

Graph Calculus: Scalable Shortest Path Analytics for Large Social Graphs through Core Net

Lixin Fu
Department of Computer Science

University of North Carolina at Greensboro
Greensboro, NC, U.S.A.

lfu@uncg.edu

Jing Deng
Department of Computer Science

University of North Carolina at Greensboro
Greensboro, NC, U.S.A.

jing.deng @uncg.edu

Abstract— We focus on the problem of scalable shortest path
analytics for large social graphs in this paper. While shortest
path distance problem has been investigated extensively, massive
graphs on social networks such as Facebook and LinkedIn call
for reinvestigation of the problem due to the requirements of
scalability and suitability for distributed computing. We propose
a core-net based approach to address the problem. In our new
core-net algorithm, popular nodes are selected based on their
node degrees. Since some of these popular nodes may not be
connected, we further include bridge nodes, which connect two
or more popular nodes and improve their connectivity, but are
not popular nodes themselves. Breadth First Search (BFS)
technique is then used to compute shortest paths between any
pair of nodes on the core net. When the shortest path between
two arbitrary vertices, u and v, is queried, we approximate it
with triangulation. We present a graph calculus theory in which
the estimated distance goes to the real shortest distance when the
degree threshold goes to zero. Analysis and simulation results
confirm the superiority of our design, which can easily scale to
MapReduce.

Keywords—shortest-path distance; breadth-first search; core
network; graph calculus;

I. INTRODUCTION
Shortest path distance query has long been an interesting

problem in computer science. Usually such queries need to find
the shortest distance between any two vertices in a graph. In
the past decade, the huge popularity of social networks such as
Facebook, Twitter, and LinkedIn introduces new excitement in
the research field. In such massive social networks, it is
interesting to identify the number of hops (distance) through
friends, friends of friends etc. and the path between two people.

There have been many algorithms addressing the shortest
path analytics. For example, both of Dijkstra’s algorithm and
Bellman-Ford algorithm are efficient in searching for shortest
paths on weighted and directed graphs. Breadth-First Search
(BFS) has an O(V+E) complexity on unweighted graphs,
where V and E are the number of vertices and the number of
edges on the graph, respectively. A 2-hop labeling algorithm,
TEDI, and a highway labeling algorithm have been proposed
recently. These algorithms try to approximate the shortest-path
queries in order to be more computationally efficient. In this
work, we focus on the problem of shortest path distance query
for unweighted and undirected graphs such as the massive
Facebook graph.

Extensive applications of such shortest-path analytics are
naturally expected, in semantic web, biological networks. For
instance, they can help to answer the questions such as how
close two users are on social networks as well as how fast/far

any interesting post from one user can reach other users. In
biological networks, it might be possible to predict how likely
two patients with the same disease share similar gene
sequences.

In this work, we propose a core-net based approach to
address the problem. Based on the intuition that nodes with
higher node degrees are more likely on the shortest paths, we
first select the nodes whose degrees are above a user-selected
threshold. We call these nodes Popular Nodes (PN). Since
some of these popular nodes may not be connected by
themselves, we further include Bridge Nodes (BN), which
connect two or more popular nodes. These bridge nodes are
chosen such that they connect those otherwise disconnected
popular nodes. The graph containing the popular nodes, the
bridge nodes, and the corresponding edges connecting them are
called Core Net. Breadth First Search (BFS) technique is then
used to compute shortest paths between any pair of nodes on
the core net. When the shortest path between two arbitrary
vertices, u and v, is queried, we first search through the core
net. If not found in the core net, we approximate it with
triangulation, i.e., the shortest path from vertex u to core net,
the shortest path inside core net, and the shortest path from
core net to vertex v. We provide detailed analysis and extensive
simulations to evaluate the performance of our design, which
can easily scale to MapReduce.

Our main contributions in this work are three-fold:

1. We propose a new estimation algorithm based on the
concept of core net. Different from other landmark algorithms,
our BFS computation are only applied to the core net, making
it possible to be executed by in-memory algorithm. This is in
constrast to other schemes applying BFS to the entire huge
input graphs. Our algorithm is two to three orders faster and
feasible for large graphs with much better estimation accuracy.

2. We present a foundation of a new theory of graph
calculus where the estimated distance goes to the real shortest
distance when the degree threshold goes to zero. This provides
us a continuum of trade-off space between computing cost and
accuracy.

