 
Figure 2, Percentage of pairs of vertices with h-hop 
distance between themselves. In the graph, x-axis 
represents the hop distance and y-axis shows the 
percentage of such hop-distance among all possible pairs. 

 
Figure 4: Error rates and miss rates of different factors. 

 
Figure 3: Runtime of our core-net algorithm with different 
factors. Factor, f, is defined as the ratio between degree 
threshold and average node degree. 

can see that most of the pairs have a distance shorter than 12. 
In fact, a majority of them have hop distances around 4-8. 

Table I, Network characteristics, number of nodes and 
diameter, of larger components. 

Component ID 1 2 3 4 5 

Number of Nodes 3927 6 4 3 3 

Diameter 17 2 1 2 1 

 

Our core net algorithm was evaluated for different factors. 
We use factors to determine the thresholds for various sizes of 
input graphs. Threshold ϑ  = factor*avg_degree. Runtime of 
our core-net algorithm with different factors are presented in 
Figure 3. Gp and Gc times are the times spent in computing the 
popular graph and the core graph respectively. When the 
threshold goes to zero, the time increases fast. When the 
factors are greater than two, our algorithm is very fast. 

We also evaluated the accuracy of our core-net algorithm. 
The accuracy is measured by average error rate and miss rate. 
The average error rate is define as 

 k
k

i
i

ii

/)(
1
∑
=

−

δ
δδϑ  

For each query i, total k queries, i
ϑδ , and iδ  are our 

estimated and true distance of ith query. Since our evaluation 
algorithm 3.4 is based on the direct exact calculation of δ(u, v) 
using N1 or N2 sets, or an estimate if they are within N2 of any 
core node. However, if a connected pair is far from each other 
(more than 4) or from the core net (more than 2), then a “miss” 
happens. The miss rate is defined as the number of misses 
divided by total queries. Note that, when we compute the error 
rate, the missed queries are dropped because their distances are 
counted as ∞.   

The error rates and miss rates of different factors are shown 
in Figure 4. We use 1000 randomly generated queries (k 
=1000). Although the error rates vary due to discrete nature of 
graphs, the miss rates do decrease monotonously with core 
factor.  

The characteristics of the core net formed with different 
factors are listed in Table II. These include number of core 
nodes (#core), number of bridge node candidates (#cand.), 
number of bridge nodes (#bn), number of disconnected 
components (#comp), and list of components in the core graphs 
after our Core-net algorithm has been performed. The 
components 0 corresponding to the computation of original 
graph is already shown in Table I. 

It can be observed that the largest component (component 
No. 1) basically contains all of the nodes. Each of the other 
smaller components contains a couple of nodes each.  When 
the input data grows, the core graph also grows. The internal 
Core-net computation (in Fig. 4 and Table II) becomes 
infeasible. We need to compute the core and then write the pre-
computed pairwise distances of the core nodes into disk and 
later retrieve for queries. We implemented the constraint and 
central algorithms in [10] and compared with our external Core 
Net. We change the number of landmarks and compare with 
the offline construction times and average error rate. The 
results are shown in Figures 5 and 6. Our algorithm takes a 
fraction of times of Central and Constraint with a similar or 
better accuracy. 
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Figure 5, Offline construction time for data set 1. 
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Figure 6, Error rates and missed rates for data set 1. 

0

500

1000

1500

#landmarks

Co
ns
tr
uc
tio

n3
Ti
m
e3
(s
ec
)

Core3Net 0.83 0.877 1.03 1.96 3.2

Central 258 452 736 940 1159

Constrain
t

145.7 395.4 579.5 790.9 1001

10 20 30 40 50

!

!

 
Figure 7, Offline construction time for data set 2. 

Table II, Core-Net Characteristics with different factors. 
The "Components" column lists the sizes and diameters of 

the connected components. 
Factor #core #cand. #bn #comp Components 

0 3959 0 0 13  

1 1335 1558 187 2 (1503, 10) 

(19, 2) 

2 627 1356 87 1 (714, 10) 

3 312 877 21 2 (331,6) 

(2,1) 

4 149 676 4 1 (153,5) 

5 21 698 3 1 (24,5) 

6 3 235 0 2 (1,0) 

(2,1) 

 

Our second real data set was from [17, 18], called 
Facebook Social Graph - Breadth First Search data set “bfs-1-
socialgraph-release. The file’s size is 2.78GB with 1,189,767 
lines. The data set was collected in April, 2009 through data 
scrapping from Facebook.  

The graph has 61,876,633 nodes and 170,069,566 edges. 
Since the nodes with IDs above 1,189,767 do not connect 
among themselves, we purged these larger IDs from the link 
lists. This graph is connected. We run external Core Net, 
Central, and Constraint on this larger data set. Runtimes are 
shown in Figure 7. From Figure 7, we can see that Core Net is 
orders faster than the competitors. The error rates of the three 
competing schemes are shown in Figure 8, which also shows 
the miss rate of the Core Net scheme. The error rates of the 
Core Net are 4-10 times lower than the other two schemes. 

 

 

VI. CONCLUDING REMARKS 
In this work, we have proposed a shortest-path query 

algorithm based on core net, which consists popular nodes that 
have large node degrees, bridge nodes that connect some of 
these popular nodes that are otherwise disconnected, and the 
edges connecting these nodes. After a pre-processing phase, 
the well-known triangulation technique is used to efficiently 
compute the shortest distance between any pair of nodes. 
Compared to other related works, our scheme scales well and 
provides rather accurate approximations for different queries.  

In future work, we will investigate  different techniques to 
further improve accuracy and reduce miss rate. In addition, 
experimentation of our techniques on other large social 
network data sets are of our interest as well.   
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Figure 8, Error rates for data set 2. Core Net, Central and 
Constraint schemes are shown. The miss rates of the Core 
Net scheme are presented as well. 
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