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Abstract—Secure storage of genomic data is of great and
increasing importance. The scientific community’s improving
ability to interpret individuals’ genetic materials and the growing
size of genetic database populations have been aggravating the
potential consequences of data breaches. The prevalent use of
passwords to generate encryption keys thus poses an especially
serious problem when applied to genetic data. Weak passwords
can jeopardize genetic data in the short term, but given the multi-
decade lifespan of genetic data, even the use of strong passwords
with conventional encryption can lead to compromise.

We present a tool, called GenoGuard, for providing strong
protection for genomic data both today and in the long
term. GenoGuard incorporates a new theoretical framework
for encryption called honey encryption (HE): it can provide
information-theoretic confidentiality guarantees for encrypted
data. Previously proposed HE schemes, however, can be applied to
messages from, unfortunately, a very restricted set of probability
distributions. Therefore, GenoGuard addresses the open problem
of applying HE techniques to the highly non-uniform probability
distributions that characterize sequences of genetic data.

In GenoGuard, a potential adversary can attempt exhaus-
tively to guess keys or passwords and decrypt via a brute-
force attack. We prove that decryption under any key will
yield a plausible genome sequence, and that GenoGuard offers
an information-theoretic security guarantee against message-
recovery attacks. We also explore attacks that use side infor-
mation. Finally, we present an efficient and parallelized software
implementation of GenoGuard.

I. INTRODUCTION

Due to major advances in genomic research and to the
plummeting cost of high-throughput sequencing, the use of
human genomic data is rapidly expanding in several do-
mains, including healthcare (e.g., genomic-based personalized
medicine), research (e.g., genome-wide association studies),
direct-to-consumer (DTC) services (e.g., ancestry determina-
tion), legal cases (e.g., paternity tests), and forensics (e.g.,
criminal investigation). For example, it is now possible for
physicians to adjust the prescription of certain drugs based
on the genetic makeup of their patients, for individuals to
learn about their genetic predisposition to serious diseases,
and for couples to find out if their potential offspring has an
increased likelihood of developing rare genetic diseases. Major
stakeholders are entering the game; for example, Google is
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building a cloud platform for storing, processing and sharing
genomic data [1].

However, such a vast exploitation of genomic data comes
with critical privacy issues. Because genomic data includes
valuable and sensitive information about individuals, leakage
of such data can have serious consequences, including discrim-
ination (e.g., by a potential employer), denial of services due to
genetic predisposition (e.g., by an insurance company), or even
blackmail (e.g., using sensitive paternity information). Thus
it is crucial to store and manage genomic data in a privacy-
preserving and secure way.

Existing mechanisms for protecting the privacy of ge-
nomic data include (i) anonymization, which has proven to
be ineffective for genomic data [2], [3], (ii) adding noise to
published genomic data or statistics for medical research (e.g.,
to guarantee differential privacy [4], [5], [6]), (iii) computation
partitioning [7], and (iv) cryptography (e.g., homomorphic
encryption [8], [9], private set intersection [10], etc.). In this
work, we focus mainly on the personal use of genomic data,
such as healthcare or DTC services.

Appropriately designed cryptographic schemes can pre-
serve the utility of data, but they provide security based
on assumptions about the computational limitations of ad-
versaries. Hence they are vulnerable to brute-force attacks
when these assumptions are incorrect or erode over time.
Given the longevity of genomic data, serious consequences can
result. Compared with other types of data, genomic data has
especially long-term sensitivity. A genome is (almost) stable
over time and thus needs protection over the lifetime of an
individual and even beyond, as genomic data is correlated
between the members of a single family. It has been shown that
the genome of an individual can be probabilistically inferred
from the genomes of his family members [11].

In many situations, though, particularly those involving
direct use of data by consumers, keys are weak and vulnerable
to brute-force cracking even today. This problem arises in
systems that employ password-based encryption (PBE), a
common approach to protection of user-owned data. Users’
tendency to choose weak passwords is widespread and well
documented [12].

Recently, Juels and Ristenpart introduced a new theoretical
framework for encryption called honey encryption (HE) [13].
Honey encryption has the property that when a ciphertext is
decrypted with an incorrect key (as guessed by an adversary),

1



the result is a plausible-looking yet incorrect plaintext. There-
fore, HE gives encrypted data an additional layer of protection
by serving up fake data in response to every incorrect guess
of a cryptographic key or password. Notably, HE provides a
hedge against brute-force decryption in the long term, giving
it a special value in the genomic setting.

However, HE relies on a highly accurate distribution-
transforming encoder (DTE) (Section II-B) over the mes-
sage space. Unfortunately, this requirement jeopardizes the
practicality of HE. To use HE in any scenario, we have to
understand the corresponding message space quantitatively,
that is, the precise probability of every possible message.
When messages are not uniformly distributed, characterizing
and quantifying the distribution is a highly non-trivial task.
Building an efficient and precise DTE is the main challenge
when extending HE to a real use case, and it is what we do
in this paper. Hopefully, the techniques proposed in this paper
are not limited to genomic data; they are intended to inspire
those who want to apply HE to other scenarios, typically when
the data shares similar characteristics with genomic data.

In this paper, we propose to address the problem of
protecting genomic data by combining the idea of honey
encryption with the special characteristics of genomic data in
order to develop a secure genomic data storage (and retrieval)
technique that is (i) robust against potential data breaches,
(ii) robust against a computationally unbounded adversary, and
(iii) efficient.

In the original HE paper [13], Juels and Ristenpart propose
specific HE constructions that rely on existing generation
algorithms (e.g. for RSA private keys), or operate over very
simple message distributions (e.g., credit card numbers). These
constructions, however, are inapplicable to plaintexts with con-
siderably more complicated structure, such as genomic data.
Thus substantially new techniques are needed in order to apply
HE to genomic data. Additional complications arise when the
correlation between the genetic variants (on the genome) and
phenotypic side information are taken into account. This paper
is devoted mainly to addressing these challenges.

A. GenoGuard

We propose a scheme called GenoGuard. In GenoGuard,
genomic data is encoded, encrypted under a patient’s pass-
word1, and stored at a centralized biobank. We propose a novel
tree-based technique to efficiently encode (and decode) the
genomic sequence to meet the special requirements of honey
encryption. Legitimate users of the system can retrieve the
stored genomic data by typing their passwords.

A computationally unbounded adversary can break into the
biobank protected by GenoGuard, or remotely try to retrieve
the genome of a victim. The adversary could exhaustively
try all the potential passwords in the password space for
any genome in the biobank. However, for each password he
tries, the adversary will obtain a plausible-looking genome
without knowing whether it is the correct one. We also consider
the case when the adversary has side information about a
victim (or victims) in terms of his physical traits. In this

1A patient can choose a low-entropy password that is easier for him/her to
remember, which is a common case in the real world [12].

case, the adversary could use genotype-phenotype associations
to determine the real genome of the victim. GenoGuard is
designed to prevent such attacks, hence it provides protections
beyond the normal guarantees of HE.

GenoGuard is highly efficient and can be used by the
service providers that offer DTC services (e.g., 23andMe) to
securely store the genomes of their customers. It can also be
used by medical units (e.g., hospitals) to securely store the
genomes of patients and to retrieve them later for clinical use.

B. Contributions

Our main contributions in GenoGuard are summarized as
follows:

• We propose a novel technique to secure genomic data
against data breaches that involve a computationally
unbounded adversary (an essential requirement given
the longevity of genomic data);

• We design and analyze several distribution models for
genome sequences;

• We propose and analyze techniques for preventing an
adversary from exploiting side information (physical
traits of victims) in order to decrypt genomes;

• We present a formal security analysis of our proposed
techniques;

• We implement and show the efficiency of GenoGuard.

Organization

The rest of the paper is organized as follows. In the next
section we provide a brief background on genomics and honey
encryption. In Section III, we introduce the system model for
GenoGuard. In Section IV, we describe in detail the techniques
underpinning GenoGuard and analyze their security in Sec-
tion V. In Section VI, we study the robustness of GenoGuard
against adversaries with side information (namely, physical
traits of victims). In Section VII, we consider performance,
use cases, and other details. In Section VIII, we review related
work. Section IX concludes the paper.

II. BACKGROUND

In this section, we briefly introduce some basic concepts
of genomics, as well as the honey encryption scheme [13]. To
facilitate future references, frequently used notation is listed
in Table I.

A. Genomics

1) Genetic Locus, Allele, and Single Nucleotide Variant:
In this paper, we consider a genetic locus (plural loci) as a
position on a chromosome. One of a number of alternative
forms at a given locus is called an allele. Most of the genome
is conserved, in comparison to the reference human sequence,
in any given individual. The most abundant type of genetic
variants are single nucleotide variants (SNVs), in which dif-
ferent alleles are observed at the same chromosomal position.
Only about 4 million SNVs are observed per individual; they
represent the sensitive information that should be protected. In
most cases, there are two alleles at a locus, a major allele,
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M sequence (plaintext) space
M a sequence (message), M ∈M
n number of SNVs in M
S seed space
K key space
C ciphertext space
pk key (password) distribution
pm original message distribution
pd DTE message distribution
h storage overhead parameter
A the adversary against the DTE scheme

Advdte
DTE,pm(A) adversary A’s advantage of distin-

guishing pm from pd
B the adversary against the HE scheme

Advmr
HE,pm,pk(B) adversary B’s advantage of recovering

the correct sequence

TABLE I: Notations and definitions.

which is observed with a high frequency in the population,
and a minor allele, which is observed with low frequency.
The frequency of an allele in a given population is denoted
as the allele frequency (AF). An allele takes a value from
the set {A, T,C,G}. We represent a major allele as 0, and a
minor allele as 1. Human chromosomes are inherited in pairs,
one from the father and the other from the mother, hence each
SNV position has a pair of alleles (nucleotides). For example,
the i-th SNV (on the DNA sequence) can be represented as
SNVi = xy, where x (and y) is an allele. As the ordering of
x and y does not matter, we represent the value of an SNVi
from the set {0, 1, 2}, based on the number of minor alleles
it has. For example, if locus i has major allele A and minor
allele G, we represent AA as 0, AG (or GA) as 1, GG as 2.