3. We give parallel strategies for our algorithms to fit in the
cloud and distributed computing environment. We have also
performed extensive simulations on different data sets to
evaluate our scheme.

The rest of the paper is organized as follows. Section II
surveys related work in the field and distinguishes our
approach from others. Section III provides detailed description
of our proposed algorithm. In Section IV, we present our graph
calculus theory and parallelization strategies. Analysis and

performance evaluation are presented in Section V, followed
by Section VI summarizing the work.

II. RELATED WORK
The shortest path distance query problem is a well-studied

problem in computer science. However, the unique features of
such queries in massive social networks make it pertinent to be
re-investigated. In the following, we survey several closely
related techniques. We assume that in a general graph G(V, E),
n=|V|, m=|E|. For any two nodes u and v, their shortest distance
is denoted as δ(u, v) and their path is SP(u, v).

Dijkstra’s algorithm [1] and Bellman-Ford algorithm [2]
are probably the most well-known algorithm in shortest path
distance query. For instance, Dijkstra’s algorithm helps to
identify an accurate shortest path in a weighted and directed
graph G. The algorithm can be implemented with
O(m+nlog(n)) time; therefore, it is efficient in sparsely
connected networks. For unweighted graphs, the Breadth-First
Search (BFS) [3] can be used with O(m+n) time. For all pair
shortest path (APSP) problem, BFS can be repeatedly called,
thus taking O(n(m+n)). To solve APSP problem in a densely-
connected graph, the Floyd-Warshall algorithm [4] takes O(n3)
time. In summary, for an undirected, unweighted, and sparse
graph such as the Facebook net, BFS will be best among these
four classic algorithms. However, BFS cannot be directly
applied to a large social graph with up to a billion nodes simply
due to the storage issue (they are not stored in one machine) or
computing costs. Furthermore, BFS is a global algorithm and,
therefore, difficult to be parallelized.

 Recent research on shortest path query focuses on
approximation techniques. The 2-HOP labeling algorithm [5] is
one of such techniques that require two steps in solving the
problem. In the pre-processing step, it computes, for each node
u, a list of intermediate vertices OUT(u) that represents all the
vertices node u can reach with a shortest distance. Then for
each node v, it computes a list of intermediate vertices IN(v)
that represents all the vertices that can reach node v with a
shortest distance. In the query processing step, when a directed
path from node u to node v is needed, it only needs to compute
a vertex p such that δ(u,p)+δ(p,v) is minimum for all p in
OUT(u)∩IN(v). The algorithm is obviously an approximate. In
addition, the pre-processing step is costly. A similar 3-HOP
algorithm has also been developed [6].

A local landmark algorithm is recently proposed by Qiao et
al. [7]. In a shortest path tree rooted at a global landmark, a
local landmark is the least common ancestor of the two query
nodes. The local landmark is query dependent and can improve
estimation accuracy.

Wei developed an interesting TEDI algorithm [8]. Instead
of depending on pre-computation of compressed BFS trees of
the graph, TEDI decomposes the graph into a tree in which the
node contains more than one vertex, i.e., super node. The
shortest paths are stored in these nodes. The search of shortest

paths for any given source and target vertices depends on a
bottom-up approach based on the shortest paths stored on the
nodes as well as the decomposed tree.

Jin et al. proposed a highway-centric labeling approach
specifically for sparsely connected graphs [9]. The strategy
simulates the usage of highway systems in transportation
networks. A highway is constructed with known distance
between any two points. When the shortest distance is queried
for two nodes u and v, it only needs to compute the distance
from u to the highway and from highway to v. The labeling and
construction of highway is the core issue in the algorithm.
Instead, we observe that there are vertices with much higher
degrees in social networks than others. In this work, we
develop an efficient algorithm based on the usages of these
vertices.

Most algorithms of computing shortest distance queries are
based on first choosing landmarks that are used to estimate the
distances based on triangulation. Potamias et al. gave a proof
that the optimal selection of the landmarks is a NP-hard
problem [10]. They proposed two heuristics for choosing the
landmarks. The first is based on constraint degrees where the
large-degree node is chosen first. However, the second largest-
degree node may not be chosen if it is too close to the first
chosen node (e.g. next to each other). The landmarks are
selected in a greedy fashion until the number of landmarks
reaches a threshold. The idea behind the unique selection
process is that the popular nodes should not be close to each
other so that they are more spread with better representations
of concentration. The second strategy to choose landmarks is
based on global centrality. First, a random sample of nodes is
selected as seeds. The one with the smallest average distance to
all nodes is selected. The node with next smallest average
distance is chosen up to a threshold number of landmarks.
When these landmarks are computed, each makes a BFS call to
compute the shortest distances to all other nodes to be used to
estimate distances. Our algorithm differs from these methods in
that we apply BFS only on our core nodes but most of these
methods compute the shortest distance to all nodes in the input
graph. Our algorithm can also return accurate distances if the
queried nodes are close.

MapReduce [11, 12] is probably the most popular
framework to process large data sets with parallel and
distributed algorithms on a cluster of computers. It contains
two major procedures: a Map() procedure that filters/sorts a
subset of the data; and a Reduce() procedure that summarizes
the results from Map() and produce the final result. Hadoop is
an open source implementation of MapReduce[13]. On a
similar trend, cloud computing [14] allows users of different
computer systems to rely on only the servers from cloud
service providers, data processing, storage, even virtual
computers can be provided by such cloud service providers.
Algorithms on large data sets should be converted to
MapReduce and can be deployed in a cloud computing
environment.

Figure 1, Illustration of a social graph with some popular
nodes and bridge nodes. The red-dotted nodes are popular
nodes. Node 11 is a bridge node.

Algorithm 3.2 dist_matrix (G)
Input: graph G, |V| the number of nodes in G
Output: dist[i][j]), shortest distance from i to j in V

1. for i = 1 to |V| do
2. di = bfs (i), di is the distances from i to

other nodes
3. For j = 1 to |V| dist[i][j] = di[j]

Algorithm 3.1 Popular_net
Input: the input graph linked lists ig[i], i=1..|V|;
threshold ϑ,
Output: the sub graph that only contains popular
nodes and edges connecting themselves. The
original popular node IDs are stored in array pn and
the link lists are stored in cg[i], the original
neighbor IDs of the ith popular node. Cn_map is
used to map the original input node IDs to the
compact new IDs in 1..|pn|

1. k = 0;
2. for i=1, |V|
3. If deg(i) > ϑ
4. pn.add(i)
5. cn_map.put(i, k++)
6. for i=1..|pn|
7. cg[i] = ig[pn[i]] ∩ pn
8. return cg;

III. THE CORE-NET ALGORITHM
In this section, we present the details of our proposed

algorithm and explain it with an example graph.

A. Popular Net
Our algorithm is first based on the well-known Small

World assumption, which is also called Six-Degrees of
Separation theory. In this theory, it is claimed that any two
people can be connected through friends by at most 6 steps.
More recently, it has been identified that the degree of
separation is actually 4 [15] in Facebook, meaning that any two
nodes in the Facebook graph G(V, E) are connected through a
shortest path of at most 4 hops most of the times. Based on this
fact, most of times we just need to directly compute the
shortest distances between two given nodes online exactly and
locally. Our scalable algorithm takes advantage of such an
observation.

Another important observation in graph G(V, E) is that
some of the nodes have much higher node degrees than others
(popularity). With the large number of edges connecting to
these popular nodes, it is quite likely that many of the shortest-
path queries can be answered by these nodes if the distance is
more than four. While there may exist some pair nodes whose
shortest paths between them do not contain popular nodes, a)
the chance of this happening is small; b) the neighbors of the
queried nodes may be among the core nodes.

In our algorithm, if a node’s degree is no less than a
threshold, ϑ, it is designated as a popular node. We denote the
set of popular nodes as PN and with their connections as a
popular net graph (PG). For example, in Figure 1, nodes 1, 2,
8, and 12 are popular nodes if the threshold ϑ is 4.

The algorithm to identify the popular net is presented in
Algorithm 3.1. The runtime complexity is O(n). The space
complexity of cg is O(|EPG|), a small fraction of ig.