2) Diploid Genotype and Haploid Genotype: To be con-
sistent throughout the paper, given a sequence of loci, we
interpret an individual’s diploid genotype as a corresponding
sequence of SNVs, each of which takes values in {0, 1, 2}, and
a haploid genotype as a corresponding sequence of alleles,
each of which takes values in {0, 1}.

3) Linkage Disequilibrium and Recombination: Because
chromosomal segments are inherited as blocks, SNVs on a
sequence are usually correlated, especially when they are
physically close to each other. This correlation is measured
by linkage disequilibrium (LD) [14]. The strength of LD
between two SNVs is usually represented by r2, where r2 = 1
represents the strongest LD relationship. At meiosis, two DNA
sequences exchange genetic information, leading to a novel
combination of alleles that is passed on to the progeny. This
process is called recombination. The recombination rates vary
on the different regions of a chromosome.

B. Honey Encryption

Honey encryption [13] is a recently proposed encryption
scheme that has the advantage of providing security beyond
the brute-force bound over conventional ciphers. In our case,
this is a highly desirable property, considering the longevity of
genomic data. Suppose a message M is sampled from a dis-
tribution pm over the message space M and honey encrypted
under key K ∈ K to yield a ciphertext C ∈ C. Decryption

under an incorrect key K ′ 6= K yields a fake message
M′ also from the distribution pm. In a conventional cipher,
when decrypting a ciphertext using a wrong key, the scheme
usually produces an invalid2 message (often denoted by special
symbol ⊥); thus the adversary can easily eliminate wrong keys
via a brute-force attack. However, in honey encryption, the
adversary does not have such an advantage because the output
of the decryption under a wrong key is equivalent to random
sampling from pm. Honey encryption is proposed with a notion
called distribution-transforming encoder (DTE), as we briefly
describe below.

Distribution-Transforming Encoder: A DTE works by trans-
forming the potentially non-uniform message distribution pm
into a uniform distribution over a seed space S. Formally, it is
a pair of algorithms represented as DTE = (encode, decode):
encode takes as input a message M and outputs a value in
S, whereas decode takes as input a value in S and outputs a
message. encode is probabilistic: A message M can potentially
be mapped to one of many possible values that make up
a set SM ⊆ S , and SM 6= ∅. For any pair of different
messages M and M′ (where M 6= M′), SM ∩ SM′ = ∅.
Moreover,

⋃
M∈M SM = S. Therefore, encode needs to choose

a value randomly in SM when transforming M, but decode is
deterministic. A good DTE has the property that a randomly
selected seed, mapped to the message space, yields roughly the
underlying message distribution pm ( |SM||S| ≈ pm(M)), where
pm(M) is the probability of message M. We further discuss
the benefits of this property in Section V.

In the DTE-then-encrypt paradigm proposed in [13], en-
cryption of a message M involves two steps: (i) application of
encode to M to yield a seed s, and then (ii) encryption of s un-
der a conventional symmetric cipher SE. HE does not provide
IND-CCA (indistinguishability under chosen-ciphertext attack)
security. It provides the weaker but still useful property of
message-recovery (MR) security, described below and formally
defined in Section V. Consider the scenario in which an
adversary wants to guess the key (K) used for the encryption.
Given an ideal cipher model for SE, a randomly selected key
corresponds to a permutation selected uniformly at random.
Hence, if the adversary tries to decrypt a ciphertext C with a
randomly guessed key K ′, he will obtain a value uniformly
sampled from S. If he decodes this value, the output message
is equivalent to one sampled from the distribution pm. Given
a good DTE, the adversary cannot distinguish a correct key
K from an incorrect one K ′ with a significant advantage over
guessing the key (without knowledge of the ciphertext).

We use the DTE-then-encrypt construction in honey en-
cryption. The setup is described as follows:

• Let pm denote the distribution over the message space
M, pk denote the distribution over the key (password)
space K, S = {0, 1}l denote the seed space with bit
length l, and C denote the ciphertext space.

• Let DTE = (encode, decode) be a DTE scheme.
Specifically, encode(M) = S and decode(S) = M,
where M is a message and S ∈ S.

2Here “invalid” means a message with an extremely low probability in pm.
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HEnc(K,M)

S ← $ encode(M)
r ← $ {0, 1}B
C ← $ encrypt(K,S, r)
return (r, C)

HDec(K, (r, C))

S ← decrypt(K,C, r)
M← decode(S)
return M

Fig. 1: DTE-then-encrypt construction using a symmetric
encryption. M ∈ M,K ∈ K, S ∈ S, and C ∈ C. The symbol
‘$’ implies randomness of the function. r is a random salt of
length B.

• Use a conventional symmetric encryption scheme
SE = (encrypt, decrypt) with plaintext space S and
ciphertext space C. For block ciphers without padding,
C is the same as S. SE uses random bits uniformly
sampled from {0, 1}B during encryption, where B is
the length of the random bits.

The honey encryption construction HE[DTE,SE] =
(HEnc,HDec) is also shown in Figure 1. However, as
we will show, the application of HE to genomes, is far
from straightforward. Constructing a good DTE for genetic
sequences, one that yields an HE scheme with good MR
security bounds, is the main challenge addressed in this
paper. Addressing the problem of side information is also a
significant challenge.

III. SYSTEM MODEL

We consider a scenario where individuals’ genomic data is
stored in a database (e.g., a biobank) and used for various pur-
poses, such as clinical diagnosis or therapy, or DTC services.
In the data collection phase, patients provide their biological
samples to a certified institution (CI) that is responsible for the
sequencing. Furthermore, each patient also chooses a password
(we assume patients can choose low-entropy passwords). The
CI pre-processes the sequence data; the most important step is
the application of protection mechanisms to the data, such as
encryption using the passwords of the patients. The CI then
sends the processed data to the biobank. To efficiently protect
the data, we assume there are two layers of protection:

• The inner-layer protection is provided by using cryp-
tographic techniques. This layer is necessary for de-
fending against attacks from insiders or someone who
hacks into the system and steals the database. This is
the focus of this paper.

• The outer-layer protection is the access control; it de-
cides various permissions on the data. Access control
has been extensively investigated in the literature [15]
and is out of the scope of this paper.

During data retrieval, a user (such as a doctor or the patient
himself) first authenticates himself to the system using a
passcode3, or biometric information (e.g., face). After authen-
tication, the user can send a data request to the biobank that

3Chosen by the user or generated by a one-time passcode generator. Note
that the passcode used for authentication cannot be the same as the password
used for PBE (if PBE is used in GenoGuard that is introduced in Section IV),
as the former would require storing a hash of the passcode on the system.

Certified 
Institution 

(CI) 

Alice 

Bob 

Cathy 

Eva 

Data 
Collection 

Data Preprocessing 

Users 

Data 
Retrieval 

Biobank 

Access control 

Fig. 2: System model of genomic data storage and retrieval.
Patients provide their samples to CI for sequencing. Encrypted
sequence data is sent to the biobank and retrieved for various
purposes by the users.

processes the request according to access control rules and the
biobank responds with the authorized data. Figure 2 gives an
overview of the considered architecture.

A. Genomic Data Representation

We represent each patient’s genomic data as a sequence
of genetic variants (SNVs) that take values from the set
{0, 1, 2}, as we discussed before. We assume a sequence
M with n SNVs, and we represent such a sequence as
(m1,m2, · · · ,mn), where mi represents an SNV. We use Mi,j

to represent the subsequence including all the SNVs between
(and including) the i-th and the j-th.

B. Threat Model

We assume the CI to be trusted in order to perform
sequencing on patients’ samples. An adversary can be anyone
(except the CI) who has access to the protected data, such as
the biobank, a user who has been granted access permission
on part of the data, or an attacker who breaks into the
biobank and downloads a snapshot of the database. As a
consequence, the adversary can be assumed to have a copy
of encrypted sequences. We further assume that the adversary
has access to public knowledge about genomics, i.e., AF,
LD, recombination and mutation rates. A stronger adversary
could even have some side information about a given patient,
such as his phenotype, and even some of his SNVs. We
represent the adversary’s background knowledge as BK =
{AF,LD, recombination and mutation rates, [side info]},
where “[side info]” means the type and amount of side
information depend on the power of an adversary. We
also study the effect of phenotype as side information (in
Section VI) and propose a general solution in this regard. We
emphasize that more side information could result in stronger
attacks. Throughout this paper, we assume a computationally
unbounded adversary who has the capability to efficiently
enumerate all keys in K and to use them to decrypt the
data, also called a brute-force attack. We also assume
that the adversary is honest-but-curious (i.e., follows the
protocols honestly, but tries to learn more information than
he is authorized for). The adversary’s main goal is to break
the inner-layer protection and gain access to the plaintext
sequences of the patients.