B. Bridge Nodes and Core Net
Though the popular nodes are naturally better connected,

and therefore helpful in the estimation of other distances, PG is
not necessarily a connected graph. The common friend of the
celebrities will then play the role of a “bridge.” A node that
connects two popular nodes is called a bridge node (BN). It
may increase the connectivity of the popular net which is
otherwise separated or their distances would be larger. So we
also add these bridge nodes and their edges connecting the
popular nodes (called bridge edges) into PG. The expanded
graph is called core graph (CG). Calculate the pair-wise
distance matrix for CG using Algorithm dist_matrix
(Algorithm 3.2). The matrix will be used in distance query
evaluations.

To compute the bridge nodes, we first calculate all the
candidate bridge nodes cn (line 2-6 in Algorithm 3.3). These
non-popular nodes should directly connect at least two popular
nodes (their indices are stored in array p, line 4 in Algorithm
3.3). We implement it using a bubble algorithm in which the
nodes with smallest IDs are repeatedly deleted from a min
heap. In Figure 1, for instance, nodes 3, 6, 9, and 11 are the
candidate bridge nodes because they are directly connected to
two or more popular nodes. Node 6 connects two popular
nodes 2, and 8 directly. So does node 11, which will be chosen
as a bridge node eventually.

After the candidates are identified, we first compute the
distance matrix of the poplar nodes by calling dist_matrix
(cg). If adding a candidate node k can improve the

Algorithm 3.3 select_bridges
Input: original lists ig[i], for each i in pn
Output: selected bridge nodes stored in array bn

1. // find all the candidate bridge nodes cn
2. Initialize |pn| queues q[i] = ig[pn[i]], i=1..|pn|
3. Using a min heap to find the smallest node m

among the head notes of queues, delete m from
heap

4. If any, find all the other head nodes that are equal
to m (stored their queue indexes in p[m] for m),
deque those lists, and insert the corresponding
next nodes in queues into heap after deleting each
min

5. if m ∉pn and m is shared by pn nodes, cn.add(m)
6. Repeatedly perform step 3 to 5 until the queues

are empty

7. // select bridge nodes bn
8. for k =0 to |cn| do
9. for each pair i, j∈ p[k],

if dist[i][j] >2 then
dist[i][j] = 2 and bn.add(k)

10. Return bn

Algorithm 3.4 Neighbor-of-neighbor
Input: input graph lists ig, a node u
Output: the neighbor–of-neighbor set Nu

2 of u
1. for i= 1..|Nu|
2. Nu

2 = Nu
2 ∪ Ni

3. Sort Nu
2

4. Eliminate duplicates in Nu
2

5. Return Nu
2

connectivity among neighboring popular nodes in p[k], k will
be selected as a bridge node while updating the improved
distances (lines 8-9 in Algorithm 3.3). Among the candidates,
we first try those with largest degrees. Adding node 3 does not
improve the distance between its neighboring popular node 1
and 2, so it is not chosen. Adding node 11’s connections to
nodes 2 and 8 will shorten their distance from ∞ to 2, so it is
chosen. Nodes 6 and 9 are discarded because they do not
shorten the distances of popular nodes after node 11 is already
selected.

To compute the expanded core graph, all these newly
selected bridge nodes are added to pn and the lists of bn are
added to cg. In our example in Figure 1, the nodes 1, 2, 8, and
10 are popular nodes and node 11 is a bridge node. The
original input lists for newly expanded pn are cleaned to a new
cg, so that these lists only contain the popular and bridge
nodes. The distance matrix for cg is re-computed for
answering queries. CG graph will serve as the intermediates to
estimate the distance: δ(u, v) ≤ δ(u, p)+ δ (p, q)+ δ (q, v),
where both p and q are in CG. The time and space complexity
of computing the candidates are O(|pn| *MG), where MG is the
maximum degree of input graph G. This complexity is linear
to the core graph size. The selection of bridge nodes takes
O(|cn| * |pn|2), |cn| is the number of candidates generated in
lines 2-6.

C. Query Evaluation and Estimation
Once the core graph and its distance matrix are computed,

we are ready to answer distance queries online. Given two
nodes u and v, we first compute their neighbor sets Nu and Nv,
and neighbor-of-neighbor set Nu

2, Nv
2. The computation of Nu

2

and Nv
2 are shown in Algorithm 3.4. Through the intersections

of these sets, we can precisely compute the shortest distance
from u to v directly if the distance is no larger than 4. The
algorithm is shown in Algorithm 3.5. Both algorithms 3.4 and
the lines 1-5 in 3.5 take O(|Nu

2 |+ | Nv
2|), i.e. the total number of

the circles (friends of friends) of u and v.