IV. GENOGUARD

We describe GenoGuard, our solution based on honey
encryption, for the secure storage of genomic data. We show
the main steps of the protocol in Figure 3. We represent the
patient and the user as two separate entities, but they can be
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the same individual, depending on the application. We discuss
more about the application scenarios in Section VII. Step by
step, we discuss the protocol in this section, emphasizing the
encoding (Step 3) and decoding (Step 9) steps that are the
major features of GenoGuard.

Initially, a patient provides his biological sample (e.g.,
blood or saliva) to the CI and chooses a password that is used
for the encryption (Step 1). The CI does the sequencing on the
sample and produces genomic data represented as discussed in
Section III-A (Step 2).

CI User 

Biobank 

1. Sample, Password 

2. Sequencing 
3. Encoding 
4. Password-based encryption 

5. Ciphertext 

6. Request 

7. Ciphertext 

8. Password-based decryption 
9. Decoding 

Patient 

Fig. 3: GenoGuard protocol. A patient provides his biological
sample to the CI, and chooses a password for honey encryp-
tion. The CI does the sequencing, encoding and password-
based encryption, and then sends the ciphertext to the biobank.
During a retrieval, a user (e.g., the patient or his doctor)
requests for the ciphertext, decrypts it and finally decodes it
to get the original sequence.

A. Encoding

We introduce a novel DTE scheme that can be applied ef-
ficiently on genome sequences. The general idea is to estimate
the conditional probability of an SNV given all preceding ones.
In other words, the proposed scheme estimates P (mi|M1,i−1),
the conditional probability of the i-th SNV given preceding
SNVs. The probability of a complete sequence M can be
decomposed as follows:

pm(M) =P (mn|M1,n−1)P (mn−1|M1,n−2) · · ·
P (m2|m1)P (m1).

(1)

The main challenge is to find an efficient way to encode
a sequence M into a uniformly distributed seed, which de-
fines the deterministic mapping from M to SM (then we can
uniformly pick a value from SM). A naive and impractical
method would be to enumerate all possible sequences, com-
pute their corresponding probabilities, calculate the cumulative
distribution function (CDF) of each sequence in a pre-defined
order, and finally assign the corresponding portion of seeds to
a sequence. However, given that there are three possible states
for each SNV on a sequence of length n, this method incurs
both time and space complexity of O(3n).

Therefore, we propose a novel approach for efficiently
encoding such a sequence. The approach works by assign-
ing subspaces of S to the prefixes of a sequence M. The
prefixes of a sequence M are all the subsequences in the set
{M1,i|1 ≤ i ≤ n}. For example, the prefixes of the sequence

ATTCG are {A,AT,ATT,ATTC,ATTCG}. We first describe
the basic setup as follows:

• Seed space S corresponds to the interval [0, 1). Each
seed is a real number in this interval. In practice, we
need to use only sufficient precision (l bits as indicated
by the definition S = {0, 1}l) to distinguish between
the seeds of different sequences. But, for simplicity of
presentation in the rest of this subsection, we assume
there is infinite precision.

• To calculate the CDFs, we define a total order O of
all sequences in M, i.e., O : M → N. For any two
different sequences M and M′, scanning from the first
SNV, suppose they begin to differ at the i-th SNV,
mi and m′i correspondingly (i.e., M1,i−1 = M′1,i−1
and mi 6= m′i). If the value (0, 1, or 2) of mi

is smaller than that of m′i, then O(M) < O(M′),
otherwise O(M) > O(M′). The CDF of a sequence
M is CDF(M) =

∑
M′∈M

O(M′)≤O(M)

pm(M′) where pm(M′)

is the probability of sequence M′.

In a nutshell, we can encode a sequence with the help of a
perfect ternary tree (an example in Figure 4). For a sequence
M, starting from the root, (i) if an SNV mi is 0, we move down
to the left branch; (ii) if it is 1, we move down to the middle
branch; (iii) if it is 2, we move down to the right branch.
As a consequence, each internal node represents a prefix of
a sequence, whereas each leaf node represents a complete
sequence. We also attach an interval [Lji , U

j
i ) to each node,

where i represents the depth of the node in the tree, and j
represents the order of the node at a given depth i, both starting
from 0. This interval is the sub seed space that can be assigned
to the sequences that start with the prefix represented by the
corresponding node.

Here, we describe the details of encoding process (step 3
in Figure 3). Assume we encode a sequence M. It is obvious
that the root has an interval [0, 1), namely, [L0

0, U
0
0 ) = [0, 1).

Depending on the value of SNV mi+1, encoding proceeds from
the node that represents M1,i with order j at depth i to depth
i+ 1 as follows:

• If mi+1 = 0, go to the left branch and attach an inter-
val [L3j

i+1, U
3j
i+1) = [Lji , L

j
i + (U ji −Lji )×P (mi+1 =

0|M1,i)).

• If mi+1 = 1, go to the middle branch and attach
an interval [L3j+1

i+1 , U3j+1
i+1 ) = [Lji + (U ji − Lji ) ×

P (mi+1 = 0|M1,i), L
j
i + (U ji − Lji ) × (P (mi+1 =

0|M1,i) + P (mi+1 = 1|M1,i))).

• If mi+1 = 2, go to the right branch and attach
an interval [L3j+2

i+1 , U3j+2
i+1 ) = [Lji + (U ji − Lji ) ×

(P (mi+1 = 0|M1,i) + P (mi+1 = 1|M1,i)), U
j
i ).

So far, we have not devoted much content to the discussion
of computing the conditional probability P (mi+1|M1,i), which
will be elaborated later. For now, we focus on how the
encoding scheme works on the high level. Finally, when we
reach the leaf node with the interval [Ljn, U

j
n), we pick a

seed S uniformly from this range to encode the corresponding
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Fig. 4: A toy example of the encoding process. The sequence is of length 3. The sequence that needs to be encoded is (0, 2, 1),
shown in red dashed line. Take the second step as an example. We have P (m2 = 0|m1 = 0) = 0.6, P (m2 = 1|m1 = 0) =
0.3, P (m2 = 2|m1 = 0) = 0.1, and [L0

1, U
0
1 ) = [0, 0.6). Hence the next three intervals are: (i) [L0

2, U
0
2 ) = [L0

1, L
0
1 + (U0

1 −
L0
1) × P (m2 = 0|m1 = 0)) = [0, 0.36); (ii) [L1

2, U
1
2 ) = [L0

1 + (U0
1 − L0

1) × P (m2 = 0|m1 = 0), L0
1 + (U0

1 − L0
1) × (P (m2 =

0|m1 = 0) +P (m2 = 1|m1 = 0))) = [0.36, 0.54); (iii) [L2
2, U

2
2 ) = [L0

1 + (U0
1 −L0

1)× (P (m2 = 0|m1 = 0) +P (m2 = 1|m1 =
0)), U0

1 ) = [0.54, 0.6). Note that the intervals in black solid line do not need to be computed when encoding (0, 2, 1). When we
reach the leaf [0.576, 0.594], we pick a seed randomly from this range, e.g., 0.583.

sequence. In the following, we give a toy example of this
encoding process.

Example (Encoding): Suppose all sequences are of length 3.
The sequence M that needs to be encoded is (0, 2, 1). Assume
P (m1 = 0) = 0.6, P (m2 = 2|m1 = 0) = 0.1, and P (m3 =
1|M1,2) = 0.3. The encoding process is illustrated in Figure
4.

In Step 4 (in Figure 3), after the encoding is finished,
the seed, as a plaintext, is fed into a conventional password-
based encryption (PBE) [16] by using the password chosen
by the patient (at Step 1). This step is a direct application of
PBE, so we skip the details here. The encrypted seed is then
sent to the biobank (step 5) that, as a centralized database,
receives requests (step 6) from users and responds with the
corresponding encrypted data (step 7).

B. Decoding

When an encrypted seed is sent to the user, the user first
performs a password-based decryption by using the patient’s
password (step 8). As discussed, the user could be the patient
himself, or the patient can provide his password on behalf of
the user. We discuss more on these scenarios in Section VII.
Once the user has the plaintext seed, the decoding process
(step 9) is the same as the encoding process. Given a seed
S ∈ [0, 1), at each step, the algorithm computes three intervals
for the three branches, chooses the interval in which the seed
S falls, and goes down along the ternary tree. Once it reaches
a leaf node, it outputs the path from the root to this leaf with
all chosen SNVs.

C. Moving to Finite Precision

As we mentioned, the current seed space S is a real
number domain with infinite precision. However, considering
the size of a DNA sequence, with infinite precision, we could
end up having a very long floating-point representation for a

sequence, which could cause a high storage overhead. Also,
we cannot afford to enumerate all possible sequences to find
the smallest precision to represent all the corresponding real
numbers. Moreover, if we work with finite precision and decide
on the precision a priori (without enumerating the sequences),
this could result in an inaccurate representation of the sequence
distribution, thus causing a security loss. In this subsection, we
describe how our proposed DTE scheme can be implemented
with finite precision and with negligible effect on security.

For a sequence of length n, with each SNV taking three
possible values, we require at least (n · log2 3) bits to store
the sequence.4 To optimally implement the scheme, we first
select a storage overhead parameter h (h > log2 3). We use hn
bits to encode one sequence. As before, the algorithm works
by segmenting intervals based on conditional probabilities. In
this case, however, an interval is represented by integers, and
not by real numbers of infinite precision. The root interval is
[0, 2hn−1]. To better describe the scheme, suppose (during the
encoding) we reach the j-th node at depth i on the tree (the
root has depth 0 and the leaves have depth n). The interval
of this node is denoted by [Lji , U

j
i ] (U ji inclusive, which is

different from the infinite-precision case). The segmentation
rules are described in the following.