If the shortest distance path between two vertices, u and v,
is longer than 4, two popular nodes1, p and q, will be found
such that the distance on the path u-p-q-v is the shortest. While
there may exist shortest paths between a pair of vertices u and
v that may not include any popular nodes, the chance of such
event happening is rather small. We evaluate the accuracy of
our algorithm in Section V. The estimate time of lines 6-23 in
algorithm 3.5 is O(|Nu

2 |+ | Nv
2|+|pn|) since the distance within

the core net is constant through pre-computation.

IV. GRAPH CALCULUS THEORY AND PARALELIZATION
STRATEGIES USING MAP-REDUCE

In the context of core net CG as an approximation of the
original graph, we develop the following definitions and
theorem to form the foundation of a potentially new theoretic
field, which we dubbed Graph Calculus.

DEFINITION 1. (Graph Function f) f: Θ → Sϑ. Degree
threshold ϑ is the argument (or input variable). Its domain Θ
={0, 1, … MG}, where MG is the max degree of the input graph
G(V, E). For each ϑ in Θ, its image is a core graph Gϑ (Vϑ, Eϑ),
a subset of G(V, E) such that Vϑ = {v|v in V, deg(v) ≥ ϑ} and Eϑ
= {e=(i,j)|e in E and i, j in Vϑ}. The co-domain is the graph
space Sϑ induced by ϑ, which is defined as the following.

DEFINITION 2. (Graph Space Sϑ) Graph space induced by
ϑ is Sϑ = {Gϑ | ϑ in Θ}.

DEFINITION 3. (Graph Limit) When ϑ→0, Gϑ→G, i.e.,
||Gϑ-G0||→0. The distance function || . || is defined by users.

DEFINITION 4. (Shortest Distance Estimate) δϑ(u, v) is the

shortest distance between u and v computed by our algorithm
based on Gϑ (Vϑ, Eϑ).

THEREOM 1. (GRAPH CENTRAL LIMIT THEOREM) As

variable ϑ approaches 0, the core graph Gϑ induced by ϑ
approaches the original graph G(V, E):

limϑ→0 Gϑ = G (1)

1 Strictly speaking, these two popular nodes can be the same node.

Algorithm 3.5, distance (u, v)
Input: two nodes u and v, input graph ig lists, core nodes
pn, distance matrix dist of core graph cg.
Output: exact or estimate of u to v distance
// directly and exactly compute the distance of no more
than 4
1. Compute Nu and Nv i.e. the ig[u], and ig[v]
2. if (v ∈ Nu) return 1; // u - v
3. if (Nu ∩ Nv φ≠) return 2;
 // u - x – v, x is common neighbor of u and v
4. if (Nu

2 ∩ Nv φ≠) return 3; // u - u1 - x - v
5. if (Nu

2 ∩ Nv
2

 φ≠) return 4; // u - u1 - x - v1 - v

// estimate the distance between u and v
6. // both in core U --- V,
 upper case: in core, --- : shortest u to v path
7. if (u ∈pn && v ∈pn)
 return dist[cn_map.get(u)][cn_map.get(v)];
8. if (u∉pn) u1 = Nu ∩ pn
9. if (v∉pn) v1 = Nv ∩ pn
//u - U1 --- V, u- U1: u directly connects u1 in core (U1)
10. if (u1 φ≠ && v ∈pn)
11. return 1+ dist[cn_map.get(u1)][cn_map.get(v)];
// U --- V1 – v:
12. if (v1 φ≠ && u ∈pn)
13. return 1+ dist[cn_map.get(u)][cn_map.get(v1)];
// u - U1 --- V1 – v:
14. if (u1 φ≠ && v1 φ≠)
15. return 2+ dist[cn_map.get(u1)][cn_map.get(v1)];
16. if (u1 = φ) u2 = Nu

2 ∩ pn
17. if (v1 = φ) v2 = Nv

2 ∩ pn
// u - u1 - U2 --- V1 – v
18. if (u2 φ≠ && v1 φ≠)
19. return 3+ dist[cn_map.get(u2)][cn_map.get(v1)];
// u - U1 --- V2 - v1 - v
20. if (u1 φ≠ && v2 φ≠)
21. return 3+ dist[cn_map.get(u1)][cn_map.get(v2)];
// u - u1 - U2 --- V2 - v1 - v
22. if (u2 φ≠ && v2 φ≠)
23. return 4+ dist[cn_map.get(u2)][cn_map.get(v2)];