We compute the conditional probabilities for the three
branches, PL (left branch), PC (middle branch) and PR (right
branch) respectively. Without loss of generality, we assume the
three probabilities are ordered as PL ≥ PC ≥ PR (the follow-
ing algorithm is similar for different orderings). We initialize
a variable avail = U ji −Lji + 1 to denote the size of the seed
space available for allocation. The sizes of seed space that will
be allocated to the three branches are denoted by allocL (left
branch), allocC (middle branch), and allocR (right branch).
Note that allocL + allocC + allocR = U ji − Lji + 1. The
algorithm advances as follows:

4We do not consider compression techniques here.
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(i) If PR < 3n−i−1

avail , then allocR = 3n−i−1, otherwise
allocR = dPR · availe. Then, we update avail as
avail = avail− allocR.

(ii) If PC
PC+PL

< 3n−i−1

avail , then allocC = 3n−i−1,
otherwise allocC = dPC · availe. And, we set
allocL = avail− allocC .

(iii) Finally, we set the three sub-intervals as:
• [L3j

i+1, U
3j
i+1] = [Lji , L

j
i + allocL − 1];

• [L3j+1
i+1 , U3j+1

i+1 ] = [Lji + allocL, L
j
i +

allocL + allocC − 1];
• [L3j+2

i+1 , U3j+2
i+1 ] = [Lji+allocL+allocC , U

j
i ].

The intuition behind the above conditions is that we need
to allocate at least one integer (seed) for one sequence. To
ensure this, when we want to move down to a branch, we
need to guarantee that the size of the seed space allocated for
this branch is not smaller than the total number of sequences
belonging to this branch. The requirement is satisfied from the
beginning by setting the root interval as [0, 2hn−1] and never
violated in the algorithm. This method causes a deviation from
the original sequence distribution. In Section V, we quantify
the security loss due to such deviation and prove that it is
negligible.

D. Modeling Genome Sequences

To compute the conditional probabilities in Equation (1)
efficiently, we introduce several models and compare their
goodness of fit in real genome datasets.

1) Modeling with linkage disequilibrium and allele fre-
quency: With LD and AF, we can compute the joint prob-
ability of two SNVs, P (mi,mj). However, to compute the
conditional probability P (mi+1|M1,i), we have to simplify the
model (Equation (1)) because public LD values are always
given pairwise in the literature. Although there could be mul-
tiple pairwise LD relations for SNVi+1, we adopt the following
heuristic method: We consider only the previous SNV that has
the strongest LD with SNVi+1. Such an LD usually occurs
between neighboring SNVs on the DNA sequence, hence we
have P (mi+1|M1,i) ≈ P (mi+1|mi) = P (mi+1,mi)

P (mi)
. This

is the first-order Markov chain that was considered also in
genomics [17].

This model fails to capture the correlation between distant
SNVs. However, we argue that it approximates the genome
sequence model better than the uniform distribution model
used in conventional encryption, as we will see later in model
comparison with real datasets.

2) Modeling by building k-th-order Markov chains on a
dataset: With this method, we assume the correlation in a
genome sequence can be captured by a k-th-order Markov
chain, where the conditional probability of SNVi+1 depends
on the k preceding SNVs. In other words, we estimate the
conditional probability as

P (mi+1|M1,i) ≈ P (mi+1|Mi−k+1,i). (2)

Researchers have tried to build such a genetic Markov model in
a different context [18]. However, to the best of our knowledge,
there is no public data (like LD) available for these models. In
a similar manner, we build the k-th-order Markov model on
a real dataset, for different k values. Assume the dataset has

N sequences. We use F (Mi,j) to represent the frequency of
subsequence Mi,j between SNVs i and j in the dataset. The
k-th-order Markov model is built by computing

P (mi+1|Mi−k+1,i) =

{
0 if F (Mi−k+1,i) = 0,
F (Mi−k+1,i+1)
F (Mi−k+1,i)

if F (Mi−k+1,i) > 0.

(3)
Due to the constraint of the dataset size, k normally can
only take small values to avoid overfitting of the model.
For example, in HapMap diploid genotype datasets, N is
smaller than 200 for each population. For k = 3, there are
81 possible configurations for Mi−k+1,i+1, which makes the
average frequency for each configuration quite small, hence the
model has modest statistical significance due to this sparsity
problem. We introduce this model as a possible direction and
use it to emphasize the importance of higher-order correlation,
which will be shown in the evaluation. The k-th-order Markov
chain serves as a bridge to the next more promising model.

3) Modeling with recombination rates: Although higher-
order Markov models might better model genome sequences,
these models seem unlikely to be practical because of the
difficulty of accurately estimating all the necessary parameters
in available datasets. Inspired by the modeling method used
by Li and Stephens [19], we can address the problem from a
different viewpoint. Given a set of k existing haploid genotypes
{h1, h2, ..., hk}, another haploid genotype hk+1 to be observed
is an imperfect mosaic of h1, h2, ..., hk, due to genetic recom-
bination and mutation (Figure 5). This reproduction process is
actually a hidden Markov model with a sequence of n states
(the number of loci in a haploid genotype):

• Markov chain states: State j, Xj , can take a value
from 1 to k, representing the original haploid genotype
for locus j;

• Symbol emission probabilities: hi,j denotes the al-
lele (0 or 1) at locus j in haploid genotype i. To
produce hk+1, at state j, an allele hk+1,j is output
with a certain probability, depending on the allele of
the original haploid genotype (Xj) and the mutation
rate;

• Transition probabilities: Transition probabilities
from state j to state j+1 depend on the recombination
rate between locus j and j + 1.

With this model, we can compute the probability of
a haploid genotype hk+1, that is, P (hk+1|h1, ..., hk). The
computation is done with the well-known forward-backward
algorithm for hidden Markov models [20]. The probability of
a genome sequence M, which is the coupling of two haploid
genotypes, can be computed similarly by extending this hidden
Markov model so that state j will take a value pair (X1

j , X
2
j ),

where X1
j denotes the first original haploid genotype and

X2
j denotes the second. Such an extension technique has

been detailed in a genotype imputation scenario [21]. The
conditional probability P (mi+1|M1,i) can then be computed
in the intermediate steps of the forward algorithm. Model and
algorithm details are given in Appendix A.

The correlation between two SNVs, which is considered in
the previous two models, is essentially the result of recombi-
nation in genome sequences. With this recombination model,
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copy copy copy mutate 

ℎ1 

ℎ2 

ℎ3 

ℎ4 

Fig. 5: An example showing how the haploid genotype h4 is
interpreted as an imperfect mosaic of a given set of haploid
genotypes {h1, h2, h3}, based on recombination and mutation.
Each haploid genotype can be as long as the whole genome,
but we show only four loci here to explain the idea. White
circle means allele 0 for that locus, whereas black circle means
allele 1. The first allele of haploid genotype h4 is copied
from h1. Though the second allele comes from h3, it mutates
to a different allele. The third allele is copied from h2, and
the fourth is copied from h1. Note that this shows just one
possible process to get h4 from {h1, h2, h3}, and as there are
many other possibilities, the task of this model is to compute
the probability of observing h4 by taking all the possible
underlying processes into account, which constitutes a hidden
Markov model.

we are able to capture the high-order correlation efficiently,
without having to estimate a large number of parameters.

4) Goodness of fit of the models: To evaluate the models,
we used different types of real genomic datasets from HapMap,
for the population CEU (Utah residents with Northern and
Western European ancestry from the CEPH collection) [22],
including:

• A diploid genotype dataset that contains 165 individ-
uals, each having 22 pairs of autosomes (different
from sex chromosomes that are discussed in Sec-
tion VI-A). The shortest chromosome contains 17304
SNVs, whereas the longest one contains 102157
SNVs;

• A haploid genotype dataset that contains 234 haploid
genotypes, each of which has the same sequence of
loci as that in the diploid genotype dataset on the 22
chromosomes;

• Allele frequency and linkage disequilibrium datasets
for each chromosome;

• Recombination rates for each chromosome.

We performed a chi-square goodness-of-fit test to show
how well each model fits the diploid genotype dataset. We
divided the sequence space M into B bins with equal proba-
bility. The chi-square statistic is defined as

χ2 =

B∑
i=1

(Oi − Ei)2
Ei

, (4)

where Oi is the observed frequency for bin i, and Ei is the
expected frequency for bin i. The null hypothesis H0 is that the

Fig. 6: Chi-square goodness-of-fit tests for different genome
sequence models on 22 chromosomes. The x-axis is the
chromosome number, from 1 to 22. To graphically show the
results at a fine scale, the left y-axis is transformed to the
logarithm of chi-squared statistic. The right y-axis shows one
frequently used significance level, α = 0.01, and another
significance level, α = 0.2. The uniform distribution model
is the one used in conventional encryption. The “public LD
model” is built with public LD and AF data. The “0-th”, “1-
st”, “2-nd”-order models are the Markov models built on the
dataset. Finally, the “recombination model” is built based on
genetic recombination and mutation. Most models are rejected
at α = 0.01, whereas the recombination model cannot be
rejected even at α = 0.2, which shows a good fit of this model
on real datasets.

data follows the specified distribution model. B is chosen with
an empirical formula in statistical theory [23] (B = b1.88N

2
5 c

where N is the sample size). We performed several rounds of
the test for different B values around the empirical one and
they all gave similar results. Hence we set B to be 10, and
show the results in Figure 6. From the chi-square statistics, we
can see that uniform distribution indeed gives a poor model of
genome sequences. The 0-th-order model built on the dataset
is also not appropriate because it does not take the correlation
among SNVs into account. The model built with public LD
and AF performs similarly with the first-order model built on
the dataset, which is reasonable because they both consider
only the first-order correlation. The second-order model is
better than the previous four models, but it is not stable
across different chromosomes: in many chromosomes, we can
reject the null hypothesis H0 at the significance level (α) of
0.01. The recombination model performs best among these
models because it captures high-order correlations that are
naturally caused by the underlying recombination mechanism.
Moreover, the model is stable across all tests and cannot
be rejected, even at the significance level of 0.2 in every
chromosome, which shows a good fit of this model on real
datasets. Therefore, we keep this model for our scheme.