 COROLLARY 1. (SHORTEST-DISTANCE CENTRAL LIMIT
THEOREM) As ϑ approaches 0, the shortest distance estimate
approaches the true shortest distance in G, i.e.

limϑ→0 δϑ(u, v) = δ(u, v) (2)

The theorem and corollary are self-explaining. Although

as the threshold goes to zero (i.e. choosing more and more

popular nodes and bridge nodes) the estimate distance goes to
real distance overall, that approaching is by no means
monotonous because the graph is of a discrete nature.
Furthermore, when the core graph grows the computing cost
grows as well.

Our algorithms are not just simple, effective, and easy to
implement, their main appeal however is their practicality due
to their mostly straightforward ways of parallelization using
the MapReduce framework in a cloud computing environment.
Due to the sheer sizes of large social graphs, being able to be
parallelized in a distributed cloud computation for the web
analytics has become a mandate.

Paralelization of offline core construction. The first step is
to find the popular nodes (Algorithm 3.1). Given a threshold,
the distributed data and computers can independently check the
degrees and perform lines 3-4, 6-7; line 5 however needs a
global computer to create unique ids for each popular node.
Computing the candidates and selecting bridge nodes from
them (Algorithm 3.2) is more difficult to parallelize. We can
achieve it by an algorithm similar to parallel merging. After the
candidates and their popular neighbor arrays p are distributed,
the selection of bridge nodes (lines 8-9) can be done in parallel
as well as cleaning the lists of the core nodes to remove non-
core nodes in the lists. For distance matrix computation
(Algorithm 3.3), each computing node just independently
performs a BFS with its assigned starting node on the core lists
which is in the memory of a computing node due to its much
smaller size than the input graph.

Paralelization of online query evaluation. It is
straightforward to parallelize the computation of the neighbor
sets Nu and Nv, and neighbor-of-neighbor set Nu

2, Nv
2

(Algorithm 3.4). So is the local accurate distance computation
(Lines 1-5 in Algorithm 3.5) as long as the query node IDs are
assigned to the corresponding computing nodes. Again, since
the number of core nodes is small, the core node IDs with the
mapping function cn_map are broadcast to each computing
nodes. Lines 6-21 are inherently parallel as long as the pre-
computed core distance matrix is distributed or handled by a
global distance oracle on the core net.

V. SIMULATION RESULTS
We used an 8-core Linux server with 64G memory in our

simulations. The CPU speed is 3.5 GHz. We implement the
algorithms using Java 1.6.

Our first data set is provided by Stanford SNAP [16]. Data
set Ego-Facebook contains undirected, unweighted Facebook
graph obtained through survey participants. The graph has
4,040 nodes and 88,234 edges. The largest degree of the nodes
is 293 and average degree is 41. The input is stored in 10 files,
with a total of 170,174 lines. There are 81 singleton nodes and
8 2-node components. Other larger components and the
statistics are shown in Table I. There are total 94 components,
with the largest one containing 3,927 nodes. Its diameter is 17,
meaning that some of the nodes in it are quite far away even if
most are close to each other. The pair-wise actual shortest
distances among all the nodes were calculated for statistical
purposes. Their frequencies are shown in Figure 2. From it we

Figure 2, Percentage of pairs of vertices with h-hop
distance between themselves. In the graph, x-axis
represents the hop distance and y-axis shows the
percentage of such hop-distance among all possible pairs.

Figure 4: Error rates and miss rates of different factors.

Figure 3: Runtime of our core-net algorithm with different
factors. Factor, f, is defined as the ratio between degree
threshold and average node degree.

can see that most of the pairs have a distance shorter than 12.
In fact, a majority of them have hop distances around 4-8.

Table I, Network characteristics, number of nodes and
diameter, of larger components.

Component ID 1 2 3 4 5

Number of Nodes 3927 6 4 3 3

Diameter 17 2 1 2 1

Our core net algorithm was evaluated for different factors.
We use factors to determine the thresholds for various sizes of
input graphs. Threshold ϑ = factor*avg_degree. Runtime of
our core-net algorithm with different factors are presented in
Figure 3. Gp and Gc times are the times spent in computing the
popular graph and the core graph respectively. When the
threshold goes to zero, the time increases fast. When the
factors are greater than two, our algorithm is very fast.