V. SECURITY ANALYSIS

In this section, we prove the security of our proposed DTE
scheme, with regard to the scheme in finite precision.
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Once the algorithm allocates seed space of size 3n−i−1 to
a branch at step i (as in Section IV-C), each following step
simply segments an input interval into three parts of equal size.
Hence there is only one seed for each sequence in the sub-tree
under the branch of step i. As discussed in Section IV-C, in
such a case, the subinterval of the jth node at depth i of the
tree will contain 3n−i−1 integers that are exactly the number
of sequences under that branch.

The goal in constructing a DTE is that decode applied to
uniform points (in the seed space) provides sampling close
to that of the target distribution pm; this is the sequence
distribution produced by the kth-order Markov chain. The seed
space S is the integer interval [0, 2hn − 1] (i.e., l = hn). We
define pd to be the DTE message distribution over M by

pd(M) = P [M′ = M : S ← $ S;M′ ← decode(S)].

The additional security provided by honey encryption depends
on the difference between pm and pd. Intuitively, pm and pd are
“close” in a secure DTE. Next, we quantify this difference for
the proposed DTE scheme. Let P im be the original probability
of the prefix sequence M1,i, namely, P im =

∑
M′∈M

M′1,i=M1,i

pm(M′).

We define P id similarly in the distribution pd.

Lemma 1. ∀M ∈M, |pm(M)− pd(M)| < 1
2(h−log2 3)n .

Proof: As we showed in the optimized scheme, the goal
is to compute three intervals according to the conditional
probabilities for the three branches, PL (left branch), PC
(middle branch) and PR (right branch), respectively. Without
loss of generality, we assume the three probabilities are ordered
as PL ≥ PC ≥ PR. The proof is similar for different orderings.

First consider the case when pd(M) > pm(M). According
to the algorithm, the probability of sequence M increases
in pd only if it has at least one SNV that belongs to the
right branch or the middle branch. In other words, when we
set allocR = 3n−i−1 (allocC = 3n−i−1) or allocR =
dPR · availe (allocC = dPC · availe), we actually increase
the probability for this branch. Without loss of generality, we
prove for the right branch in the following, but it is similar for
the middle branch.

If allocR = 3n−i−1 has been executed at some step, as
we mentioned, there will be only one integer assigned for each
sequence under that branch. The probability of one integer in S
is 1

2hn
. Hence, the probability of sequence M will be increased

by at most 1
2hn

.

Otherwise, the increased probability is only due to
allocR = dPR · availe, coming from the “floor” operation
that expands the interval by at most one additional integer. In
this case, we need to show that

∀i ∈ {0, 1, 2, · · · , n}, P id − P im ≤
i

2hn
. (5)

When i = 0, there is no prefix and P 0
d = P 0

m = 1, and
hence the result holds. Also, for i <= k, the result holds.
When i = k+ 1, P k+1

m = P km · PR. The right sub-interval has

size allocR = dPR · (U jk − L
j
k + 1)e. Then we have

P k+1
d =

dPR · (U jk − L
j
k + 1)e

2hn
≤ PR · (U jk − L

j
k + 1) + 1

2hn

= P kd · PR +
1

2hn
.

(6)

Hence, ∀i >= 0, 2i > i

P k+1
d − P k+1

m = P kd · PR − P km · PR +
1

2hn

≤ k

2hn
· PR +

1

2hn
<
k + 1

2hn
.

(7)

Therefore, we have pd(M) − pm(M) = Pnd − Pnm ≤ n
2hn

<
2n

2hn
= 1

2(h−log2 3)n .

If pd(M) < pm(M), we need to show that pd(M) −
pm(M) > − 1

2(h−1)n . Consider the smallest depth i which
makes P id < P im. Let P id = P im − ε0, where ε0 ≥ 0. In the
previous step, the algorithm must have chosen the left branch
(or the middle branch), otherwise P id will continue to be larger
than P im. We only prove for the left branch whose probability
will decrease the most.5 Then, we have

P id ≥ P i−1d · PL −
3n−i · 2

2hn

≥ P i−1m · PL −
3n−i · 2

2hn
= P im −

3n−i · 2
2hn

,

(8)

and hence ε0 < 3n−i·2
2hn

.

We define P i+kd = P i+km − εk. Now, we will show that
εk <

∑k
j=0

3n−i−j ·2
2hn

. Clearly, the result holds for k = 0. Going
from depth i+ k to i+ k + 1, we have

P i+k+1
d ≥ P i+kd · PL −

3n−i−k−1 · 2
2hn

> (P i+km − εk) · PL −
3n−i−k−1 · 2

2hn

> P i+k+1
m −

k+1∑
j=0

3n−i−j · 2
2hn

.

(9)

Hence,

pd(M)− pm(M) = −εn−i > −
n−i∑
j=0

3n−i−j · 2
2hn

> −
n−1∑
j=0

3n−1−j · 2
2hn

> − 1

2(h−log2 3)n
.

(10)

Lemma 1 bounds the largest difference between pm(M)
and pd(M). It gives rise to the following important theorem
that bounds the DTE advantage of an adversary, introduced by
honey encryption. The DTE advantage is formally defined by
the following definition.

Definition 1. Let A be an adversary attempting to distinguish
between the two games shown in Figure 7. The advantage

5The result also holds for the middle branch whose probability can decrease
(or increase), but not as much as the left branch (or the right branch).
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SAMP1ADTE

M∗ ← pmM
S∗ ← $ encode(M∗)
b← $ A(M∗, S∗)
return b

SAMP0ADTE

S∗ ← $ S
M∗ ← decode(S∗)
b← $ A(M∗, S∗)
return b

Fig. 7: Game defining the DTE advantage. In SAMP1ADTE,
sequence M∗ is sampled according to pm, whereas in
SAMP0ADTE, M∗ is equivalently sampled according to pd. The
adversary’s output b is 0 or 1, indicating his guess on whether
he is in SAMP0ADTE or SAMP1ADTE.

of A for the sequence distribution pm and encoding scheme
DTE = (encode, decode) is

Advdte
DTE,pm(A) = |P [SAMP1ADTE ⇒ 1]−P [SAMP0ADTE ⇒ 1]|.

Theorem 1. Let pm be the sequence distribution and DTE =
(encode, decode) be the transformation scheme using hn bits.
Let A be any sampling adversary, then

Advdte
DTE,pm(A) ≤ 1

2(h−2 log2 3)n
.

Proof: The proof follows Theorem 6 in [13]. We briefly
describe it in the following.

P [SAMP1A ⇒ 1]

=
∑
M∈M

P [SAMP1A ⇒ 1|M∗ = M] · pm(M)

≤
∑
M∈M

P [SAMP0A ⇒ 1|M∗ = M] · (pd(M) +
1

2(h−log2 3)n
)

≤ P [SAMP0A ⇒ 1] + 3n · 1

2(h−log2 3)n

= P [SAMP0A ⇒ 1] +
1

2(h−2 log2 3)n
.

(11)

The last step of the security analysis is the quantification
of message recovery (MR) security for any adversary B against
the encryption scheme HE.

Definition 2. Let B be the adversary attempting to recover the
correct sequence given the honey encryption of the sequence,
as shown in Figure 8. The advantage of B against HE is

Advmr
HE,pm,pk(B) = P [MRBHE,pm,pk ⇒ true].

We emphasize that pk, the password distribution, is non-
uniform. We assume the most probable password has a prob-
ability w. Using Lemma 1 and Theorem 1, we can establish
the following theorem.

Theorem 2. Consider HE[DTE, H] (the detailed definition is
available in [13]) with H (the hash function) modeled as
a random oracle and DTE using an hn-bit representation.
Let pm be the sequence distribution with maximum sequence

MRBHE,pm,pk

K∗ ← pk K
M∗ ← pmM
C∗ ← $ HEnc(K∗,M∗)
M← $ B(C∗)
return M = M∗

Fig. 8: Game defining MR security. Given ciphertext C∗
(encrypted from M∗), adversary B is allowed to guess the
message by brute-force attack. B wins the game if his output
message M is the same as the original message M∗.

probability γ, and pk be a key distribution with maximum
weight w. Let α = d1/we. Then for any adversary B,

Advmr
HE,pm,pk(B) ≤ w(1 + δ) +

3n + α

2(h−log2 3)n
, (12)

where δ = α2

2b
+ eα4

27b
2 (1 − eα2

b
2 )−1 and α = d3/we and b =

b2/γc.

Proof: The proof is similar to Corollary 1 in [13]. We omit
the redundant details and specify the necessary modifications
in the following.

pm is a non-uniform sequence distribution and we assume
γ ≤ 3 −

√
5 ≈ 0.76, which is a requirement for Corollary 1

(in [13]). This assumption is reasonable considering the length
of the sequence n (≥ 20000)6. To estimate γ, we can consider
the sequence with all major alleles and pessimistically assume
each major allele frequency is 0.995, large enough to give an
upper bound for real datasets. Then, γ can be estimated by
0.99520000 ≈ 2.89× 10−44 � 3−

√
5.