We also evaluated the accuracy of our core-net algorithm.
The accuracy is measured by average error rate and miss rate.
The average error rate is define as

 k
k

i
i

ii

/)(
1
∑
=

−

δ
δδϑ

For each query i, total k queries, i
ϑδ , and iδ are our

estimated and true distance of ith query. Since our evaluation
algorithm 3.4 is based on the direct exact calculation of δ(u, v)
using N1 or N2 sets, or an estimate if they are within N2 of any
core node. However, if a connected pair is far from each other
(more than 4) or from the core net (more than 2), then a “miss”
happens. The miss rate is defined as the number of misses
divided by total queries. Note that, when we compute the error
rate, the missed queries are dropped because their distances are
counted as ∞.

The error rates and miss rates of different factors are shown
in Figure 4. We use 1000 randomly generated queries (k
=1000). Although the error rates vary due to discrete nature of
graphs, the miss rates do decrease monotonously with core
factor.

The characteristics of the core net formed with different
factors are listed in Table II. These include number of core
nodes (#core), number of bridge node candidates (#cand.),
number of bridge nodes (#bn), number of disconnected
components (#comp), and list of components in the core graphs
after our Core-net algorithm has been performed. The
components 0 corresponding to the computation of original
graph is already shown in Table I.

It can be observed that the largest component (component
No. 1) basically contains all of the nodes. Each of the other
smaller components contains a couple of nodes each. When
the input data grows, the core graph also grows. The internal
Core-net computation (in Fig. 4 and Table II) becomes
infeasible. We need to compute the core and then write the pre-
computed pairwise distances of the core nodes into disk and
later retrieve for queries. We implemented the constraint and
central algorithms in [10] and compared with our external Core
Net. We change the number of landmarks and compare with
the offline construction times and average error rate. The
results are shown in Figures 5 and 6. Our algorithm takes a
fraction of times of Central and Constraint with a similar or
better accuracy.

0

10000

20000

#landmarks

Ti
m

e
(m

s)

Core Net Central Constraint

Core Net 49 55 65 155 226 126 354

Central 364 403 446 598 562 769 1E+

Constraint 536 158 214 247 226 554 833

10 20 30 40 50 100 150

Figure 5, Offline construction time for data set 1.

0

1

2

3

landmarks

E
rr

or
 r

at
e

Core Net MissRate

Central Constraint

Core Net 0 0 0.01 0.23 0.17 0.21 0.2

MissRate 0.65 0.65 0.64 0.4 0.39 0.22 0.12

Central 2.08 0.28 0.27 0.22 0.21 0.14 0.11

Constraint 0.15 0.14 0.14 0.16 0.16 0.16 0.16

10 20 30 40 50 100 150

Figure 6, Error rates and missed rates for data set 1.

0

500

1000

1500

#landmarks

Co
ns
tr
uc
tio

n3
Ti
m
e3
(s
ec
)

Core3Net 0.83 0.877 1.03 1.96 3.2

Central 258 452 736 940 1159

Constrain
t

145.7 395.4 579.5 790.9 1001

10 20 30 40 50

!

!

Figure 7, Offline construction time for data set 2.

Table II, Core-Net Characteristics with different factors.
The "Components" column lists the sizes and diameters of

the connected components.
Factor #core #cand. #bn #comp Components

0 3959 0 0 13

1 1335 1558 187 2 (1503, 10)

(19, 2)

2 627 1356 87 1 (714, 10)

3 312 877 21 2 (331,6)

(2,1)

4 149 676 4 1 (153,5)

5 21 698 3 1 (24,5)

6 3 235 0 2 (1,0)

(2,1)

Our second real data set was from [17, 18], called
Facebook Social Graph - Breadth First Search data set “bfs-1-
socialgraph-release. The file’s size is 2.78GB with 1,189,767
lines. The data set was collected in April, 2009 through data
scrapping from Facebook.

The graph has 61,876,633 nodes and 170,069,566 edges.
Since the nodes with IDs above 1,189,767 do not connect
among themselves, we purged these larger IDs from the link
lists. This graph is connected. We run external Core Net,
Central, and Constraint on this larger data set. Runtimes are
shown in Figure 7. From Figure 7, we can see that Core Net is
orders faster than the competitors. The error rates of the three
competing schemes are shown in Figure 8, which also shows
the miss rate of the Core Net scheme. The error rates of the
Core Net are 4-10 times lower than the other two schemes.

VI. CONCLUDING REMARKS
In this work, we have proposed a shortest-path query

algorithm based on core net, which consists popular nodes that
have large node degrees, bridge nodes that connect some of
these popular nodes that are otherwise disconnected, and the
edges connecting these nodes. After a pre-processing phase,
the well-known triangulation technique is used to efficiently
compute the shortest distance between any pair of nodes.
Compared to other related works, our scheme scales well and
provides rather accurate approximations for different queries.

In future work, we will investigate different techniques to
further improve accuracy and reduce miss rate. In addition,
experimentation of our techniques on other large social
network data sets are of our interest as well.

0

0.2

0.4

0.6

0.8

#(landmarks

Er
ro
r(r
at
e/
m
is
s(r
at
e

Core(Net 0.012 0.023 0.046 0.071 0.073

Miss(rate 0.418 0.41 0.382 0.332 0.307

Central 0.628 0.61 0.56 0.49 0.513

Constrain
t

0.304 0.289 0.272 0.257 0.251

10 20 30 40 50

Figure 8, Error rates for data set 2. Core Net, Central and
Constraint schemes are shown. The miss rates of the Core
Net scheme are presented as well.

REFERENCES
[1] Dijkstra, E.W., A note on two problems in connexion with graphs.

Numerische Mathematik, 1959. 1(1): p. 269–271.
[2] Bellman, R., On a routing problem. Quarterly of Applied Mathematics

1958(16): p. 87–90.
[3] Cormen, T.H., et al., Introduction to Algorithms. Third ed. 2009: The

MIT Press.
[4] Floyd, R.W., Algorithm 97: Shortest Path. Communications of the

ACM, 1962. 5(6): p. 345.
[5] Cohen, E., et al., Reachability and distance queries via 2-hop labels.

SIAM J. Comput., 2003. 32(5): p. 1338–1355.
[6] Jin, R., et al., 3-hop: a high-compression indexing scheme for

reachability query, in SIGMOD. 2009.

[7] Qiao, M., et al. Approximate Shortest Distance Computing: A Query-
Dependent Local Landmark Scheme. in ICDE. 2012. Washington,
DC, USA (Arlington, Virginia), 1-5 April, 2012.

[8] Wei, F., TEDI: Efficient Shortest Path Query Answering on Graphs.
Graph Data Management: Techniques and Applications, 2011: p.
214-238.

[9] Jin, R., et al., A highway-centric labeling approach for answering
distance queries on large sparse graphs, in SIGMOD. 2012. p.
445-456.

[10] Potamias, M., et al., Fast shortest path distance estimation in large
networks, in Proceedings of the 18th ACM conference on
Information and knowledge management. 2009: Hong Kong,
China. p. 867-876.

[11] Dean, J. and S. Ghemawat, MapReduce: Simplified Data Processing on
Large Clusters, in OSDI'04: Sixth Symposium on Operating
System Design and Implementation

[12] Dean, J. and S. Ghemawat, MapReduce: a flexible data processing tool.
Communications of the ACM, 2010). 53(1): p. 72-77.

[13] Dittrich, J. and J.-A. Quiané-Ruiz, Efficient Big Data Processing in
Hadoop MapReduce. PVLDB, 2012. 5(12): p. 2014-2015.

[14] Agrawal, D., S. Das, and A.E. Abbadi, Big Data and Cloud Computing:
Current State and Future Opportunities in EDBT. 2011: Uppsala,
Sweden. p. 530-533.

[15] Backstrom, L., et al., Four degrees of separation, in WebSci. 2012:
Evanston, IL, USA. p. 33-42.

[16] SNAP. 2009; Available from: http://snap.stanford.edu/data/.
[17] Gjoka, M.; Sampling Online Social Networks, available from:

http://odysseas.calit2.uci.edu/doku.php/public:online_social_netwo
rks.

[18] Gjoka, M., et al., Practical Recommendations on Crawling Online
Social Networks. IEEE J. Sel. Areas Commun. on Measurement of
Internet Topologies, 2011. 29(9): p. 1872-1892.