The term 3n+α
2(h−log2 3)n is achieved by replacing

Advdte
DTE,pm(A) ≤ 1

2l
with our Theorem 1, and

|pm(M) − pd(M)| < 1
2l

with our Lemma 1 in the proof
of Corollary 1 (in [13]). Essentially, 3n+α

2(h−log2 3)n is the security
loss due to DTE imperfectness that causes the difference
between pm and pd.

As mentioned in the proof, we denote ∆Adv = 3n+α
2(h−log2 3)n

as the security loss term. Consider a case where n = 20000,
h = 4, and γ = 2.89×10−44. If pk is a password distribution,
then w can be estimated to be 1/100 according to Bonneau’s
Yahoo! study [25], in which the most common password was
selected by 1.08% of users. In this case, ∆Adv is negligible
(≈ 2−16600), and δ ≈ 0, hence the upper bound on message
recovery advantage is w = 1/100. If we consider an adversary
who trivially decrypts the ciphertext with the most probable
key and then outputs the resulting sequence, he can win
the message recovery (MR) game with probability 1/100.
Hence, the bound is essentially tight. However, this case only
happens if the patients choose weak passwords according to
the previous password study.

To choose the storage overhead parameter h in practice,
we consider how it affects the security loss term ∆Adv. Since

6We need to focus only on one chromosome because there is no LD between
chromosomes. The number 20000 is based on the observation of chromosome
22 (one of the shortest chromosomes) in a real dataset from the International
HapMap Project.
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Fig. 9: Adversary advantage versus storage overhead. Without
encryption, the minimum storage for a sequence of n SNVs is
n · log2 3 bits. The x-axis is the expansion ratio between the
storage with GenoGuard and the storage without encryption,
namely, hn

n·log2 3 = h
log2 3 . The y-axis is logarithm of the

security loss term, log2 ∆Adv , that is part of the advantage
of the message recovery adversary B ( Equation (12)). With
GenoGuard, to ensure a security loss smaller than 2−200, we
only need a storage expansion ratio that is slightly larger than
2.

α is negligible compared to 3n, we have ∆Adv ≈ 1
2(h−2 log2 3)n .

Taking the logarithm of ∆Adv, we can observe that it has a
linear relationship with h, as shown by Figure 9. For example,
when h

log2 3 = 200.63%, we have ∆Adv ≈ 2−200. Hence, with
a storage overhead slightly larger than two times (compared to
the storage of a plaintext sequence), we achieve a negligible
security loss.

Security under Brute-Force Attacks: To illustrate the se-
curity guarantee of GenoGuard, we conducted two experi-
ments to compare GenoGuard with a simple (unauthenticated)
PBE algorithm under brute-force attacks. For the simple PBE
algorithm, we encoded the genome by assuming a uniform
distribution in GenoGuard encoding, specifically by setting all
edge weights in the tree to be equal (namely, 1

3 ). Thus, its
decryption under any key yields a valid genome (“valid” does
not necessarily mean “plausible”, as we will show). We show
here that for this PBE scheme a very simple classifier suffices
for identifying the correctly decrypted genome with high prob-
ability. We encrypted a victim’s chromosome 22 (see Section
VII-A for dataset description and implementation details) with
a given password from a password pool of size 1000 (without
loss of generality, we assume that the passwords are integers
from 1 to 1000). We chose “539” as the correct password for
both experiments; and we assumed that the adversary knows
the correct password is a number from the password pool
and that he performs a simple brute-force attack. In real life,
brute-force attacks can be carried out if the adversary knows
that the correct password has a limited number of characters
(hence memorizable by users) or even a fixed length (e.g., six-
digit PIN code). In the first experiment, we encrypted the
victim’s sequence directly with the PBE scheme in [16] (after
encoding by assuming a uniform distribution). In the second
experiment, we followed the same procedure except that we
encrypted the victim’s sequence by using the GenoGuard.
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Fig. 10: Experimental security evaluation. We encrypted a
genome with a given password from a pool of 1000 passwords
(for simplicity, we assume that the passwords are integers
from 1 to 1000). Each point represents one decryption result
using an integer from the password pool (the x-axis). The y-
axis is the logarithm7 of the interval size of the decrypted
sequence when encoded with the recombination model. (a)
With a conventional PBE scheme [16], all the wrong passwords
have been ruled out except the correct one; (b) Obviously, with
GenoGuard, no password can be excluded.

Note that in our proposed DTE, the size of the interval of
a leaf in the ternary tree is proportional to the probability
of the corresponding sequence. In both experiments, to rule
out wrong passwords, we computed the interval sizes of the
decrypted sequences and observed the result. Figure 10 shows
the result of the two experiments. We observe that if the
sequence is protected by a direct application of the PBE
scheme, the adversary can exclude most passwords in the
attack because the corresponding decrypted sequences have
much lower probabilities than that of the correct sequence. In
this example, only the correct password is retained, as shown
in Figure 10 (a). With GenoGuard, on the contrary, the correct
sequence is buried among all the decrypted sequences, hence
it is almost impossible to reject any wrong password.

VI. TOWARDS PHENOTYPE-COMPATIBLE GENOGUARD

An individual’s physical traits (such as gender, ancestry
and hair color) are highly correlated to his DNA sequence.
Recently, researchers showed that it is even possible to model
facial traits of an individual from his DNA [26]. Although
such progress in human genetics is desirable for many appli-
cations (e.g., forensics), it can pose a threat to our proposed
technique. In particular, such correlations could be used as
side information by an adversary who tries to obtain the
sequence of a specific victim (e.g., by trying various potential
passwords). For instance, if the adversary knows that an
encrypted sequence belongs to a victim of Asian ancestry, he
might be able to eliminate a (wrong) password if the genetic
sequence obtained using this password does not belong to an
individual of Asian ancestry.

In genetics, gender and ancestry are the most well studied
human genetic traits. These traits have deterministic genotype-
phenotype associations, whereas other traits (such as hair
color) have less certain (probabilistic) genotype-phenotype

7Note that hn is close to 80000, hence the interval size is a huge integer
and is better expressed as its logarithm with base 2.
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associations. In this section, we first show that the security
of GenoGuard is not affected by traits with deterministic
genotype-phenotype associations. Our main goal is to show
that if an adversary knows a phenotype (physical trait) of
a victim, he always retrieves a decrypted sequence that is
consistent with the corresponding phenotype, even if he types
a wrong password. Next, we quantify the privacy loss if an
adversary has information about other traits (with probabilistic
genotype-phenotype associations) of a victim via a privacy
analysis.

A. Traits with Deterministic Genotype-Phenotype Associations

Gender: Gender is determined by sex chromosomes,
namely, X chromosome and Y chromosome. Females have
two copies of the X chromosome, whereas males have one
X chromosome and one Y chromosome. Note however that
X chromosome and Y chromosome have different lengths.
Therefore, the adversary can immediately ascertain whether a
ciphertext comes from an X chromosome or a Y chromosome
because the latter is shorter than the former. As we mentioned
in Section IV-C, (when implementing GenoGuard) the whole
interval [0, 2hn − 1] is determined by the length n of the
sequence. To deal with the gender problem, we use the length
of X chromosome for both sex chromosomes. In other words,
X chromosome and Y chromosome are encoded in the same
interval [0, 2hn−1], where n is the length of X chromosome.8
In this way, the adversary cannot infer any information about
the gender because the ciphertext is always of the same length,
whether it belongs to a male sequence or a female sequence.
Furthermore, if the adversary knows the gender of a victim, he
will always get a consistent sequence (based on the gender)
when he decodes the ciphertext by using the corresponding
public knowledge of Y (or X) chromosome.

Ancestry: Research has shown that ancestry information
can be accurately inferred from DNA sequences. For example,
the sequence of an individual of Asian ancestry usually has
different combinations of SNVs compared to an individual of
European origin. In genetics, ancestry can be inferred with a
number of methods, e.g., principal component analysis (PCA)
followed by k-means clustering [27]. In this method, a training
set is comprised of a number of individuals, each of which is
genotyped on a predefined set of SNVs (the most informative
SNVs). This training set is then fed into PCA in order to find
several principal components. After the dataset is projected on
these principal components, k-means clustering is applied to
cluster the individuals into different ethnicities.

What we want to achieve in GenoGuard is ethnic plau-
sibility: the principal components of the decrypted genome-
wide genotyping data should be broadly similar to those from
a real genome. Hence, we argue that the decoding operation
with knowledge of recombination rates and haploid genotype
dataset from a specific population always yields a sequence
belonging to that population. To verify this, we conducted an
experimental analysis depicted in the following.

We used Phase III9 data from the HapMap dataset [22]. In

8There is no LD between two different chromosomes, so each chromosome
can be encrypted as an independent sequence.

9The third phase of the International HapMap project. This phase increases
the number of DNA samples covered from 270 in phases I and II to 1,301
samples from a variety of human populations.

Fig. 11: Evaluation of ancestry compatibility on GenoGuard.
(a) Ancestry inference with PCA on three populations: ASW
(lower left cluster), CEU (upper left cluster), and CHB (right
cluster). The red crosses are sequences decrypted from an
ASW person with randomly guessed passwords, but with
public haploid genotype dataset from different populations: (b)
ASW; (c) CEU; (d) CHB. We can see that, regardless of the
population which the original sequence belongs to, the ancestry
of the decrypted sequence only depends on population-specific
haploid genotype dataset used for the decoding.

this dataset, we chose 3 populations for our evaluation:

(i) ASW (African ancestry in Southwest USA), with 90
samples;

(ii) CEU (Utah residents with Northern and Western
European ancestry from the CEPH collection), with
165 samples;

(iii) CHB (Han Chinese in Beijing, China), with 90 sam-
ples.

We selected 100 SNVs to infer ancestry according to [28].
First, we applied PCA on the above dataset and selected
the first two principal components. The projection of the
dataset on the two principal components can be seen in Figure
11(a). We encrypted a sequence from a specific population
(e.g., ASW) by using GenoGuard. Then, for each of the
three aforementioned populations, we decrypted the ciphertext
with randomly guessed passwords 100 times, generating 100
random sequences for each case (in total, we generated 300
sequences). Finally, we projected these 300 sequences on the
principal components and observed the result, as shown in Fig-
ure 11(b), (c), and (d). We conclude that decoding with public
knowledge from a population always produces a sequence of
that population, which proves that ancestry inferred from a
sequence does not pose a threat to our proposed technique.
We leave the case for people with mixed blood for the future
work, but a reasonable assumption is that corresponding public
knowledge could be available for mixed-blood people in the
future.
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B. Traits with Probabilistic Genotype-Phenotype Associations

In theory, the idea we introduce for ancestry also works
for other traits: incorporate phenotype-related data during
encoding. For the case of ancestry, such data is provided
as population-specific haploid genotype dataset. However,
such data is not easily available for many other traits (e.g.,
those with probabilistic genotype-phenotype associations) and
genotype-phenotype associations is ongoing research. In the
following, we quantify the privacy loss when the phenotype
of a victim is not taken into account during encoding, but is
exposed to the adversary as side information. For instance, the
adversary could have access to a small number of phenotypical
traits by observing a victim’s photographs from online social
networks.

Consider a genetic trait that has a set of possible phe-
notypes {T1, T2, · · · , Tu}. For example, the trait “hair color”
can have phenotype set {Red,Blond,Brown,Black}. Let PTi
denote the prior probability of a phenotype Ti. Each phenotype
Ti is also associated with a vector of prediction probabili-
ties A

Tj
Ti

: given a sequence with phenotype Ti, A
Tj
Ti

is the
probability that the best classification algorithm will associate
the sequence with phenotype Tj . Then, a brute-force attack
proceeds as follows. For each password, the adversary uses
it to decrypt the ciphertext, inputs the result sequence to the
classifier, and excludes the password if the phenotype does not
match; otherwise he retains the password. We assume that the
adversary trusts the classifier and makes a binary decision on
whether he should retain the password.

Suppose there are totally N unique passwords at the
beginning, and they are in descending order regarding their
probabilities: P1 ≥ P2 ≥ · · · ≥ PN . The order of a password
is usually called its rank. Note that

∑N
i=1 Pi = 1. It has been

shown that the distribution of real-life passwords obeys Zipf’s
law [29], [30]. In other words, for a password dataset, the
probability of password with rank i is

Pi = Wi−s, (13)

where W and s are constants depending on the dataset.
This is actually the password distribution pk. Suppose the
victim’s phenotype is T ∗, which is known to the adversary. We
assume that decryption under a given incorrect password yields
phenotype Ti with probability PTi , and that such assignment is
independent across passwords. Whether an incorrect password
is retained then depends on the probability that the decrypted
sequence is classified by the classifier as phenotype T ∗. This
event may be modeled as independent Bernoulli trials across
passwords, each with retaining probability Pret computed as

Pret =

u∑
i=1

PTi ·AT
∗

Ti . (14)

Note that for the correct password, the adversary retains it with
probability AT

∗

T∗ . From Theorem 2, we observe that the advan-
tage of adversary B without side information is approximately
equal to w, the maximum weight in the password distribution
(equivalent to the above P1). Let B′ represent the adversary
with side information T ∗. B′ first prunes passwords based on
the classifier, and then executes the algorithm of adversary B
in the MR game (Figure 8) on the resulting smaller password
pool consisting of retained passwords. Let p′k represent this

Hair Color (T∗) Prior (PT∗ ) ARedT∗ , A
Blond
T∗ , ABrownT∗ , ABlackT∗

Red 8.8% 60.7%, 28.6%, 7.1%, 3.6%
Blond 42.6% 0.8%, 93.9%, 3.8%, 1.5%
Brown 39.3% 0.8%, 56.7%, 20%, 22.5%
Black 9.3% 0%, 55.2%, 3.4%, 41.4%

TABLE II: Summary of the results from the HIrisPlex sys-
tem [31]. The second column, prior, is the fraction of samples
that have the corresponding hair color. The third column is the
vector of prediction accuracies (of the classification algorithm)
for all four hair colors, given that a person has hair color T ∗.

Red Blond Brown Black
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Fig. 12: Evaluation of adversary’s advantage with the side
information of hair color. Adversary B has no side information,
and his advantage is approximately w = 0.0379, the maximum
weight in the original password distribution pk. The advantage
of adversary B′ depends on the prediction accuracy AT∗T∗ and
the retaining probability Pret for the victim’s hair color T ∗.

new password distribution, with maximum weight w′. We can
represent the password pruning procedure as a randomized
function f(pk)→ p′k. Therefore, B′ adheres to the procedure:
i) B′ uses f to compute p′k; ii) B′ gives p′k to B. Let Adv(B′)
represent the advantage of adversary B′. We have

Adv(B′) = AT
∗

T∗ · Ep′k←f(pk)[Advmr
HE,pm,p′k

(B)]

≈ AT∗T∗ · Ep′k←f(pk)[w
′],

(15)

where E is the expectation over the randomized password
pruning process, and we approximate Advmr

HE,pm,p′k
(B) with

the maximum weight w′ in the password distribution p′k. In
the following, we quantify Adv(B′) empirically with real data.

For this purpose, we study a recent work about predicting
hair color from DNA (the HIrisPlex system [31]). The study
collects DNA samples and hair color information from 1551
European subjects and builds a model to predict the hair color.
The results are shown in Table II.

We use the Zipf’s model in [30], where N = 486118,
W = 0.037871 and s = 0.905773. For different hair col-
ors known by adversary B′, we perform the Bernoulli trials
with corresponding Pret on the password pool, and estimate
Adv(B′) in Equation (15). We repeat the whole experiment
1000 times for each hair color, and the average results are
shown in Figure 12.

With the “Red” hair information, the adversary’s advantage
increases from 0.0379 to 0.0642, which is the worst among
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the four colors (for the victim). This is explained by the fact
that “Red” hair has a very low prior probability that leads
to a small Pret, hence most wrong passwords are deleted.
We observe that the empirical estimation of Ep′k←f(pk)[w

′] is
consistently larger for a smaller Pret. On the contrary, because
“blond” hair has a high prior probability, a larger number
of passwords are retained, hence smaller Ep′k←f(pk)[w

′] and
smaller Adv(B′), compared to the case of “Red” hair. From
Equation (15), the advantage is also positively correlated to
the accuracy of the prediction algorithm. The low accuracies
for “Brown” and “Black” hair (ABrownBrown and ABlackBlack) explain
why the advantage of adversary B′ barely increases, or even
decreases10, compared to adversary B.

Even though side information is a common security con-
cern in cryptography, we propose a general idea to avoid
this problem for GenoGuard: incorporate the side information
during the encoding phase. Nontrivial as this is, we will
elaborate this idea in our future work, especially for traits with
probabilistic genotype-phenotype associations.

VII. DISCUSSION

In this section, we discuss the performance, application
scenarios, some extensions, and limitations of the proposed
scheme.

A. Performance

The time complexity of the encoding phase is O(n) where
n is the length of the sequence. Moreover, the storage overhead
of the encrypted seeds is low as shown in Figure 9. Note
that the ternary tree does not need to be stored. The encoding
and decoding process are completely executed based on public
knowledge; not on a pre-stored tree.

We implemented GenoGuard in Python. It includes mainly
four steps: encode, decode, PBE encrypt, PBE decrypt. As
before, we used the Phase 3 data in International HapMap
Project, for the CEU population [22]. We set the storage
overhead parameter h = 4. As for password-based encryption
(decryption), we followed the standard PKCS #5 [16]. That
is, using HMAC-SHA-1 as the underlying pseudorandom
function, given a password P , we first applied a key derivation
function

DK = KDF (P, S),

where DK is a 128-bit derived key and S is a 64-bit random
salt. DK is used as the key for an AES block cipher that en-
crypts the seed in CBC mode. We ran the algorithm on a cluster
of 22 nodes, each with 3.40GHz Intel Xeon CPU E31270
and 64-bit Linux Debian systems. In other words, the task of
encrypting the whole genome was parallelized in 22 nodes
that independently encrypt 22 chromosomes. We evaluated
GenoGuard on 165 CEU samples, and the average performance
is shown in Figure 13. Although encoding (decoding) is more
costly than PBE, it is still acceptable considering the size of a
full genome. Moreover, encoding different chromosomes was
run in parallel, hence the running time depends only on the
longest chromosome.

10When the prediction is unreliable, it’s better for the adversary to ignore
the side information.

Fig. 13: Performance of GenoGuard on 22 chromosomes,
averaging over 165 CEU samples. The dashed line shows the
length of each chromosome, whereas the solid lines show
the running time of the four procedures: encode, decode,
PBE encrypt, PBE decrypt. The number of SNVs roughly
decreases from chromosome 1 to chromosome 22. We can see
that the running time of password-based encryption (decryp-
tion) is negligible compared to encoding (decoding), whose
running time increases almost linearly with the length of a
chromosome).

B. Application Scenarios

GenoGuard can be applied to various scenarios, including
healthcare and recreational genomics, for the protection of
genomic data. The general protocol in Figure 3 can work
in a healthcare scenario without any major changes. In this
scenario, a patient wants a medical unit (e.g., his doctor) to
access his genome and perform medical tests. The medical
unit can request for the encrypted seed on behalf of (and with
consent from) the patient. Hence, there is a negotiation phase
that provides the password to the medical unit. Such a phase
can be completed automatically via the patient’s smart card (or
smart phone), or the patient can type his password himself. In
this setup, the biobank can be a public centralized database
that is semi-trusted. Such a centralized database would be
convenient for the storage and retrieval of the genomes by
several medical units.

For direct-to-customer (DTC) services, the protocol needs
some adjustments. For instance, Counsyl11 and 23andMe12

provide their customers various DTC genetic tests. In such
scenarios, the biobank is the private database of these service
providers. Thus, such service providers have the obligation to
protect customers’ genomic data in case of a data breach. In
order to perform various genetic tests, the service providers
should be granted permission to decrypt the sequences on
their side, which is a reasonable relaxation of the threat model
because customers share their sequences with the service
providers. Therefore, steps 8 and 9 in Figure 3 should be
moved to the biobank. A user (customer) who requests a
genetic test result logs into the biobank system, provides the
password for password-based decryption and asks for a genetic

11https://www.counsyl.com/.
12https://www.23andme.com/.
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test on his sequence. The plaintext sequence is deleted after
the test.

C. Typos

Providing an incorrect password yields a fake but valid-
looking sequence. This is a good security characteristic of
honey encryption, but can be bad for usability if a legitimate
patient or doctor does not realize she has made a mistake when
typing the password. To solve this problem, we propose several
solutions, as discussed below.

The first idea is to append to the plaintext some information
that is unique and verifiable by the patient but meaningless for
the adversary. We propose encoding such information (such as
a 4-digit PIN chosen by the patient) as a string of bits similar
to the seed. Such a PIN can be appended to the seed and
encrypted together. In other words, the third encryption step
in Figure 1 can be replaced with C ← $ encrypt(K,S||PIN, r).
This option works well if the PIN is a uniformly random string;
otherwise it will cause some security degradation because
S||PIN is no longer uniform. Moreover, it requires the PIN
to be kept secret and that the adversary cannot link it to a
patient.

Another approach might be to leverage the distinction
between recall memory and recognition memory [32]. The
latter is shown to be more robust than the former. For in-
stance, the system can provide a pool of N confirmation
images, and the user can choose one before encryption. The
confirmation images do not themselves have to be part of the
ciphertext. The system can hash the genome sequence into
ZN = {0, 1, 2, · · · , N − 1} to obtain a confirmation index,
for security parameter N . The user might confirm correct
decryption simply by indicating that a displayed image is
familiar. A similar idea has been proposed in previous work
where the authors apply it to anti-phishing techniques [33].

Another idea is based upon concealment of a biometric
template among decoys. For instance, the user can provide
his fingerprint template that is stored with some honey tem-
plates (e.g., synthetic fingerprint images [34], or other users’
templates). These templates can also be indexed as what we
propose for the confirmation images above. During retrieval,
only the user can verify whether the decryption is correct or
not using his own fingerprint.

VIII. RELATED WORK

Privacy concerns around genomic data have been exten-
sively investigated by researchers in recent years. Homer et
al. [2] show the possibility of inferring the participation of an
individual in a genotype database with the help of public allele
frequencies. Wang et al. [3] give similar results of inference
power based on p-values released in genome-wide association
studies. As a response to the above privacy breach in pub-
lished genomic statistics, Fienberg et al. [4] propose to apply
Laplacian noise to the released data to achieve differential
privacy. Another approach to achieving differential privacy in
genome-wide association study is proposed by Johnson and
Shmatikov [5]. Yu et al. [6] present scalable privacy-preserving
methods in genome-wide association studies based on Laplace
mechanism and exponential mechanism. In spite of these
works about differentially private genomic data, Fredrikson et

al. [35] demonstrate an unsatisfactory tradeoff between privacy
and utility in an end-to-end case study of personalized warfarin
dosing. A similar unsatisfactory result in an association study
is also mentioned by Erlich and Narayanan [36].

Jha et al. [37] design several privacy-preserving protocols
for some fundamental genomic computations (edit distance
and Smith-Waterman score) that use oblivious transfer and
oblivious circuit evaluation. Kantarcioglu et al. [9] propose the
use of homomorphic encryption to store encrypted genomic
sequence records in a centralized repository, such that queries
can be executed without decryption and thus without violat-
ing participants’ privacy. Baldi et al. [10] propose a set of
techniques based on private set operations to address genomic
privacy in several important applications, namely, paternity
tests, personalized medicine, and genetic compatibility tests.
Ayday et al. [8] introduce a framework that integrates stream
ciphers and order-preserving encryption to store and retrieve
raw genomic data in a privacy-preserving manner. Researchers
also propose to protect privacy in genomic computation by
partitioning the computation through program specialization,
according to the sensitivity levels of different parts of the
genome data [7]. Naveed et al. [38] provide a comprehensive
survey that discusses the latest considerations about the privacy
issues and countermeasures in the genomic era.

However, no existing cryptographic solution in this domain
addresses the challenge of long-term threats to encryption,
such as quantum computing [39], or of the common short-
term threat of brute-force cracking of PBE ciphertexts [40],
[41], [42].

There have been a number of practices of applying de-
ception and decoys in the literature of computer security.
Honeypots [43] are fake computer systems intended to bait
malicious actions that will be tracked and studied once these
systems are probed or compromised. Honeypots are widely
used in intrusion detection system [44], [45], [46]. Similarly,
a honeynet [47] is proposed to assist the system administrator
in identifying malicious traffic on the enterprise network. The
Kamouflage system [48] and honeywords [49] are designed
to protect a password vault by constructing plausible decoy
passwords. Juels and Ristenpart [13] formalize such a con-
struction process with the concept of DTE, and propose honey
encryption that provides security beyond the brute-force bound
of password-based encryption.

IX. CONCLUSION AND FUTURE WORK

The long-term sensitivity of genomic data gives rise to
a need for especially strong protective mechanisms. Brute-
force attacks on standard encryption schemes under strong
passwords should not be considered infeasible in the long
term, given the rapid evolution of computing technology and
potential algorithmic advances. In the short term, the use of
low-entropy keys, such as passwords, poses serious risks to
password-based encryption of genomic data.

We propose GenoGuard, a cryptographic system that offers
long-term protection for genomic data against even computa-
tionally unbounded adversaries. Decryption attempts against a
GenoGuard ciphertext under an incorrect key yield a genome
sequence that appears statistically plausible even to a so-
phisticated adversary. To achieve this guarantee, GenoGuard
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introduces a novel DTE scheme that efficiently encodes a
genome sequence on a ternary tree with sensitivity to genetic
recombination and mutation, thereby capturing the highly non-
uniform probability distribution and special structure of ge-
nomic data. GenoGuard additionally provides security against
adversaries with phenotypic side information (physical traits of
victims). We provide a parallelized software implementation
of GenoGuard and demonstrate its efficiency and scalability
on a cluster of nodes. GenoGuard thus offers an appealing
approach to the increasingly important challenge of protection
of genomic data.
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APPENDIX
THE RECOMBINATION MODEL

Here we describe how to compute the probability of a
haploid genotype hk+1, given k sampled haploid genotypes
{h1, · · · , hk} with the forward-backward algorithm for hidden
Markov models. The model is borrowed from genetic research,
but we try to avoid using too much genetic terminology in this
work; for details about some variables and constants we will
use here, we kindly ask the readers to refer to the original
paper [19].

Initially, at state 1, we have P (X1 = x) = 1
k (x ∈

{1, · · · , k}). The transition probability from state j to j+ 1 is
characterized by

P (Xj+1 = x′|Xj = x)

=

{
exp(−ρjk ) +

1−exp(−
ρj
k )

k if x′ = x;
1−exp(−

ρj
k )

k otherwise,

(16)

where ρj is the genetic distance between locus j and j + 1.
It is computed based on the recombination rate between these

two loci. Intuitively, a smaller genetic distance will make the
two states more likely to take the same value, meaning that
they are more likely to come from the same haploid genotype.

At state j, an allele (0 or 1) will be emitted. To mimic the
effects of mutation, the emitting probability is characterized
by

P (hk+1,j = a|Xj = x) =

{
1− λ if hx,j = a;
λ otherwise,

(17)

where a is 0 or 1, and λ is the mutation rate.

Let the forward variable αj(x) = P (hk+1,≤j , Xj =
x). Then α1(x) = P (hk+1,1|X1 = x)P (X1 = x). And
α2(x), · · · , αn(x) can be computed recursively using

αj+1(x) =P (hk+1,j+1|Xj+1 = x)
k∑

x′=1

αj(x
′)P (Xj+1 = x|Xj = x′),

(18)

The probability of a complete haploid genotype is then com-
puted using

P (hk+1|h1, · · · , hk) =

k∑
x=1

αn(x). (19)

The conditional probability for allele j+1, given all preceding
alleles, is computed using

P (hk+1,j+1|hk+1,≤j , h1, · · · , hk) =

∑k
x=1 αj+1(x)∑k
x=1 αj(x)

. (20)

For a genome sequence that couples two haploid genotypes,
all the above quantities can be computed similarly by an
extension of this hidden Markov model [21].
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